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Abstract. Numerical Campedelli surfaces are minimal surfaces of general type with
vanishing geometric genus and canonical divisor with self-intersection 2. Although they have
been studied by several authors, their complete classification is not known.

In this paper we classify numerical Campedelli surfaces with an involution, i.e., an au-
tomorphism of order 2. First we show that an involution on a numerical Campedelli sdrface
has either four or six isolated fixed points, and the bicanonical magsotomposed with the
involution if and only if the involution has six isolated fixed points. Then we study in detail
each of the possible cases, describing also several examples.

1. Introduction. Numerical Campedelli surfaces ar@mmal surfaces of general type
with p, = 0 (and sq7 = 0) andk? = 2. The first such example was presented by Campedelli
[Cam] in 1932. Since then several authors (cf. [Mi], [Pe], [Rel], [Re2], [Ko], [Su], [Na2],
[Ku], ... ) have studied these surfaces, but ouniigalge about them is far from being com-
plete.

Since a classification of numerical Camplideurfaces does not seem feasible at the
moment, a possible approach is to restrict oréfention to the Campedelli surfaces which
have some additional geometrical feature.isTis what we do in the present paper, where
we study the Campedelli surfaces which have an involution, i.e., an automorphism of order 2.
This choice is motivated by work of Keum and Lee [KL] and of Calabri, Ciliberto and Mendes
Lopes [CCMZ2], who have studied the same peoblifor numerical Godeaux surfaces, that is
minimal surfaces of general type with, = 0 andk? = 1.

In order to put our work in perspective, we briefly recall here the main results of the
paper [CCM2], which contains amplete classification of numerical Godeaux surfaces with
an involution.

If S'is a numerical Godeaux surface ands an involution ofS, theno has five isolated
fixed points and:

o the bicanonical map of the surface factors through the natural projection onto the quo-
tient surfaceS/o;

e the quotient surface is either rationallwrational to an Enriques surface;

o the possible quotient surfaces are classified and examples of each possibility in the list
do exist;
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e if S/o is rational, then the surfacgcan be obtained as a specialization of one of the
surfaces in the list proposed by Du Val (see [Ci], cf. also [B0]), by letting the branch locus
acquire some singularities.

In the case of numerical Campedelli surfaces the situation is more involved, since the
bicanonical map may not factor through the quotient riiap> S/o. Indeed, we show that
an involution on a numerical Campedelli surfathas either four or six isolated fixed points,
and the bicanonical map ¢f factors through the quotient map— S/o if and only if the
involution has six isolated fixed points. In the latter case the situation is very similar to the
case of Godeaux surfaces. We have the following:

e the ramification divisorR on S is not 0, and its components can be described (see
Section 3);

e the quotient surfac&/o is either birational to an Enriques surface or a rational surface;

e if S/o isrational, then there are four possible cases which all have a precise description
(see also Section 3). Each of the four cases actually occurs (cf. Section 5).

The analysis in Section 3 shows also that, if the bicanonical mapi®tomposed with the
involution, then the 2-torsion of the surfa§és nontrivial in three of the five possible cases.

If the bicanonical map is not composed with the involution, i.e., if the involution has four
isolated fixed points, we show that the ramification diviRds either O or constituted by one,
two or three—2-curves. Note that iR # 0 thenK is not ample.

In this case there are more possibilities for the quotient sufgeeas explained below:

e S/o is of general type (a numerical Godeauxface) if and only if the ramification
divisor R is equal to O;

e if Risirreducible, ther§ /o is properly elliptic;

e if R hastwo orthree components, th&fi may be rational or birational to an Enriques
surface or properly elliptic.

The case wher§/o is a numerical Godeaux surface appears in the examples constructed by
Barlow in [Bal] and [BaZ2]. In Section 5, by specializing one of the examples of Barlow, we
present examples for which the quotient surface is either an elliptic surface or birational to
an Enriques surface. We do not know any instance in which the quotient surface is a rational
surface for this case.

In Section 5 we also study a family of nuneal Campedelli surfaces with torsicﬂg,
whose construction is attributed by J. Keumto A. Beauville and X. Gang. We show that every
surface in this family has two involutions, one with four isolated fixed points and one with
six isolated fixed points, whose quotients are respectively birational to a numerical Godeaux
surface and a rational surface.

In Section 5 we study the involutions of nenical Campedelli surfaces with torsids,
the so-called “classical Campedelli surfacddsing the description of these surfaces Z_@Za
cover of P? branched on 7 lines (cf. [Ku]), we show that these involutions are all composed
with the bicanonical map.
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The paper is organized as follows. In Section 2, using the results in [CCM2], we de-
scribe the general properties of numerical Cadwgili surfaces with an involution, showing in
particular that such an involution always has four or six isolated fixed points.

