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BOUNDEDNESS OF THE MARCINKIEWICZ INTEGRALS
WITH ROUGH KERNEL ASSOCIATED TO SURFACES
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Abstract. In this paper, the authors discuss the weighted L” boundedness for the
rough Marcinkiewicz integrals associated to surfaces. More precisely, the kernel of our oper-
ator lacks smoothness not only on the unit sphere, but also in the radial directions. Moreover,
the surface is defined by using a differentiable function with monotonicity and some proper-
ties on the positive real line. The results given in this paper improve and extend some known
results.

1. Introduction. Let R" (n > 2) be the n-dimensional Euclidean space and S"~! be
the unit sphere in R" with the area element do (x"). Let £2 be a homogeneous function of
degree zero with £2 € L'(5"~!) and

(1.1) 1 xNdo(x) =0,
sn=

where x” = x/|x| for any x # 0. Suppose that @ is a nonnegative monotone C' function on
R := (0, 0c0) such that

D(1)
(1.2) o) = S0 and |o(1)|<C forall rt € R,.
For 1 <y < oo, we define the function set A, on R by
1 rR 1/y
(1.3) A, = {b; Iblla, := sup <—/ |b(t)|th> < oo}
r>0 \ R Jo

and As, = L°°(R4). Obviously, for 1 < y; < y» < 0o,
(1.4) Ao C Ay, C Ay CAy and  blla, < 16lla,, = 1Iblla,, < IIPllay -
For p > 0, we define the parametrized Marcinkiewicz integral (g , o,5 associated to

£2, @ and b by

00 Jdi 1/2
(1.5) ms2.p.0.56(f)(x) = (/0 | Fy,2.0,0,6(x)] 7) )
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where

(1.6) Fr 0. 0,0p(x) =

1P lyl"=*
Ifb=1, p =1and @(t) = ¢ in the above definition, we simply denote ;o o ,o,5 by pe. It
is well known that the operator o was first defined by Stein in [21]. Stein proved that if £2 is
continuous and satisfies a Lip, (0 < a < 1) conditionon §”~!, then 11 is the operator of type
(p, p) for 1 < p <2 and of weak type (1.1). In [6], Benedek, Calderén and Panzone proved
that if £2 € Cl(S"’l), then u g is of type (p, p) for 1 < p < oo. In 2000, Ding, Fan and Pan
[10] improved all the results mentioned above. They proved that if 2 € H'(S"~!), where
H'(5"1) denotes the Hardy spaces on §"=1 (see [7] or [8] for the definition of H'(S"~ 1)),
then g is bounded on L?(R") for 1 < p < oo. In 2002, Al-Salman, Al-Qassem, Cheng and
Pan [5] gave the L? boundedness of ug for £2 € L(log Y2 Y. Ifb=1and (1) =1,
we simply denote (o, , 0.5 by Le,p. The LP (1 < p < oo) boundedness of g, , was first
studied by Hormander [17] for real p in 1960, and later studied by Sakamoto and Yabuta [20]
for complex number p in 1999 when the kernel 2 is in Lip, (s7—1.

On the other hand, motivated by Stein’s work on singular integrals [22], in 2002, Ding,
Fan and Pan [11] discussed the L? boundedness of the Marcinkiewicz integral ugo ¢, where
2 € H'(5"!) and @ is the mapping of polynomials, mappings of finite type, homogeneous
mappings and surface of revolution, respectively. An important fact is that

H'($" Y ¢ Log L)'/?(s"~") and L(logL)"/*(s"~') ¢ H'(s"71).

i/ b(lyD2(y') f(x —<P(Iy|)y’)dy‘
lyl<t

In this paper, we will consider the boundedness of g , o5 on the LP(R") and the
weighted L (R") for 2 belonging to different function spaces on $”~!, such as the Hardy
space HI(S"’I) and the Orlicz space L(log L)1/2(S"*1). As a consequence of the above
results, we also get the boundedness of i1 , o, on the L (R") and the weighted L” (R")
when 2 is in the block space B,go’*l/ 2)(S"’l). Before stating our results, let us recall the
definitions of the weights.

Suppose that a nonnegative function w is in LIIOC(R+). For 1 < p < oo, we say that w is
in A, (R ) if there is a constant C > 0 such that for any interval I C R,

1 1 p=l
(1.7) (—/w(r)dr) (—/w(r)_l/(p_l)dr> <C <o0.
1] J; 1] J;

If there is a constant C > 0 such that
(1.8) *(r) < Cw(r) for ae.reR,,

where w* denotes the standard Hardy-Littlewood maximal function of w on R, then we say
wisin A1(R4). For 1 < p < oo, we define the weight classes as follows:

A‘[J(R+)
={wkx) = v1(|x|)vz(|x|)l_”; Vi, 12 € A1(R4) are decreasing or v%, v% € A1(Ry)},

and .
Ap(Ry) ={w(x) = v(lx]); v e Ap(R)}.
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We know by [12] that A p(Ry) C A p(R4), and by [13] that the Hardy-Littlewood maximal
operator M is bounded on L?(R", w) for w € AP(RJr), and thus AP(RJr) C Ap(R"), the
latter is the usual Muckenhoupt weight class on R" and L? (R", w) denotes the weighted L?
spaces associated to the weight @ defined by

1/p
LP(R", w) = {f; I fllLr(w) == (/R If(X)Ipw(X)dX> < OO}-

Let Af,(R+) = A,(Ry) N A;(R") and A;(RJF) = Ap(R1)N Ag,(R"), where A;(R") is
defined as follows: For 1 < p < oo, we say that w is in A{,(R") if there is a constant C > 0
such that for any n-dimensional intervals J with sides parallel to coordinate axes

(1.9) <L / a)(x)dx) (L/ w(x)—l/(P—l)dx)P—l e
‘ 1 J; 171/, = :

Now let us state our results obtained in this paper. Note that in the conditions of The-
orems 1.1, 1.3, 1.5 and 1.7, we always assume that §2 satisfies the cancellation condition

(1.1).

THEOREM 1.1. Suppose 2 € H' (S" ') and b € A, for some y > 1. Suppose @

satisfies one of the following conditions:
(i) @ isincreasing, and ®(t) < c1P(t/2).

(il) @ is increasing, and t®’ (1) is increasing.

(iii)) @ is decreasing, and ®(t/2) < c2®@(1).

(iv) @ is decreasing and convex.
Then ug,p,o.b is bounded on L? (R") for p satisfying |1/p — 1/2| < min{1/y’, 1/2}.
Furthermore, if y > 2, then ug , o.p is bounded on LP (w) for p € (y’,00) and w €
J(Ry).

REMARK 1.2. (1) If @ is positive, increasing, and @ (¢)/(t®’ (1)) is decreasing, then
t®’(¢) is increasing on (0, 00). If @ is positive, increasing and convex, then 1®’(¢) is in-
creasing on (0, o). We mention three examples giving some including relations between (i)
and (ii) and the monotonicity of @ (¢)/(t®’(¢)). (a) () = t1/2¢" is nonconvex, positive,
increasing, and @ (¢)/(t®’(¢)) is decreasing and bounded. r®’(¢) is increasing. But there is
no C > 0 such that @(2t) < C®(1). (b) &(r) = (2 — sin®t)e'/? is convex, positive, in-
creasing, and @ (¢)/(t®'(r)) is bounded but nonmonotonic and t®’(r) is increasing. But there
isno C > 0O such that @(2r) < CP(t). (c) Let y(r) = 1 for0 <t < 7/2, Y (¢t) = sint
fort > /2, and @(r) = 21> + 1y (r). Then ®(¢) is positive and increasing on (0, o) and
satisfies @ (2t) < 7P (t), but @ (¢) is not convex and tP’(¢) is not monotone. Moreover,
D)/ D (1)) < 1and @ (¢)/(tP'(t)) is not monotone.