In Section 3 we study the case where the involution has six isolated fixed points and we
describe in some detail each possibility. In Section 4 we study the case where the involution
has four fixed points. Finally in Section 5 we describe the examples mentioned before, two of
which were not (to our knowledge) previously known.

NOTATION AND CONVENTIONS. We work over the complex numbers. All varieties
are projective.

Most of the notation is standard in algelir geometry, hence we only recall here a
few conventions that we use and that araytve not universally accepted. We denote linear
equivalence of divisors on a smooth varietyssyand numerical equivalence by. A divisor
D on a smooth variety is said to besven if its class is divisible by 2 in the group Ri¥).

An involution of a variety is a biregular automorphism of order 2. A nyapX — Y of
projective varieties is said to lmemposed with an involutiono if f oo = f. A —n-curveon
a smooth surface is a cur¢such thatC ~ P* andC? = —n.

A singular point of typdm, m] on a curve is a point of multiplicity: with an infinitely
near point again of multiplicityn.

2. Involutionson a numerical Campedelli surface. Throughout the paper we make
the following:

ASSUMPTION 2.1. S is a smooth minimal complex projective surface of general type
with K§ = 2, pg(S) = 0 (thus alsog(S) = 0). Such a surface is called anumerical
Campeddlli surface.

Moreover, we assume that we are given an involutioof S, namely an automorphism
o: S — Soforder 2.

In this section we establish the notation and recall some known facts on involutions,
giving all the statements in the special easf a numerical Campedelli surface. Our main
reference is the paper [CCM2]hich contains a detailed analg of involutions on surfaces
of general type wittp, = 0.

The fixed locus of the involutioa is the union of an effective divisat and ofk isolated
points p1, ..., px. The effective divisorR, if not 0, is a smooth, possibly reducible, curve.
Letn: S - X := S/o be the quotient map, and sBt:= #(R) andg; := n(p;), i =
1,...,k. The surfaceX is normal andy1, ..., gx are ordinary double points, which are the
only singularities of¥. In particular, the singularities of are canonical and the adjunction
formula givesKs = 7*Ky + R.

Lete: V — S be the blow-up ofS at p1, ..., pr and letE; be the exceptional curve
overp;,i = 1,...,k. Theno induces an involutio of V whose fixed locus is the union
of Rp := ¢*(R) and ofE1, ..., E;. Denote byr: V — W := V /& the projection onto the
quotient and seBg := 7 (Rp), N; := 7 (E;),i = 1,..., k. The surfacéV is smooth and the
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N; are disjoint—2-curves. Denote by: W — X the map induced by. The mapn is the
minimal resolution of the singularities & and there is a commutative diagram:

v 25 s

(2.1) ﬁl lﬂ

w1, ¥

The mapr is a flat double cover branched @h:= By + Zf-‘zl N;. Hence there exists a
divisor L on W such that 2 = B, namelyB is an even divisor.

REMARK 2.2. We havep,(V) = ¢(V) = 0, sinceV is birational toS. SinceV
dominates, we also have 4 (W) = q(W) = 0.

The numbek of isolated fixed points is a very important invariant of the involutan
As explained below, it determines whether the bicanonical gnap — P? is composed with
o.

PrRoOPOSITION 2.3 ([CCMZ2], Proposition 3.3, (v) and Corollary 3.6)One of the fol-
lowing two possibilities occurs:

[) k& =6.Inthiscase ¢ iscomposed with o.

I) &k = 4. Inthiscase ¢ is not composed with o. More precisely, 7*|2Ks> + B| has
dimension 1, namely it is a codimension 1 subsystem of [2Ks|.

We setD := 2Kw + Bo. The divisorD will play an important role in our analysis of
numerical Campedelli surfaces with an involution.
One has the following properties (cf. [CCM2, 83] for the proofs):

PROPOSITION 2.4. (i) &*(2Ks) =7*D.

(i) D isnefandbig, and D? = 4.

(i) D+ N1+ ---+ Ny isanevendivisor.
(v) Ifk=6,then -4 <K2 <0, KyD =0.
(v) Ifk=4,then—2<K32 <1, KyD=2

REMARK 2.5. We will often apply Proposition 2.4, (i) as follows. Given a cu€vef
W, we can pull it back to a curv€’ of V. If C’ is not contained in the exceptional locussof
then we can push it down to a cur@on S. ThenKsC = DC.

Assume thaKy + D is not nef. Then one can show that there is an irredueililecurve
E onW with DE =0, EN; = 0fori = 1,..., k. By repeatedly blowing down suchl-
curves, one obtains a sort of minimal model for the g&it Kw + D). More precisely, we
have the following

PROPOSITION 2.6 ([CCMZ2], Proposition 3.9). There exists a birational morphism
f: W — W, where W is smooth, with the following properties:
() Fori =1,...,kthecurve N/ := f(N;) isa —2-curve on W’ and the curves
Nj...., N aredigoint.
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(i) Thereisanefdivisor D' on W’ suchthat f*(D’) = D, D'? = p? and Ky D =
KwD.

(i) D'N/=0fori=1,....,kand D'+ N; +--- + N isan even divisor.

(iv) Kwr+ D' isnef.

REMARK 2.7. The proof of [CCM2], Proposition 3.9 actually shows more. Namely:
(i) sinceKw + D is effective and the curves contracted pgatisfyE(Kw + D) < 0,
the components of the exceptional locusfoére contained in the fixed part w + D|;
(i) if E is an irreducible component of the exceptional locusfofthen E gives a
—2-curve onS. In particular, ifKg is ample then we havl = W',

3. Involutions composed with the bicanonical map. This section studies case I) of
Proposition 2.3, namely here we assume that 6 and the bicanonical map: S — P? is
composed withy.

In what follows we use freely the notationtioduced in Section 2. By Proposition 2.4,
in this case-4 < Kﬁ, < 0andKwD = 0. This allows us to establish some properties of the
ramification divisorR on S.

Using Proposition 2.4, and arguing as in the proof of Proposition 4.5 of [CCM2], one
obtains the following:

PrRoOPOSITION 3.1. Let S be a numerical Campedelli surface with an involution o,
such that the bicanonical map ¢ is composed with o. Then the divisorial part R of the fixed
locus of o satisfies:

() KsR=2

(i) R?=2K?Z +2iseven,and —6 < R? < 2.

Furthermore, R = I' + Z1 + --- + Z;, where I is a smooth curve with KsI"” = 2 and
Z1, ..., Z, aredigoint —2-curves, which are digoint also from I". Here

(iii) either I" isirreducible, 0 < p,(I") < 3and I'2 = 2p,(I") — 4: or I" has exactly
two components I'1 + I, where each I, i = 1,2, is either a rational curve with self-
intersection —3 or an elliptic curve with self-intersection —1;

(iv) thenumber i of —2-curves Zy, ..., Z;, satisfies

h=pa(I') — Kf; —3>0;

(v) ifIr'?=2,thenI" ~ K5 and S has nontrivial torsion.

In order to study in more detail these surfaces we consider the sybtera |2Kw + Bo|
and its adjoint systems.

LEMMA 3.2. Let|Kw + D| = |M|+ F, where F isthefixed part. Then one has the

following
(i) HOW,OwM)) =3.
(i) MD =24

(i) If F % 0,then every component E of F issuchthat DE = 0and E? < 0.
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PROOF. Assertion (i) follows by the adjunction sequence for the genBrainceW is
regular by Remark 2.2 angl, (D) = 3 by Proposition 2.4.

Let us prove part (ii). Since, by Proposition 24,is nef andD(M + F) = 4, one has
MD < 4.

Suppose by contradiction that D < 4. We claim that in this cas@/| is not composed
with a pencil, and so, in particula#/? > 0. Indeed, ifiM| = |2C| andM D < 4, then one
would haveCD < 1. But then|C| would give a pencilC| on § such thatCKg = 1 (cf.
Remark 2.5), which is impossible by the index theorem.

By a similar argument we verify that D > 2.

Suppose tha¥/ D = 2. Then by the index theorem we obtaif? = 1 and 24 ~ D.
This is impossible, because we hakigy D = 0 by Proposition 2.4 and this impligsy M =
0, contradicting the adjunction formula.

So we are left with the cas&fD = 3. We haveM?2 + MF = M(Kw + D). So
MD = 3 means thatM F is also odd and thus, becausgis nef, MF > 1. Therefore
MKy =M%+ MF —3> M?2—2.

On the other hand, the index theorem giw¢$D? < (M D)2 = 9 henceM? < 2. Since
|M| is not composed with a pencil, we ha¥# = 1 or M? = 2.

In the first casepy : W — P? is a birational morphism, but this is impossible because
2g(M) —2=M?+ KwyM > 0.

In the second case the systéh| gives a systen| on S with M2 > 4 andKsM = 3
(cf. Remark 2.5). By the adjunction formula we géf > 5, contradicting the index theorem
applied toK s and M.

So we have shown that D = 4. Now (iii) follows immediately fromD F = 0 and the
index theorem. m]

Consider now the morphisri: W — W’ and the divisoD’ of Proposition 2.6.

PROPOSITION 3.3. (i) Onehas—4 < K2, <0.
(i) 1f K2, =0,then W’ isan Enriques surface.
(i) If K2, < 0,then W’ isrational.

PrOOF. We recall that-4 < K% < 0 by Proposition 2.4, and ski4, > —4. Since
D'(Ky+D') = 4, the index theorem implies thek -+ D')? < 4, or equivalentlyk 2, < 0.