(2) If @ is positive, decreasing, and —r @’ (¢) is decreasing on (0, 00), then @ (¢) is con-
vex. If @ is positive, decreasing, and — @ (¢)/(t®'(¢)) is increasing, then —t @' (r) is decreas-
ing, and hence @ (¢) is convex. We mention two examples giving some including relations
between (iii) and (iv). (d) Let ¥ (¢) be as above and @ (¢) = 3/t + (1/t2)1/f(t). Then @ (1) is
positive and decreasing on (0, co) and satisfies |®(¢)/(t P’ (1))| < 2, ®(2t) = (1/7)P(¢), but

Al
Ap/y
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@ () is not convex. (e) Let @(r) = t~%¢!/!, & > 0. Then ®(¢) is positive, decreasing and
convex on (0, 00), and [P (£) /(D' (¢))| < 1, butlim;— D (r)/ P (2t) = +00.

THEOREM 1.3. Suppose 2 € L(log™ L)V/2(S"~V)y and b € A, for somey > 1. If ®
satisfies the condition in Theorem 1.1, then wo o @ p is bounded on LP (R") for p satisfying
[1/p — 1/2| < min{l/y’, 1/2}. Furthermore, if y > 2, then [t p. ¢ b is bounded on L? (w)

’ Al
forpe(y’,o0)andw € Ap/y,(R+).

REMARK 1.4. Al-Qassem [3] showed the above theorem for p = 1 under the condi-
tion that @ is a C2, convex, increasing function with @ (0) = 0. His condition automatically
implies our condition @ (r)/(r®’ (1)) € L*(0, co) and (ii).

It is worthwhile to note that (1.2) implies that @ (2¢) > 2V/lello @ (£) (+ > 0) in the case
@ is increasing, and @ (2t) < 2-leleep (1) (r > 0) in the case @ is decreasing. These con-
ditions combined with (1.2) and our (i) and (iii) are used to prove weighted norm inequalities
for rough singular integrals in Fan, Pan and Yang [16]. Hence, in the case y > 2, our Theorem
1.1 is just the counterpart in Marcinkiewicz integrals to their Theorems 1 and 2 in singular
integrals.

The following two facts are useful to check the conditions (i) and (iii) in the above
theorems, which can be seen easily:

(v) The case where @ is positive and increasing. If @ (¢) % is non-increasing for some
§ > 0, then ®(21) < 2°® (1) (r > 0).

(vi) The case where @ is positive and decreasing. If @ (¢) s non-decreasing for some
§ >0, then ®(2t) > 27%® (1) (r > 0).

Recently, Al-Qassem gave the L? boundedness and the weighted L?” boundedness of
1e,p,@,» When §2 belongs to some block spaces 350’71/2)(5’1_1) in [1] and [2], respectively.
In 2006, Ye and Zhu gave the following including relationship in [25]: Forg > 1 and v > —1

(1.10) BV c H'(S"") + Lllog L)' V(8" .

Therefore, applying (1.10) and the conclusions of Theorems 1.1 and 1.3, we get immediately
the following result:

THEOREM 1.5. Suppose $2 € B;O’_l/z)(S"’l)for some g > 1 and b € A, for some
y > 1. If ® satisfies the condition in Theorem 1.1, then o , o5 is bounded on LP (R") for
p satisfying |1/p —1/2| < min{l/y’, 1/2}. Furthermore, if y > 2, then g, 0.5 is bounded

on LP(w) for p € (y',00) and w € A~§7/y,(R+).

REMARK 1.6. Al-Qassem [2] gave the same result under the following two conditions
on @ (for the sake of simplicity, we only state in the case where ® € C!(R, ) is nonnegative
and increasing): (a) @(2t) > n®(¢) for some fixed n > 1 and @(2t) < cP(¢) for some
constant ¢ > 5. (b) @'(r) > a®(r)/t on R for some fixed 0 < o < log, ¢ and @'(¢) is
monotone on R . Obviously, Al-Qassem’s assumption implies automatically our condition.
However, there is a function @ which satisfies our condition but does not satisfy Al-Qassem’s
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condition. @(t) = +/tlog(l + ) is such an example. Hence, Theorem 1.5 improves Al-
Qassem’s result.

Finally, if 2 € L9(S""!) and y > 2, we can obtain weighted norm estimates for the
usual Muckenhoupt’s A, weights. We formulate it as follows.

THEOREM 1.7. Suppose 2 € L1(S"™") for some ¢ > 1 and b € A, for some y > 2.
If @ satisfies the condition in Theorem 1.1, then wgo , o p is bounded on LP(w) provided
P, q, w satisfy one of the following conditions:

@ y' <q <p<ocandwe Ay (R").

(b) ¥y <p<gando' P €Ay (RY).

(©) y <p<oocanda! € Ap(R™M).

Now, we would like to explain the reason why we discuss the parametrized
Marcinkiewicz integrals here.

We first note the following facts: If g(r) € C!(R.) is nonnegative and increasing
(resp. decreasing) on Ry and g(¢)/(tg’(z)) is bounded on R, then lim;—q g(¢) = O (resp.
lim;—,¢ g(¢) = +00) and lim,;_, 4 5, g(¢#) = 00 (resp. lim;—, y g(¢) = 0). See [24, Remark
2] for the proof.

EXAMPLE 1.8. In the case where @ () = t* for some a > 0, we see that

_ _ D (1) ¢ 1
' (t)y=ar®', &7 '@)=1"", 1) = = =,
0 =a ® o) t®'(t) t-at*!  aq
and hence
1 | 1 Vs 207 2ds\'/?
- - /a _ =
/LQ,p,(P,b(f)(x) - a3/2 (/() Sp/” /y<§~ b(' | )| |n p/ll f(-x y)dy s .

This shows that it is natural to consider parametrized Marcinkiewicz integrals when we study
Marcinkiewicz integrals associated to surfaces.
In the case where @ (1) = t for some a < 0, we see that
1 o0 2ds\ 2
me,p,@,b(f)(x) = |a|—3/2</0 T) .

To prove Theorem 1.1, we borrowed many ideas from the proofs of the corresponding
theorems by Ding, Fan and Pan [10], by Fan, Pan and Yang [16] and by Al-Qassem [1], [2].
To prove Theorem 1.3, we used the ideas from the proof of the corresponding theorem by
Al-Salman, Al-Qassem, Cheng and Pan [5]. This work is a revision of our former one, and is
stimulated by a recent paper by Al-Qassem and Pan [4].

Throughout this paper, the letter C will denote a positive constant that may vary at each
occurrence but is independent of the essential variables.

1
/|| by 200 r(x — yyay
y|>s

ol =/

2. Preliminary lemmas. We prepare two lemmas, whose proofs can be found in Fan
and Pan [15]. We present some notations. Let §2 be a regular co-atom in H 1(s"=1) whose
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support satisfies
suppR2 C " 'nBE 1), ¢ es".
When n > 3, set

@D EeGs.8) =1 =sH)" I x10)6) /S 26, V1 =$2)da (),

and when n = 2, set

2.2 ea(s, &) = \/11_—82)((—1,1)(5“)[9(& V1=s3)+ 020, —V1-sH].

LEMMA 2.1. There exists a constant ¢ > 0, independent of $2, such that cEg (s, &)
is an oo-atom in H'(R). That is, cEq (s, £') satisfies

lcEgllre < supp Eg C (5] —2r (&), & +2r (&),

L
4§’

2.3)
and / Eo(s,&)ds =0,
R

where r(§') = |§| 7' |Ac&| and A, (§) = (1%&1, &2, ..., T&p).

LEMMA 2.2. For 1 < q < 2, there exists a constant ¢ > 0, independent of 2,
such that ceq (s, €') is a g-atom in H'(R), the center of whose support is é{ and the radius
r) = g7 (e + 2ED) 12

We prepare the following facts about directional maximal function.