The surfacéV’ is either rational or birational to an Enriques surface by [CCM2, Corol-
lary 3.7]. SinceKyD = 0, if szw = 0, thenKy, ~ 0 andW’ is an Enriques surface. If
szv’ < 0, thenKy/(Kw' + D) < 0. SinceKy- + D’ is nef by Proposition 2.6, this implies
that the Kodaira dimension &%’ is negative, and therefoii@’ is rational. ]

LEMMA 3.4. If K2, < 0,then|Ky + D'| hasno fixed part.

PROOF. Write, as usual Ky + D'| = F' + |M’|, whereF' is the fixed part. Since the
morphismf: W — W’ contracts only curves that are fixed f&fw + D| (cf. Remark 2.7),
by Lemma 3.2 we see thal’'D’ = 4, F'D’' = 0.



INVOLUTIONS ON NUMERICAL CAMPEDELLI SURFACES 7

Notice thatF' Ky = F'(Kw' + D') = F'M' + F'?,s0F'M' is even. Since botiv’
andKy- + D' are nef (cf. Proposition 2.6, (iii)), weave the following inequalities:

M'F <M'F +M?=M Ky +D) <Ky +D)>=K% +4<4.

It follows thatM'F’ =0orM'F' =2. f M'F' = 2, thenM’? < 1.

We start by seeing tha’F’ = 2 does not occur. IM'F’ = 2 andM’? = 1, then
KwM = (Ky +D)M' —4=3—4=—1. SinceM’? = 1, |[M’| is not composed with
a pencil, the general curve @ff’| is smooth andp,;: W' — P? is a birational morphism.
This is impossible becaugg, (M') = 1.

If M'F' = 2 andM’? = 0, then|M’| is composed with a pencil. NowWP(W’, M’) = 3
andg(W’) = 0 imply thatM’ = 2C, where|C| is a free pencil. Sinc&y M’ = (Ky +
DYM' —4 = 2 -4 = -2, one has thaKy.C = —1, which contradicts the adjunction
formula. SoM’F’ = 2 does not occur.

On the other hand, i F’ = 0, thenF’ = 0. Otherwise, sinc®' F’ = 0, thenF'? < 0,
implying thatF’(Ky- + D') = F'> + M'F’ < 0. This contradicts the fact thaty + D’ is
nef. So|Ky- + D’| has no fixed part. O

Next we examine separately each of the possibilities’(‘f@r, which ranges between4
and 0 by Proposition 3.3.

3.1. The casel(‘%,, = 0. In this case the surfad®’ is an Enriques surface by Propo-
sition 3.3.

PrRoOPOSITION 3.5. Thesystem|D’| isbase point free and irreducible.

PROOF. Write D’ := |M| + F, whereF is the fixed part. By Proposition 2.4 (i) and
Proposition 2.6 (ii), the systemd/| pulls back onS to the moving part of2Ks|. Since the
bicanonical image of is a surface by [Xi2], the generM is irreducible. In particularM is
nef and big and the Riemann-Roch theorem gives/®(M) = M?/2 + 1, namelyM? = 4.

So we have: 4= M? < M? + MF < D? = 4, which impliesM F = F? = 0. HenceF =0
by the index theorem.

Now assume thattD’| has base points. By Proposition 4.5.1 of [CD], there exists an
effective divisorE on W’ such thatE? = 0, ED’ = 1. By Remark 2.5, this gives a divisor
E on S with KsE = 1 andE? > 0. The adjunction formula then givés® > 1, but this
contradicts the index theorem. O

COROLLARY 3.6. Thebicanonical system |2K | isbase point free.

PrROOF. The statement follows immediately by Proposition 3.5, si2é&s| is the pull
back of| D| to S by Proposition 2.4. O

PrROPOSITION 3.7. Thetorsion group Torg(S) of S hasorder 4 or 8.

PrROOF Since the group To(§) = Torg(V) has order at most 9 (cf. [BPHV, Chap.
VI1.10]), it is enough to show the existence of an étale cover aff degree 4.
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Let p: K — W be the étale double cover & induced by the K3 cover ofv’. Then
we have a cartesian diagram:

K ——

ol |7

K 25w

The mapp is an étale double cover, whifeis a double cover branched on the inverse image
A of Bg+ N1+ - - -+ Ne. The divisorA is the disjoint union of a divisono with A2 = 8 and

of twelve —2-curvesrln, ..., I'lo. Consider the natural map: ZAo®ZMNM @ ---®ZIMo —
H2(K,Z»). The image ofy is a totally isotropic subspace, and hence it has dimension at
most 11, sincé?(K, Z») = 22 and the intersection form ad2(K, Z») is nondegenerate by
Poincaré duality. Hence the kernel wfhas dimension at least 2. By Lemme 2 of [Be], the
surfaceK has a connected étale double cover, and héhtms a connected étale cover of
degree 4. ]

REMARK 3.8. Examples of this situation can be found in [Nal]. Those examples have
torsion groupzs or Z; x Za.

3.2. The casd(ﬁ,, = —1. By Proposition 3.3W’ is a rational surface. Denote
M' .= Ky + D’ and recall thatM’| has no fixed part by Lemma 3.4. One he& = 3,
KwM' = —1. Since|M’| is 2-dimensional, the general curve |8f’| is irreducible. The

system Ky + M’| has dimension 1 by the adjunction sequence for the geigral

LEMMA 3.9. Thelinear system |Ky- + M'| isa base point free pencil of nonsingular
rational curves.

PROOF. We claim thatKy,» + M’ is nef.

Suppose otherwise. Then there exists an irreducible cduwigh 0(Ky + M’) < 0. It
follows that# is a fixed component dfKy» + M’| andé? < 0. Sinced M’ > 0, becausas’
is nef, it follows thaty Ky < 0. Thus necessarily is a—1-curve and’6 = 0.

The divisorG := M’ — ¢ is effective, sinceM’| has dimension 2, and we ha@& = 2,
GD’' = 3. ThenG gives a divisoiG on S such thaiG2 > 4, GKs = 3 (cf. Remark 2.5), and
thereforeG2 > 5 by the adjunction formula. This contradicts the index theorem applied to
Ks andG, showing thatk y,» + M’ is nef.

Considerl Ky + M'| = |C| + F, whereF is the fixed part. The generdd’ is smooth
and irreducible andKy + M’| restricts to the complete canonical systemMh Hence
the general’ does not meeF. SoM’F = 0, and therefor¢?2 < 0 if F # 0. Because
Ky + M’ isnef,C(Ky +M') = C2+CF >0andF(Ky +M') = F2+ CF > 0. Since
(Kw' + M")? = 0, we have equality in both cases.

But then, becaus€ is nef, we must havé F = 0, implying alsoF? = 0 and soF = 0.
So|Kyw' + M'| = |C| is a pencil of rational curves. O
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PROPOSITION 3.10. (i) There exists a fibration f: S — P! with 3 double fibres,
such that the general fibre of f ishyperelliptic of genus 3 and o induces on it the hyperelliptic
involution.

(i) Thegroup Torg(S) contains a subgroup isomorphic to Z%.

PrROOF. LetC := Ky + M'. By Lemma 3.9/C| is a free pencil of rational curves.
Notice thatCN; = (2Kw + D')N/ = 0 for everyi by Proposition 2.6, so that the curvss
are contained in curves ¢f'|. SinceC = 2Ky + D" andD’ + N; + - - - 4 Ng is divisible by
2 in PigW’) by Proposition 2.6, (iii), the divisof 4 N; + - - - + Ny is also divisible by 2. Let
Y — W’ be the double cover branched 6n- Nj + - - - 4+ Ng, whereC € |C| is general. The
surfaceY is smooth and the usual formulae for double covers givE) = 0. Pulling back
|C|to Y, one obtains a fibratioh: Y — I', wherel” is a smooth curve and the general fibre
of i is isomorphic toPl. HenceY is a ruled surface witly (Y) = 1 andh is the Albanese
pencil.

Arguing as in [DMP, Theorem 3.2], one shows that there exist effective divisgra,,
Az on W’ such that, up to a permutation of the indices, the curves-2 N; + N, 24, +
N3+ Ny, 2A3 + Ng + Ng belong to|C|.

We haveCD’ = 4, and hence by Remark 2.5 the systgm gives a pencilC| on §
with KsC = 4. SinceCN; = 0 for everyi, we haveC? = 0 and|C| defines a fibration
f: 8 — P! of hyperelliptic curves of genus 3. The curves 6f containing thev! give rise
to double fibres off.

Statement (ii) follows trivially from the existence of three double fibreg of O

REMARK 3.11. Inthiscaseitis possible, using the same type of reasoning as in Corol-
lary 7.6 of [CCM2], to show thaf is a degeneration of surfaces with nonbirational bicanonical
map originally described by Du Val as double planes (cf. [Ci]). Indéed pirationally equiv-
alent to a double cover ¥ branched on a curve which is the union of three lings, r3
meeting in a poinyo and of a curve of degree 13 with the following singularities:

e a 5-uple point aty;

e apointg; e r;,i =1, 2, 3, of type[4, 4], where the tangent line is;

e three additional 4-uple pointga, gs, g6 such that there is no conic through
q1, - - - q6.

3.3. The casq(%,/ = —2. Asin the previous case we considéf := Ky + D'.

Recall thatM’? = 2 andKy M’ = —2. Moreover, M’ andD’ are nef (cf. Proposition 2.6).