LEMMA 2.3. Suppose ® is a positive function on (0, 00) with |® 1)/t D' (1))| < b
and satisfies one of the following conditions:
(i) @ isincreasing, and ® (2t) < c1PD(1).
(il) @ is increasing, and t®' (1) is increasing.
(iii)) @ is decreasing, and ®(t) < cr @ (2t).
(iv) @ is decreasing and convex.
Then

()
=CA+b)Mf(x),

/ flx— <P(|YI)Y’)d
JAEZ TV,
t/2<y|<t [y]"

where M f (x) is the usual Hardy-Littlewood maximal function of f, and
(b) if2eLl(s"h,

/ 0N fx - <P(|Y|)Y’)d
t/2<|y|<t

| =casn [ 12601y fxdo ),

Iyl"
where My f (x) is the directional Hardy-Littlewood maximal function of f defined by

1
My f(x) = sup2— | f(x —ty)|dt .
r>0 <" Jjt|<r
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PROOEF. (a)
(i) The case where @ is increasing and @(2¢t) < c¢19(¢). By a change of variable
r = @(s), we have

/ fx = ®(|)’|)y/)d ‘
— - dy|=
t/2<|y|<t

Iyl
*®) , r drd ,
-/, [p(r/z) eIl e @ Ty )

D(1) d
<b / / 1= ) L do ()
Sn—l r

dsdo (y")

/ "= 2()y)
sn—1

t/2 s

b(1/2)
<t / " |f(x — )" drdo (y')
T ot/ St Joe)2)

bc’f

(1) 1

< _ / n— d d /
<o [ [ rw = tarda )
<cluab Mg(x),

where v,, denotes the volume of the unit ball in R".
(ii) The case where @ is increasing and t®’(r) is increasing. By a change of variable
r = @(s), we have

/ flx - CD(IyI)y/)d ‘
— " Zdy
t/2<|y|<t

2.4) ol | 1 |
- /s van T T e @ Ty T
We set
((t/2)§b/(t/2))*1 O<r<®(t/2),
a@r) =@ '@ ) e/ <r<®@),
0 r>ao().
Then

00 1 D(1) 1
/o wdr = ey <UD [p(r/z) o T e @ 1)

t

d

5b+f 2 o btlog2.
t/2 S

Since 1/(t®’'(¢)) is decreasing, it follows that a,(r) is nonnegative, decreasing and integrable
on (0, ). So, a,(r)/t"~! is nonnegative, decreasing, and fS'H a;(|y])/1y|""'dy = b+log2.
Hence, we have by (2.4)

—® / o
[ ] = [ ) rlaarao sy
1/2<lyl<t Iy st Jo

= [ 1r =Ty < @+ g2 M ).
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(iii)) The case where @ is decreasing and @(¢) > 2P (2¢). In the same way as in the
case (i), we get

< chuab Mg(x).

/ f(x—<1>(|)’|)y’)d
y
1/2<|y|<t [y]"

(iv) The case where @ is decreasing and convex. Since @ (¢) is positive and decreasing,
we see that @ ~1(¢) is also decreasing, and hence 1/ &) is increasing. Hence we get

/ S - <P(|)’|)y’)d ‘
— "y
t/2<|y|<t

[yl"
D(t/2) / 1 )
2.5) < /S O gy e )
) @(t/2) / 1 )
s e g drde o).
We set
—2(t®'(1))~! 0<r<®®)),
a(r) ={ 200" (@ ')~ @@t)<r <®(1/2),
0 r>o(t/2).
Then

00 2 D(t/2) )
/0 a;(rydr = _tq)’(t) X ¢(t)+/<p(;) 7r®’(q§—1(r))dr

2 t
52b+—/ ds =2b+1.
t Jip

Furthermore, because of the convexity of @ (¢), it follows that —’ (@ 1(1)) is increasing. So,
we see that a;(r) is nonnegative, decreasing and integrable on (0, co). Hence, as in (ii), we
obtain

— @ /
/ f(x—,(l'yl)y)dy‘ =/ If(x— y)la’ﬂy,ll)dy <Q2b+DMf(x).
1/2<y|<t [yl R Iy["

(b) Using (a) with n = 1, we can easily deduce the conclusions in (b). O
Next, we prepare the following estimates about Fourier transforms of some measures on
R". In the case where @ is positive and increasing, we have the following.
LEMMA 2.4, Letl < g < o0, 82 € LY (sn—1h, If @ is positive, increasing, @ (2t) <
co®@ (1), and @(t) := D (1)/ (D@’ (¢)) € L*°(0, 00), then it holds for any 0 < a < 1/q’

t
/t/z

2 C.2%1 -« Q 2
et e [ 45 < G2 0020 e 121 50
sn=1 s |P(t/2)§|*
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PROOF. We have

t . / 2ds
/ Q(x/)efzﬂp(s)s‘x )dO'()C/) _
t/21J sn—1 5
®(1) o 2 d
_ / .Q(x/)eil(rg'x )da(x/) : ’: 1 a
e ol s S1(N@ (@) 7
' o 0] — *d
< f : / 2xNe g (x') “
tD'(1) || Jb(1/2)| S 511 r
D P(1) . ond
~ | 20 / mx’)sz_(y/)( / eTIrE Wy >—r)do~<x’>da(y/> :
td/(1) o0 J STy sn—1 D(1/2) r

In the second equation, we used the change of variable r = @ (s). Clearly we have

D
/ O ire.-yndr
®(t/2) r

<1 <1
= log ®(1/2) — 0g €0

and

D(1)
/ eirt - 4T 2 ,
®(1/2) r P(1/2)|§1|8" - (x" =y
and so we have forany 0 < o < 1
/@D(t) e—ir’;‘-(x’—y’)d_r - (IOg Co)l—aza ‘
®(t/2) r| T @@/2)E%|E - (xF =y
This combined with (2.6) yields the desired estimate. O

LEMMA 2.5. Letl <gq <00, 82 € Lq(S"’l). If @ is positive, increasing, t®'(t) is
increasing, and (t) := ® (1) /(D' (1)) € L*®(0, 00), then it holds for any 0 < a < 1/q’

/, Co4®(log2)! =l |I% |21
t/21J §n=1

Lq(sn—l)
|P(t/2)§|*
PROOF. We have
0 (x/)efi(¢(s)$‘x’)do_ (x/)

t
/z/z sn=1

_ 4 . ond
:/S » l.Q(x/).Q(y’)(//26_“[’(5)5'()‘ _y)?s)da(x/)da(y/).
n—lx S§n— t

Clearly we have
1
/ P (—y) 48
t/2 s

Applying the change of variable r = @ (s), we have

r ds *® - . 1
—iP()E-(x'=y) 42 —irg-(x'=y")
e = e — =1 dr.
t)2 s @(1/2) Q= (P(@(r))

2
Q) @OE g5 (x| L <
R)

2ds
S

2.7

(2.8) <log?2.
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Since @ is positive and increasing, and @’ (¢) is increasing, we see that o~ L' (@ L(r))
is increasing. Hence we obtain

/qm) £ =y dr
cos(—r& - (x" —y))
®(1/2) - (r)@'(@-(r))
- 1 2 _ D(t/2) 2
T20/(1/2) 1§ - (x' = YN T 1/20(t/2) @(t/2)|E - (' = y)|
We get a similar estimate for sin part, and hence we obtain
@ (s)
sP'(s)

/l i Py 45 < 4 .
12 s 00 (/2|5 - (x" = ¥

Thus, combining this with (2.8) we have forany 0 < o <1

/f iveew—ds| _ | 20 « (log2)!—o4 .
12 s | TP |00 |P(/2)E||E" - (X" — y)|*
This combined with (2.7) yields the desired estimate. a

In the case where @ is positive and decreasing, we have the following

LEMMA 2.6. Letl <gq < 00,82 € LY (s"=1h, If @ is positive, decreasing, @ (2t) >
c1P(t), and p(t) :== (1) /(D' (1)) € L*(0, 00), then it holds for any 0 < o < 1/q’