LEMMA 3.12. (i) Onehas hi%(W’', Ow/(Kw + M')) = 1 and, if G is the unique
curvein |[Ky: + M'|,then GM’ = 0.
Moreover, up to a permutation of theindices {1, . . ., 6}, one has the following:
(i) There aretwo possible decompositions of G:
a) G = (2E1+ Ng) + (2E2 + Ng), where E1, E» are —1-curves such that E1N; =
EaNg = E1D' = E;D' = 1and the divisors (2E1 + Ng) and (2E2 + Ng) are
digoint, or
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b) G =4E1+3N{+ 271 + Ng, where E; isa —1-curve and Z; isa —2-curve such
that E]_Né = Z]_Né = Z]_Né =FE1D' =1and E1Z1 = E]_Né =0.
(i) Thedivisor Ny +--- + N, iseven, anditisdisoint fromG.

PrROOF.  We will mimick the proof of Lemma 7.1 in [CCMZ2]. The first assertion follows
from the long exact sequence obtained from

O—) OW/(KW/) —> OW’(KW’ —+ M/) — OM/ — O

becausdV’ is a rational surface by Proposition 3.3, (iii).

By definition of G, one has tha6? = GKy = —4 andGM’ = 0. Therefore, since
M’ is nef, each compone#tof G is such thab M’ = 0 and the intersection form on the
components of5 is negative definite. Sinc62 = —4, there exists an irreducible curig

in G such thatEf < 0andE1G = E1(Ky + M) < 0. SinceM’E1 = 0, one has that
E1Kyw < 0, thusE; is a—1-curve andt1G = —1, E1 D’ = 1. Recall thatD’ = M’ — Ky
is nef, so the irreducible components@fare either—1-curvesk such thatEtG = —1 and
ED’' =1, or—2-curvesZ such thatZzG = ZD’ = 0.

SinceD’ + Nj + - - - + Ng is divisible by 2 andt1 D" = 1, E; must meet one of the 2-
curvesN;, sayNg. HenceNg(G — E1) = —NgE1 < 0, SONg < G and moreoveE 1 Ny = 1,
otherwise we would gt + Né)2 > 0, a contradiction because the intersection form on the
components o6 is negative definite.

Similarly, E1(G — E1 — N§) = —1implies that Z1 + N{ < G.

Recall thatGKy» = —4, so eitherG contains another1-curve E» or 4E1 < G.
Assume the former case. Then, arguing as before, one seeB:tmaeetsN/, for somei,
and 2E2+ N; < G. If i =5, then(N; + E1 + E>»)? > 0, a contradiction. So we may assume
i = 6. Finally the negative definiteness implies tt#atF>, = 0 and that case a) of statement
(ii) occurs, becauseG — 2E1 — 2E — NL — N{)? = 0.

Assume now the latter case, i.efA< G. Note thatVg is the only—2-curve contained
in G that can interseck;. Indeed, ifZ C G is a—2-curve such thak1Z > 1 andZ # Ng,
then(2E1 + Ng + 7)? > 0, contradicting again the negative definiteness.

SinceE1G = —1 andE1(4E1 + Ng) = —3, one has that&q + 3Né < G and the
components o’ = G — 4E; — 3N{ are—2-curves. SinceVsG = 0 andNgG' = 2, G
contains at least a2-curveZ; with Z3Ng > 0. Now NjZ; = 1, otherwise(Ng + Z1)2>0
gives a contradiction. SincE1G = 0, we have Z; < G'. Recall thatZ;D’ = 0 and
D'+ Nj+---+4 Ngis even, and hencg; meets another-2-curveN;, sayNg. ThenNg(G —
Z1) = —NgZ1 < 0, soNg < G'. Finally the negative definiteness implies thg{7Z; = 1.
Then we are in case (i), b), becauge — 4E1 — 3Ng — 273 — Né)2 =0.

Itremains to prove tha¥; +- - -+ N, is divisible by 2 in Pi¢W’). SinceD’+ N} +- - -+ Ng
is even, one has thady: + D"+ Nj +---+ Ng = G + Nj + - - - + Ny is also even. Hence
G+ N;+ -+ Ng = 2(E1 + E2+ N{ + Ng) + N; + --- + N, is even in case a), and
G+ Nj+---+ N;=22E1+ 2Ni + Z1+ N§) + N +-- -+ N, is evenin case b). In both
cases, one sees thdf + - - - + N, is even.
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To finish the proof, it is enough to show th, . .., N, are disjoint fromEy andEz in
case (ii), a) and fronk;1 andZ1 in case (ii), b). Arguing as before, this follows easily from
the fact that the components 6fand the curved/;, ..., N, are orthogonal to the nef divisor
M. O

By Lemma 3.12, there exists a birational morphigmW’ — X such thatX is a smooth
rational surface( is the exceptional divisor of andM’ = —g¢*Kx. In particular,—Kx is
nef and big and 2 = 2. In case (ii), a) of Lemma 3.12 the image®fonsists of two points
gs andgg and in case (i), b) it is a single poigt

PROPOSITION 3.13. (i) There exists a fibration f: S — P! with 2 double fibres,
such that the general fibre of f ishyperelliptic of genus 3 and o induces on it the hyperelliptic
involution.