/t 20— @OE g (x| 45 Ca2*log /e " I loc 12 1511
x)e ! o(x)|] — < .
1721 sn=1 s | @ ()&«
PROOF. We have
2
/ t Rx)e 1 POED go (x" ds
t)2 sn—1 N
2
_ /qb(t/Z) ,Q(x’)e_"(’s'x/)do(x’) r d_r
2.9) (1) sn—1 -~ (r@' (@~ (r) r
' b (1) @(1/2) — 2dr
< f Q0)e TE D g (x| —
t@/([) 00 J O 1) sn—1 r
@ t —_— ¢(t/2) . ’ A d
= ,( ) / .Q(x/).Q()”)</ e s x _y)—r)da(x/)da(y/).
t¢ (t) 00 sn—1y gn—1 (P(t) r

In the second equation, we used the change of variable r = @ (s). Clearly we have

®(1)2
/ (t/2) e—irs-(x/_)’,)ﬂ
1 10) r

D(t/2 1
<lo (/)<lo

1

and
2

< k)
T eMIENE - (" =y

D(1/2
/ D ey dr
1 10) r
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and so we have forany 0 < o < 1

/4’(’/2)6”5@,”@ 5 (log1/ep!™2®
10) rl T P@EE - (=¥

This combined with (2.9) yields the desired estimate. O

LEMMA 2.7. Let1l < q < oo, 2 € LI(S"™Y). If @ is positive, decreasing and
convex, and ¢(t) := @ (1))t D' (t)) € L*°(0, 00), then it holds for any 0 < a < 1/q’

2 C.8%(log 2 11—« a0 2
/t Q(x)e—i(¢(s)s-x/)do_(x/) d_S 5 o (Og ) ”q)”oo” ”Lq(sn—l) .
121 sn1 s | (1)&|*
PROOF. We have
2
/l ‘Q(x/)e*i(q)(é‘)é'xl)do-(x’) ﬁ
t1/21J §n=1 s

(2.10) t .
- / .Q(x’).Q(y’)( / e—@(”f'()"—y’)—S)da(x’)do(y’) :
gn—1y gn—1 t)2 N

Clearly we have

1

(2.11) / oW =y 48 <log2.
t)2 s

Applying the change of variable r = @ (s), we have

1 d(t/2)
/ i P@EG—y) 45 _ / 2wy 1 ir
-1 ’ -1
t/2 s (1) =0~ ()@ (@~ (r)

Since @ is positive, increasing and convex, we see that —®’(¢) is decreasing, and hence
—@'(@1(r)) is positive and increasing. Hence we see by the second mean value theorem
that there exists ¢ with @ () < ¢ < @(¢/2) such that

/¢(l/2) , , dr
cos(—r& - (x" —y7))
®(1) o=@ (@~ (1)
1 ¢ dr
= cos(—rg - (x' =) :
—®'(1) Jou >l (r)
Since @ is positive and decreasing, we see that @ ~! () is also positive and decreasing. Hence
we have
@(1/2) S dr
cos(—ré - (x" —y)
/qb(t) oo/ (@~ (r)
1 1 2 1 1 2
= = -
=) o) - (X' =) T =@ 1/2|ENIE" - (x' — ¥
D(s) ‘ 4
SP'($) oo ®DIE - (' = YN
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We get a similar estimate for sin part, and hence we obtain

t
/ eieE - 48| _
t/2 s

Thus, combining this with (2.11), we have forany 0 < o < 1

8
00 @OIE - (x" =N

D(s)
sD/(s)

/ " mieew—yds| _ | 26 | (og2)!~*8*
12 S| T SPS) oo [PDEI|E" - (x" = ¥)|*
Combining this with (2.10) yields the desired estimate. a

Finally in this section, we will note the lacunarity of the sequence {® (¢*)}icz.

LEMMA 2.8. Suppose @ is positive, increasing, and ®(t)/(t®’'(t)) < b. Then, if
a>1,®@* "/ ®@*) > a''’ for k € Z. Hence {®(a¥)}xez is a lacunary sequence.

PROOF. From the assumption we get

/
5 = g = oz’
and it implies
1 a+ gy ak+! / @ (akt)
Zloga:/ak ES/ak (logé(t))dtzlogw,
i.e.,
@@/ ) > all?. o

LEMMA 2.9. Suppose @ is positive, decreasing, and —® (1) /(D' (t)) < b. Then, if
a>1, @(a_(k+1))/®(a_k) > al/hfork € Z. Hence {Q)(a_k)}kez is a lacunary sequence.

PROOF. From the assumption we get

Lo 20 ogany

S e — (o ’

b = Q) &

and it implies
—k —k

1 a dt a ¢(a*(k+1))
—loga = =< log @ (1)) dt = log —a
b oga [f(kw bt — /a—(k+1>(0g ) 8 ®(a k)

ie.,

@@ Dy @@ ) = al/?. o
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3. Proof of Theorem 1.1. Using the definition of g o .5(f)(x) and Cauchy-
Schwarz’s inequality, we obtain via change of variables

ne.p.0.b(f)(x)

*l1 b(lyDR2() , zd,)uz
</0 1P /|y|<t |y|"=F fFlx (IyDyDdy t
by R () P d,>1/2
</0 k= tp /2 =l<pyl<2-ke  [YI"TP e (IyDy)dy t
=3 ( i vl PUDEDD 1x — ayhy)dy @)1/2
N =0 Y0 lr—o 1P Jo-k—ti<pyj<2-kr  |YI"TP t
— 1 (1 b(lyNR() , zdt)l/z
l;zp </ 1* / k=l <lyl<2=kr  |y["TP T ¢ (IyDy)dy t
! b(lyDR() dt>1/2
1—2-¢ <f0 //2<y<t Iy fx—@(yhy)Hdy

Hence, it is sufficient to estimate the modified operator

1 b(1yDR() /
1 UYDRG) )
1 //2<y<, ly|"—, flx (IyDyHdy

00 2 0\ 12
p .

For a homogeneous kernel §2 and p > 0, we define the family {o;; t € R} of measures and
the maximal operator o* on R" by

G figpos(HE) = ( /O

b(|x)$2(x")

dx ,
[x["=#

1
(3.2) / fx)doy(x) = —p/ f(@(xDx")
R" P )2t <|x|<t

(3.3) o f(x) = fgg”aﬂ * f(xX)],

where |0y | is defined in the same way as oy, but with £2 replaced by |£2| and b replaced by |b|.
Thus,

* ,dt 172
34 ne.p.0.b(f)(x) = <f0 o f (x)] 7) .

We first check the following.

LEMMA 3.1. Let 2 € L'(S" V) and b € A, for some y > 1. Suppose @ is a
nonnegative and monotonic C' function on R satisfying the condition (1.2). Then the total
measure of o; denoted by ||o;|| is estimated as follows:

(3.5) ot = /Rn ldoy(x)| < ClIblla, 1821l 1 (sn-1y -
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PROOF. For any nonnegative f € C(R"), we obtain

,
/ FOdor(y)] = ~ / F@(lyhy) ZRDEOD
R" 1P Jija<|y|<t [y[*=*
< ||f||ool/t |b<r>|d—’/ 120)1do (y)
- t? Jipn r1=r Joi
<20 ool 121115,
which shows (3.5). O

LEMMA 3.2. Let 2 € L'(S" V) and b € A, for some y > 1. Suppose @ is a
nonnegative and monotonic C' function on R satisfying the condition in Theorem 1.1. Then
there exists C > 0 such that

o*(Hx) 1= sup |log| x f(x)]

O<t<oo

(3.6) y ) 1/y'
< C|bll 4, IISZIIJSM)(/S"l 12 My (| fI )(x)da(y’)) .