(i) Thegroup Torg(S) contains a subgroup isomorphic to Z,.

PrOOF. Fori =1,...,4, write A; for the image ole.’ in X. By Lemma 3.12A1 +
-+~ + Ay is again an even set of disjoirt2-curves. By [CCM1, 1.1], there exist a free pencil
|C’| of rational curves o and effective divisorsiy, A, such that, say,21 + A; + A and
2A2 + Az + A4 belong to|C’|. The pull backC| of C" on W’ satisfiesCD’ = 4,CN/ =0

fori = 1,...,6, and hence it gives a fibratiof: S — P! as in statement (i). The curves
2A14+ A1+ Az and 242 + Az 4+ A4 correspond to two double fibres ¢t
Statement (i) follows trivially from the existence of two double fibresfof O

REMARK 3.14. As in the previous case, it is possible, again using the same type of
reasoning as in Corollary 7.6 of [CCM2], th@w that S is a degeneration of surfaces with
nonbirational bicanonical map originally described by Du Val as double planes (cf. [Ci]).
Indeed,S is birationally equivalent to a double cover Bf branched on a curve of degree
14 which splits in two distinct lines; andrp and a curve of degree 12 with the following
singularities:

e the pointgo = r1 N rp of multiplicity 4;

e apointg; € r;,i =1, 2, of type[4, 4], where the tangent line is;

o two further pointsys, g4 of multiplicity 4 and two pointgs, ¢ Of type[3, 3], such that
there is no conic througdy, . . ., ge.

The pointgs is infinitely near tags, in case (ii), b) of Lemma 3.12.

3.4. The case!(a,/ = —3. DenoteM’ := Ky + D'. We haveM'? = 1, KwM =
—3 and |M’| is 2-dimensional. SincéM’| has no fixed part by Lemma 3.4, the map
éu: W — P?is a birational morphism. It is an easy exercise to see that the branch curve
is mapped to a plane curve of degree 10, which, as it is well known, has 6 singular points of
type[3, 3] (possibly infinitely near).

The original construction proposed by Campedelli ((Cam]) is one of these surfaces. For
a discussion of possible branch loci and relations with the 2-torsidset [St] and [W].

3.5. The casd(ﬁv/ = —4. We start by noticing that in this cag®&’ = W, because
—4 < K2, by Proposition 2.4, (jii).
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DenoteM := Ky + D. Recall thajM| has no fixed part, by Lemma 3.4. Th&f? = 0
andh®(W, M) = 3 imply that|M| = |2C|, where|C| is a pencil without base points. Since
szv = —4 andKw D = 0, we haveKy C = —2, and hencéC| is a pencil of rational curves.
SinceCN; = 0,i =1,...,6 andDC = 2, C gives rise to a genus 2 fibratigh on S such
thato restricts to the hyperelliptic involution on the genetal

Notice that in this case the cunBy on W must be reducible, because by Proposition 3.1
pa(R) = —1 and, of coursep,(Bo) = ps(R). In fact, recalling thatDh = 2Ky + Bg, we
obtainBZ = —12,Kw Bo = 8, and hence, (Bo) = —1.

REMARK 3.15. Conversely, assume that the numerical Campedelli suffdmes a
free pencil|C| of curves of genus 2 and letbe the involution ofS that induces the hyperel-
liptic involution on the general’. Then the results of [Xil, 81, 2] (cf. Remark 2.4, ibidem)
show that we hava’%,, = —4in this case.

REMARK 3.16. In this case by [Xil, §2] the relative canonical mays @xpresses
as a double cover dfg = P! x P! branched along a curve of degrég 8), which in the
general case has 6 distinct singular points of ty§&].

4. Involutionsnot composed with the bicanonical map. In this section we consider
case Il) of Proposition 2.3, namely here we assume khat 4 and the bicanonical map
¢: S — P?is not composed witk-. We recall that by Proposition 2.4 in this case we have
D?>=4,KyD=2,-2<K3 <1.

LEMMA 4.1. The curve By decomposes as Bp = Iy + --- + I, where the I} are
dioint irreducible —4-curvesandm = 1 — K3,.