As a consequence, for p > y' and w € Ap/y/(R") there exists C > 0 such that

(3.7 lo*(MllLr@) < Clblla, 1211 g1y fllLr) -
PROOF. By Holder’s inequality and Lemma 2.3, we see that
L 1b(yhONI
llor| * f(x)] = / — = f(x = @(IyDy"dy
t)2<lyl<t 1P |yI"TP

1 b Y|IR© Vy
< _(/ | (Iyl)ll (y)ldy)
P\ Jij2<iy)<t |y|—ve

20/ CA\Y
x ([ LU, £ — aayy)1” dy)
t/2<lyl<t 1Yl

Ib(r)” , A\
sc(/ —dr/ 120 do(y ))
t2<|yl<t T sn—1

/ 1y
X </Sn1 20 My (| fI )(x)do(y’))

(3.8)

, 1y’
< C||b||Ay||9||24V(S,,1)( /S 120)IMy(f17 )(x)do(y’>> :

which shows (3.6). It is known that, for 1 < r < oo and w € A,(R"), My llLrw =<

Crll £l L7 (o) uniformly in y” (see for example [13, Theorem 7, p. 875]). From this, for p > y’
it follows by Minkowski’s inequality

) P/’ 1/p Ly
1200IMy (LfI")(x)do (v) w(x)dx < 1211, o 1 flr o
o \ S LI

which shows (3.7). O
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LEMMA 3.3. Let $2 be a regular H' (S"~')-atom whose support is contained in S"~'0
B(ey, 1), where e; = (1,0, ...,0). Suppose @ is a nonnegative and monotonic ok function
on R satisfying the condition (1.2). Then, if @ is increasing,

(3.9 161 (&) < Cliblla, ()AL,
and if @ is decreasing,

(3.10) 16:(§)] < Cliblla, ®(2/2)|ALE],
where A;(§) = (t2&1, T&2, ..., TEy).

PROOF. We only prove the case n > 3, since one can prove the case n = 2 with
a slight modification. Let 2 be a regular H'!(S"~!)-atom whose support is contained in
$"=1'N B(ey, ). For 0 # & € R", we choose a rotation @ such that O(&) = |&|e;. Then
0% = (&{. 15, ..., ny,) by virtue of O~ =10. Set 0,_; be a rotation in R"*~! such that
On-1(&). ... &) = (nh.....m) and R = (§ o° ). Then, forany y' = (u,y}.....y}) €
§"! wehave e; - Ry’ = e1 -y’ = u and 2(O~'Ry’) is a regular H'($"~!)-atom supported
in S"~1' N B(&’, 7). Thus we have

56 — 1 w —iPUYDyE gy
P Ji2<iyl<t Iyl"=
t b . /
_ 1(}’) < Q(y/)e—l¢(r))’ tdo (y’))dr
/2 r P sn—1
_ 1 /l bl(r) ( Q(O—lRy’)e—i‘D(r)OlRy/'sdo(y/))dr
)2 ri—p sn—1
1 b j
_ (r) ( Q(0_1Ry/)e—l¢(r)u|§|da(y/)>dr
t/2 rl
_ 1! ! b(r) ( Eg(u,g’)e""l’(’)”sdu)dr
t/2 rl
_ i o ([ Eq(u, €)(e @0l - em)éis)d”)dr'
tP 12 rl=r R

In the last equality, we used the cancellation property of E, guaranteed by Lemma 2.1.
Using the last expression of ; (§) in the above, we get

L p
Ioz(é)l<|€|¢(t)/ b(r)| r(A|E9<u,s’)||u—é{|du).

So, by Lemma 2.1 we obtain

161 ()] < ClIblla, @ (1)|A(E)],
which shows (3.9). Similarly, we can show (3.10). a

LEMMA 3.4. Suppose ® is a nonnegative and monotonic C' function on (0, 00) such
that ¢(t) := @ (t)/(tP'(t)) is bounded. Suppose b € Ay, for some yo (1 < yp < 00). Let
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$2 be a regular H'(S"YY-atom whose support is contained in $"=1'n B(ey, 7). Then, for y
satisfying 1 <y < min(2, yp), there exists C = Cy, , > O such that, if ® is increasing,

1
(@(t/2)|AEN Y

(3.11) 15:(&)] < Clblla, llllas "

and if @ is decreasing,

1
(@|ALDI/7

(3.12) 5:(&)] < Cliblla, llllas "

where A (§) = (1261, T2, ..., T&p).
PROOF. Write

Ea(r) = fR Eo(u, e " du .

Using the change of variable |&|r = ¢, Hausdorff-Young’s inequality and Lemma 2.1, we have

A ) 1/y’ ) A ) 1/y’
(/R|EQ(|S|r)|ydr) =|s|‘”y(fR|Eg<r>|ydt)

1/y
(3.13) < C|g|1/y’(f |Eq (s, é/)lyds>
R

¢ (IAfa( |&] )V)WZ c
TEIVY Bl \|ALE] [AE[-1/7

Hence, using the fifth expression of &, (£) in the proof of Lemma 3.3, Holder’s inequality and
the increasingness of @, and applying the change of variable @ (r) = s, we get

- ! — dr
lor(§)] < f b EQ(®(r)|ED] —
t/2 r

t dr\ /7 r , 17y’
< (/ |b(r)]” —> (/ |Eq(@M)IEDI” dr)
t/2 r t)2

1/y 0 — Y/ s ds\""
<2!/7|p| (f [En(slED) —)
"\ oum ' 2 >~ 1(5)D (P 1(s) s

o) SN
f IE.Q(SI-’EI)IVdS)

(t/2)

1 ’
217 |Ibla, llgllot”
< ’
T @@/
1-1
_ Clibla, gl
T @/D)IAEDTY

which shows (3.11). In a similar way, we can show (3.12). a

LEMMA 3.5. Let 2 € L'(S" "), and b € A, for some 1 <y < 2. Suppose @ is a
nonnegative and monotonic C' function on Ry satisfying the condition in Theorem 1.1. Then,
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for any p satisfying |1/p — 1/2| < 1/y’, there exists C > 0 such that

2k+1 zdt 1/2
H( |(o7 * g ()] —)
keZ ! LP(R")

(Z |9k(')|2> -

keZ

(3.14)
< ClIL2|prgn-1y

LP(R"™)
PROOF. It suffices to show

|

2k+1

,dt 1/2
(Z f (o7 % gk (-, 1) ()] 7)
keZ LP(R"™)

ok+1 dt 1/2
(Z[ gk . 1* = )

keZ

< C”Q”Ll(sn l)

LP(R™) .

To show (3.15), we may assume p > 2 by duality. So, we assume 2 < p < 2y/(2—vy) =
2y’ /(y’ — 2). We use a similar argument as in the proof of Fan and Pan [15, Theorem 7.5].
By duality, there exists a nonnegative function 4 € L?/ 2'(R") with unit norm such that

2k+1 dt 1/2
' (Z/ I *gk(-,z)><->|27)
keZ LP(R")
(3.16) - J
/Z/ o7 % gk (DR hx)dx
" kez’? !

By Cauchy-Schwarz’s inequality, we get

lor % g (-, 1) (x)]?

! byD2G)
3 2O e — @ (I Dy Dy
p<lyl<t  1yIPTP

< </ Ib(|YI)|)/|9(Y’)|dy)
1)2<|yl<t [y]"

y l/ Ib(yDIP7 120
J2<|y|<t [y["=*
1/ Ib(yDI>7 20"
[2<lyl<t

2
<

lge(x — @(lyDy', )2 dy

= ClIbl, 12115175 T lgk(x — @ (IyDy'. D)*dy.

We set

1 b(yDI>7122(—y
Oy * fx) = t—p/Rn | (|y|)||y|n|,p( Dy = oa1yhyay.
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Then we have, using the change of variable u = x — @ (|y|)y’,

1= Clblly, 19211151y

2k+1 5 )
1b(yDI""712(NI dr
: Z/ (/ f h(x) ply|n—p lge(x — @(IyD)y', )P dxdy | —
kez % "JR" 1Pyl t
= Cllbllzy 1211 11 (gn-1)
2k+1 . /
1b(yDI="712(Y")] di
XZ/ (/ / h(u+ ®(yDy) i \geGu, ) 2dudy ) &
kez 7% " JR" 1P|y ‘
< ClbIL, 1221l L1¢sn1y
2k+1 5 ,
1b(yDI=Y182(y")] it
) Z/ / / : - g h(u — @ (yDy)dy )l gk(u, ))>du —
2 " " Pyl t
keZ
- dt
= bl 125y 3 [ [ syl nPay §
2k R" P
keZ
2 dt
= C||b||£y ”Q”L'(S"*')/ <SUP|0y,t*h(x)|)<Z/ lae(y, )2 —>dy.
R" t>0 ez ok t

Fromb € A, and 1 < y < 2, it follows that b7 € Ayj2—yyand y /(2 —y) > 1. So,
using Holder’s inequality and Lemma 3.2, we have

ok+1 di 172
(Zf k(P —)
2k t

keZ

2
2 2
1< CIBIZ IR0 goory Il ooy

s

L

which implies the desired estimate (3.15). O

LEMMA 3.6. Let 2 € L'(S"™ "), b € A, for somey > 2. Let p > y' and w €
A p/y'(R1). Suppose @ is a nonnegative and monotonic C U function on Ry satisfying the
condition in Theorem 1.1. Then there exists C > 0 such that

ok+1 dt 1/2
(3.17) H(Z/ |at*gk(~>|2—)
ez’ !

PROOF. By change of variables we get

(Z |9k(')|2)1/2

keZ

= ClI821 1 (sn-1y
LP ()

LP(w)

2k+1

dar\'/? 2 dr\'/?
(3.18) (Z/zk |G,>kgk(x)|27> =<Z/1 |02kt*gk(x)|27) :
keZ

keZ
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Now, using Holder’s inequality, we obtain

lor * gi(x)]
< i(/ |b(|y|>|y|my/>|)”y
TP\ Jij2<iyl<t |y["=rP
(3.19) </ lge(x = (YD) 120 )W
X dy
1/2<|y|<t [yl
_® Ny QG 17y’
SN Jea<iy|<t [¥]
Letd = p/y’. By duality, there is a nonnegative function f € LY (u)l’d/, R") with unit norm
such that
2 A\ 2 dt
(3.20) (Z/ logk, * ge (D17 —> =/ Z/ logiy * g ()" — f(x)dx .
kez?! 4 LP(w) e t
Combining (3.20) with (3.19) yields
2 i Uy v
Yo oo x g O =
kez 1 t LP ()
2 i ny'
2 - Y dt
SCZ/ / </ [$2(y) | gr (x (UyDy") dy)—f(x)dx
tez R 1 2=y <|y| <2k [y]" t
2 /
/ |$2(y")] dt
= CZ/ (/ / lgk(x — @(yDYHI f(x)dx ); dy |—
tez /1 \J2licyi<okt JR |yl t
2 /
’ [$2(y)| dt
= CZ/ (/ / Lok )" f (u + D (|y))y")du ); dy |—
iz k=g <|y|<2kr JR? [yl t
2 /
[$2(y)| ;o dt
= CZ/ / </ ):1 F+@(yDyHdy |lge@)]” du —
iz /1 TR \ Sty <ok 1Y t
=C f ZIMWIV’( f |9(y’>|Myff<—u)do~(y’))wl/dw—wdu
R yez se
N4 1/d
< (/ (ng(uw) wdu)
R" \ ez

_ d ) 1/d’
x ( / ( /S |9(y’>|My/f<—u)da<y’>) w—d/ddu) :

It is known that w € Ay (Ry) if and only if 0= ¢ Ad/(R+). Hence, we have

( /S | |9<y’>|My/f(—u>da<y’>) < CI2N s 1l iy -

Ld’ (wlfd’)
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Thus, noting —d’/d = 1 — d’, we get

2 A\’
H(Z/1 |oaig o gi ()1 7)

keZ

LP ()

AV
(ngc)v)
keZ

On the other hand, using Lemma 3.2 and noting that w € A p/y’s WE get

(3.21)
< Cl&2|lp1 g1y

LP () .

sup sup |ogk; * gkl

< | (suplor]
keZ 1<t<2 keZ

Lr(w) — LP(w)

(3.22)
< C”Q ”LI(S"’I)

sup | gk .
keg L7 (w)

Since y > 2, ¥’ < 2, and hence interpolating between (3.21) and (3.22), we obtain

2 di\ /2 1/2
(Z/I o2k, *gk<->|27) (ng(-nz)

keZ keZ

= Cl&2llp1 g1y
LP(w)

LP(w)
Hence, via (3.18) we have the desired inequality (3.17). O
Now, using Lemmas 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6, we can prove our Theorem 1.1 in a
way quite similar to the proof of Al-Qassem [2, Theorem 1.4]. We first prove Theorem 1.1
(i) in the case y > 2. We may assume £2 is a regular atom whose support is contained in
S"~1'N B(ey, 1) (0 < T < 2). Note that we have by Lemma 2.8
q;(szrl)
@ (2k)
Letn € C®(R) suchthat 0 < n(t) < 1,n() =1 (-1 <t < 1)and n(t) = 0 (J¢t| = a),
where a = 21/1¢llc We set

Ui (&) =n(@QI Y — n(@@2)E]) .

(3.23) > 2V elloog ¢ 7.

Then we have
0 [&] <1/P2)), |&]| =a/@2/7h,

2H@ =1, £20, ad v, !1 a/®@)) < [&] < 1/D@I).

jezZ
Define the multiplier operators S; in R" by (S; f)(§) = f(é)wj (A8),ie, S f =
¥ * f where ¥;(x) = f’l(wj(Af))(x). Then

ok f(xX) =YY Wik w0y f0) Xk 21 (0)

keZ jeZ

= Z <Z Witk * 0 * f(x)xlzk’2k+l)(t)>

JEZ “keZ

=Y Gj(x.1).

JjezZ



BOUNDEDNESS OF THE MARCINKIEWICZ INTEGRALS 253

Define
Tif(x) = (/ G j(x, 1) —) :
0 t
Then
(3.24) fig.pop(x) <CY Tif(x).

jezZ

First, we estimate L? bound of T; f. By the Plancherel theorem, we get

e 2dt
||ij||iz =/n/ lej+k*6t s f () Xk k41 (1) de
R"JO ez
2k+1 d[
=S [ wesens roop Sax
keZ " Jok d
2k+1
o ndl
=y / / W4k (A)G ) f (&) — dk
keZ " Jok !
2k+l dl‘ )
< / | | / &P L1 s
kez 1/®QRUR) <|AE|<a/® (UFk=D)Y Jok t

Using Lemma 3.3 for j > 2, Lemma 3.4 for j < 0, and Lemma 3.1 for j = 0, 1 we get
(3.25) 1T flig2 < Ca= SVl £l a

Next, for p > y’ and w € A; /y,(R+), we have, via Lemma 3.6 and Littlewood-Paley
theory (cf. Lee and Lin [18, p. 216]),

<ClfllLr(w) -
LP(w)

1/2
(3.26) 1T flLr@) < cH(Z W)k % f(~)|2)

keZ

Interpolating between (3.25) and modified (3.26) (taking @ = 1), we can find a number
0 < 6 < 1 such that

(3.27) IT; fliy < Ca PVl £l .

On the other hand, there exists ¢ > 0 such that »'t¢ € A; /y,(R+) (see for example [16,
p. 151]). Hence by (3.26), we have

(3.28) 1T flle@i+ey < CNF N Lpoi+e) -

Therefore, using Stein and Weiss’ interpolation theorem with change of measures, we can
interpolate between (3.27) and (3.28) to obtain a positive number v such that

(3.29) 1T flLrw) < Ca™" VNI fllLro) -
This combined with (3.24) yields the desired estimate

e, p,0.6() e < ClfllLrw)
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which completes the proof of Theorem 1.1 in the case y > 2. Inthe case 1 < y < 2, we can
prove in the same way as above, using Lemma 3.5 in place of Lemma 3.6. 0

4. Proof of Theorem 1.3. We shall prove Theorem 1.3 in the case @ is increasing,
since the other case can be proved in a quite similar way as in the proof of Theorem 1.1.
Fork € N, set
Ex={yes "2 <1200 <24

and .
201 = 200800 - g [ 2o,
1S"= S,
Then
4.1) / 2t (xNdo(x') =0
Snfl

forallk € N. Let
A={keN:|E]>27%),
where | Ey| denotes the measure of Ej on $"~! induced by Lebesgue measure. Set
Q0=0-) .
keA
Then it is easy to verify that £2p € L?(S"~!) and
4.2) Qo )do(x') =0.
sn—1
For k € A, define a family of measures o® = {ok.;t € R} on R", and the maximal operator
(0 ®)* in the same way as in the proof of Theorem 1.1, by

1 D)2k (x")
4.3) J@)dopi(x) = — F(@(xDx) ————dx,
R 1P 2yt <|x)<t |x|—#
(4.4) @ ) flo) = sup llog.| * £ ()]
t>
Then, as is easily checked like in the proof of Theorem 1.1, we have only to estimate
* dr\'?
~ 2
4.5 A2y p,0.6(f)(x) = </ lok,r * f(x)] 7) :
0
We notice that we can apply Lemmas 3.1, 3.2, 3.5 and 3.6. Hence, we have
(4.6) lok,: Il < Cliblla, /E 12()1do (v,
k
and

, 1y
@7 @) f@) < C||b||Ay||9k||§/lisnl)( fs 12Oy f 1 )(x)da(y’>) :
(4.6) implies

(4.8) |67t ()] < CIIbIIAI/E 12()Ido (y) -
k
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Using (4.1), we see that

1 b 21’ . ,
ofl-{;(g) — _/ (UyD2k(y )efl(p(lyl)y 'de
2/t<lyl<t

1P ly[*=+
= l/ b(UyD$2(y) (e " PWYE _ 1ydy
P Joji<pyl<e IYIPTP
From this we have
4.9 0% (§)] < CIIbIIAlq)(t)IEI/E 12(y")Ido (y').
k

Combining (4.8) with (4.9), we get forany 0 < o <2
(4.10) |G ()] < C(P(1)|E])*/ @0 /E 120)do (),
k

where C is independent of k € A.
Next, we assume y > 2. (We treat the case 1 < y < 2 later.) Using the Cauchy-Schwarz
inequality, we get
__ 1 ?
T ©)F = -5

p 2 t
S/ |b(r)] dr/
tj2 t/2

So, by Lemma 2.4 in the case of (i) and Lemma 2.5 in the case of (ii), we have for0 < o < 1/2
ClIDN ay 182k L2¢sn-1y - C22k+2

(@(t/2)EN*2 T (@(t/2)1EN)*/? JE,
Combining (4.8) with (4.11) yields

- _ 22k+2A
4.12) ok, (§)| < CA]((k le(W

! . / d
/ b(r)r? () P g (y)
/2 sn—1 r

() P E g (3

2dr
sn—1 r ’

(4.11) |67t ()] < 12()Ido (y) -

1/k
) < CAW(®(1/2)[E]) /P

where Ay = fEk |12()|do ().

As in the proof of Theorem 1.1, foreachk € N, let n € C*°(R) such that 0 < n(¢) < 1,
nt) =1(=1<rt<1)and n(t) = 0 (|| > a), where a = 2¥/I¢l~_Note that we have by
Lemma 2.8

4.13) @ (2KUDy 1@ 2Ky > 2k vlle e 7,
We set
v@E) = n@QU)E) — (@ @9)E)) .
Then we have
0 &l <1/@@N), |&] = a/@FUD),

® gy =1, 0, d vPeE) = ‘ ‘
2V ® 570 VT =N e @b < el < /o).

JjeZ
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ST k) s pn K) evveey — F (k)
Define the multiplier operators S ;o in R" by (S 7 Eé =fE¢ 7 (¢). Then

k
Okt * fx) = Z Z ‘I’j(_,_)l * Ot * f(x)Xlzkl,zk(Hl))(t)

leZ jeZ

= Z (Z lllj.(i)l * Ok 1 % f(x))(lzkl’zk(Hl))(t))

jeZ “leZ

_. (k)
= Z H(x,1).

JjeZ
Define
* dr\'"?
U}")f<x)=<f |H}"><x,t>|2—> :
0 t

Then

(4.14) fiaepon(x) <CY UN fx).
jezZ

First, we compute L2 norm of U/(.k) f. By Plancherel’s theorem we get

||U§")f||§2:f foo
R" JO
2k(/+l)

) 24t
< Z/R 9 W) o f ()] —dx

leZ

2

w® t dtd
Z i1 * Okt f (X) xom ki) (£) —dx

leZ

2k(+1)

= 2 dt
ZZ/Rn | hemefef Ta

leZ

SZ/

2k(l+l)
17 J1/@ QD) <|g| <a/ 2kUH-D) fzk’

i
MGk Tt 1F @)t

For j > 2and 1/®(2KUtD) < |&| < a/@ (2kU+=D) we get, using (4.10) and (4.13),

ok(I+1)

_ dt ad 2K+
/w e &) —= CA,%(logzk)<

a/k
7 7 2 kyy—(i=3)a/l¢llo
q§(2k(j+11))> < CA;(log2%)2 .

Also, for j < —1 and 1/®(FUD) < |&| < a/@ (2FU+=D), we get, using (4.12) and (4.13),

ok(I+1)

\/2kl

Hence, combining these with (4.8) for 0 < j < 1, we obtain

@(Zk(H—l))

a/k
- 7 2 ko (j+Da/ll¢lleo
cp(zk(l—l))) < CAZ(log2")2 .

o dt
|67 () — = CA%(logz")(

(4.15) 10 il < CA2TICI ) £
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Next, for p > ¥’ and w € AL/V/(R+), we apply Lemma 3.6 to the set of functions {f}kez,
where gjx+m = h; (l € Zandm =0, 1, ...,k — 1). Then we have

(Z |hl(->|2)l/2

leZ

2k(I+1)

di\ 12
(4.16) H(Z/zkl |O'k,t*/’ll(-)|27>

leZ

< C«/% A
LP(w)

s

LP(w)

where C is independent of k. Hence, using (4.16) and Littlewood-Paley theory for {¥ ¥}, we
obtain

. 12
@17) U fllorw < CAWE H(Z [ f(-)lz)

leZ

< CAWENfllLr ) -
LP(w)

Interpolating between (4.15) and modified (4.17) (taking @ = 1), we can find a number
0 < 6 < 1 such that

(4.18) WP Fllr < CAEK 272 £y

On the other hand, there exists ¢ > 0 such that o' 1% € Af} / y,(RJr) (see for example [16,
p- 151]). Hence by (4.17), we have

k
(4.19) MU Fllrorsey < CANKNF o+ -

Therefore, using Stein and Weiss’ interpolation theorem with change of measures, we can
interpolate between (4.18) and (4.19) to obtain a positive number v such that

X o
(4.20) 10 fllre < CAVE2 W fllLr) -
This combined with (4.14) yields the desired estimate

(4.21) i p.0bllLr < CANKN L) -

By Minkowski’s inequality, we have

(4.22) Le2.p.0.b6(f)(X) < L2.p,0.6()(x) + Z A2 p.0.b(f)(x) .
keA

Using Theorem 1.1, (4.21) and (4.22), we obtain

1i2.p.0.6() Lo < cp(l +Y Wk /E |9<y’>|da(y’>) 1/ llLe
k

keA
= Cp(I + 1121 Logt py2D I flILe -

The proof of Theorem 1.3 (y > 2) is now complete.
In the case where 1 < y < 2, we proceed as in Al-Qassem [2, p. 7].
Since

‘ f 2O o ()| < 12l oy =t A
Nos
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using Holder’s inequality, we get

tp Y ,.Vp 1/y rq v’ 1/y’
f [b(r)|¥r dr) (/ 1 dr)
t/2 r t2 "

2(Y)e P do (v

t 2 1/y’
1-2/y’ dr
<cuis ([ ] o
t/21J sn-

So, by Lemma 2.4 in the case of (i) and Lemma 2.5 in the case of (ii), we have for0 < o < 1/2

Q(y)e PO E G (3
Sn—l

- 1
|Ok,: (§)] < t_P<

t 2 ClI£2:11?
[ oneteneao) < < Wiz
2l rT(@/2)EN
Hence, we get
1-2/y' 27y ,
o ClBla Il e 12l gy otk
(4.23) 1ok, (§)| < ; < 7 Ak -
(@ (t/2)[E)/7 (@ (t/2)IEDTY

Combining (4.23) with (4.8) yields

2KV 4,
(@ (/D)D)
Now, using Lemma 3.5 in place of Lemma 3.6, we can prove Theorem 1.3 for 1 < y < 2in
the same way as in the case y > 2. This completes the proof of Theorem 1.3. g

1/k
@2d e = cal ) = caaien .

5. Proof of Theorem 1.7. As before we shall prove Theorem 1.7 only in the case @
is increasing. We shall modify Lemmas 3.3, 3.4, 3.2 and 3.6.
As for Lemmas 3.3 and 3.4, we have, in the same way as in the proof of Theorem 1.3,

(5.1 o7 (§)] < CfSH 120)ldoe(y)) = C,

(52) 6:(6)] < C@W)]EN*" /S L 1ROIdo(y) = C@WIEN*
forany 0 < @ <2, and

(5.3) 16:(&)] < CllR11asn-1y (P(/2)IEN T/
forany 0 < @ < 1/q’.
As for Lemmas 3.2 and 3.6, we have the following.

LEMMA 5.1. Let 2 € Li(S"") for some ¢ > 1, and b € A, for some y >
q. Suppose @ is a nonnegative and monotonic C' function on (0, 00) such that ¢(t) :=
@ (1)/(tD' (1)) is bounded, and @ satisfies the condition (A-2). Then there exists C > 0 such
that
G4 o (H@ = sup log|* f)] < Clbla, 1211 st MALI @)V

O<t<oo

As a consequence, for p > q" and w € Ap ;4 (R"), there exists C > 0 such that

(5.5) lo* (P Lr@) = Clbla, 121 Lan-1y 1 f e @) -
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PROOF. By Hoélder’s inequality and Lemma 2.3 (a), we see that

llot] * f(x)| =

1 b 206
_/ | (Iyl)lnl_ (y)lf(x B ¢(|y|)y/)dy‘
tP Jip<iyi<t [y["=P

- (L/ |b(|y|>|‘f|y|‘fp|9(y/>|‘fdy)”‘f(/ f(— ¢(|y|)y/)|q’dy>1/q
T\ i<y« [yl" 1/2<|y|<t [yl"

< Cllblla, 1211 pasn1y (M F1T) N,

which shows (5.4) because of A, C A, and [|D]|la, < IIblla, for y > g. Itis well-known
that, for 1 <r <ocandw € A, (R"), IM(H)llrr(w) < CrllfllLr (). From this, it follows
(5.5)for p > ¢q'. O

LEMMA 5.2. Let 2 € L1(S"Y) for someq > 1,b € A, for some y > max{2, g}.
Suppose p, q, o satisfy the conditions (a), (b) and (c) of Theorem 1.7. Suppose ® is a non-
negative and monotonic c! function on (0, 00) such that ¢(t) := @ (t)/(tP'(t)) is bounded,
and @ satisfies the condition (A-2).

Then there exists C > 0 such that

ok+1 zdt 1/2
(5.6) H(Z/ o1 % 9 ()] 7)

kez??

(Z |9k(')|2)1/2

keZ

= C”Q“Lq(snl)'

L?(w) LP(w)

PROOF. We only prove (5.6) in the case @ is increasing, since the decreasing case can
be proved similarly. We shall prove (5.6) only in the case where g > 2, since the other cases
can be proved in similar ways to the proof of Lemma 1 in Ding, Fan and Pan [9].

Now, by changing variables, we get

(5.7 (Z/k lor * gr(x)] T) = <Z/ logks * g (x)| 7) .
kez V2 kez’!

Using Holder’s inequality and noting ||b]la, < [Iblla, (¥ > g), we obtain

/

' 1 b(lyDIylP 20 1
oy * ge ()| = t—pf |y#gk(x—45(|yl))/)dy
(5.8) t/2<|y|<t o
! ! lge(x — @(|yDy)I?
< Clb|I% ||9||§q(sn1)(/ p dy ).
Y 1/2<|yl<t [¥]

We set By = [|b|a, 1821l g (sn-1y- Letd = p/q’. By duality, there is a nonnegative function
f e LY (', R") with unit norm such that

2 Lde\ Ve
(Z /1 |0akg o gi ()14 7)

keZ

q/

5.9 '

2 rdt
- Z/ lok, % ge(X)|9 — f(x)dx .
R ez 71 f

LP ()
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Combining (5.9) with (5.8) yields via Lemma 2.3

2 A K
o oo * g —
kez V! ! LP (o)
2 ni1q'
/ lgx(x = @(yDyHIT | \dt
<CB{ Z[ f (/kl ) S dy )— f(x)dx
ez /R 1 2k=1t <|y| <2kt y

/ 2 1 rod
=CBSZ/1 f(/2 f(¢(|)’|)y/+u)d)’>|9k(u)|qduTt

keZ k=1t <|y| <2kt |y|n

= CBS// Zng(u)I"/M(f)(u)wl/d(u)arl/d(u)du
Rll

keZ

, NG 1/d o 1/d'
< CB{ / > la@)? ) w@)du / M@ o wydu ) .
R" R"

keZ
It is known that w € A4z(R") if and only if ' € Ay (R™). Hence, we have
“M(f) ”Ld’(a)l—d’) =< C”f”Ld’(wl—d’) -
Thus, noting —d’/d = 1 — d’, we get

2 /dt 1/‘]/ ’ 1/‘1/
5.10 )T — < CB |4
(5.10) H(Z[l |ogk * g t) ey 5 B0 <Z|gk()| ) )
kez ) kez LP ()
On the other hand, using Lemma 5.1 and noting that w € A/, we get
(5.11) sup sup |oor, * gkl < a*(suplgk|> < CBy|| sup |gk|
keZ 1<t<2 LP(w) keZ LP(w) keZ LP(w)

Now, if ¢ > 2, ¢’ < 2, and hence interpolating between (5.10) and (5.11), we obtain

2 di\ /2 1/2
(5.12) H(Z /1 |0y * 9k(')|27) (Z |gk(-)|2)
keZ

keZ
If g =2,(5.11) s just (5.12). Hence, via (5.7) we have the desired inequality (5.6).

< CBy
LP(w)

LP(w)

d

Now, preparing (5.2), (5.3) and Lemma 5.2, we can prove Theorem 1.7 in the same way

as before. We leave the rest of the proof to the reader.

O

ADDED IN PROOF. One of us recently showed that AP(RJF) - A{,(R”) (1<p<o).

So, we can replace AL/V,(RJF) by A,,/y/(RJF) in Theorems 1.1, 1.3 and 1.5.
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