PROOF. First of all, notice thatBoD = D? — 2DKyw = 0. LetI” be an irreducible
component oy and writep*I" = 2I". We haveDI" = 0, sinceD is nef, and thus*KsI" =
0, sincep*D = £*(2Ks) by Proposition 2.4. Sincé is disjoint from the exceptional locus
of ¢ by construction, it follows thaf” is a—2-curve. Hencd™? = —4 andI" is a smooth
rational curve. Now letn > 0 denote the number of componentsByf. By the adjunction
formula we haveK'y Bo = 2m. On the other hand, we can compute:

2m = KwBo = Kw(D —2Kw) = 2 — 2K3, .
Finally, the components a#g are disjoint, sinceBg is smooth. ]
COROLLARY 4.2. If szv < 0,then K isnot ample.

PROOF. By Lemma 4.1, the branch divis® of the mapr: § — X contains at least a
smooth rational curvé™ with "> = —4. Then the inverse image &fin S is a—2-curve and
K is not ample. O

PROPOSITION 4.3. We have the following possibilities:
() K2 =1, W isminimal of general typeand By = 0.
(ii) K%, =0, W isminimal and properly elliptic.

(i) K2 = —1,—2and W isnot of general type.
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PROOF. Recall that-2 < K3, < 1 by Proposition 2.4. IK2, = 1, then by Lemma 4.1
we haveBg = 0 andKs = 7*K 5, and henc&yy = n*K 5 is nef and big andV is minimal
of general type.

Next we show that i{KVZV < 0, thenW is not of general type. So assume by contradiction
thatW is of general type. Let: W — W1 be the morphism to the minimal model and write
Kw =t"Kw, + E, whereE > 0. SinceDKw = 2 andD is nef, we haveDr*Kw, < 2. On
the other hand, sinalévz‘,l > 0, the index theorem applied @and:* Ky, givesDt* Ky, > 2.
So we getDt* Ky, = 2 andD ~ 2t*Kyw,. This impliesBg + 2E ~ 0, a contradiction, since
Bo+ 2E > 0.

Assume now thaKVZV = 0. By Lemma 4.1Bo is a smooth rational curve with2 = —4.

By the exact sequence

(4.2) 0— H°Q2Kw) — H°Kw + Bo) — H%(Op,),

we obtain 1< h%(2Kw) < 2, and hencé¥ has nonnegative Kodaira dimension. We have
seen thaW is not of general type, and hence it is minimal and it is either properly elliptic or
Enriques. Sinc&Kw D = 2 # 0, the latter case does not occur. This finishes the proof

REMARK 4.4. By Proposition 4.3, the desingularizatith of the quotient surface
S/o may be a numerical Godeaux surface, an elliptic surface, birational to an Enriques surface
or rational.

Unlike the previous case, in which one knows examples for all the possibilitiéd for
in this case we do not know any example for whighis rational. Barlow in [Bal], [Ba2]
presents examples of numerical Godeaux surfaces with four nodes double covered by numer-
ical Campedelli surfaces and the new examples we present sucWtlsahot a surface of
general type are obtained by specializing one of these constructions (cf. §5).

It is possible to make a more detailed analysis of the caseslv\a,trg 0, in the style of
the previous section, but since the arguments are very lengthy and all the examples we know
are obtained by specialization, we do not think worthwhile including it here.

5. Examples. In this section we study some families of numerical Campedelli sur-
faces with an involution, providing examplesr fthe cases 3.2 to 3.5 in 83 and for the cases
(i)—(iii) in Proposition 4.3.

EXAMPLE 1. Numerical Campedelli surfaceswith torsion Z3.

These surfaces have two different descriptions: as the quotient by Z?faetion of
the intersection of four quadrics R® (cf. [Mi], [Re1]) and aszg’-covers ofP? branched on
7 lines (cf. [Ku]). We use the second description, which is more suitable for our purposes.
Two special instances of surfaces instfamily are the Burniat surface witki> = 2 and the
classical Campedelli surface (cf. [Ku, 84]).

SetG = zg and lety1, x2, x3 be generators ofi*, the group of characters @f. By
[Pa, Proposition 2.1 and Corollary 3.1], to give a nor@iatoverp: X — P2 it is enough to
give an effective divisoD, for every 0# g € G and line bundled.1, L, L3 on P? such that
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the divisorA := /., Dy is reduced and the following relations are satisfied:

2L; =) &i(g)Dg. i=123,
970
where we define; (¢) = 0if x;(¢g) = 1 ande;(g) =1 if x;(g) = —

Here we take theéD, to be distinct lines irP?2 and we set.; := Op2(2),i = 1,2,3.
Moreover we make the following assumptions on the configuration of the Iiges

1) at most three of th®, pass through the same point;

2) if Dy, Dg,, Dy, pass through the same point, thant ¢» + g3 # 0.

We now examine the singularities &f. By [Pa, Proposition 3.1]X is singular above a
point P € P? if and only if P lies on three branch lineBy,, D4, and D,,. To resolve the
singularity, lety : P — P2 be the blow up oP? at P, let E be the exceptional curve gf and
consider theG-coverp: X — P obtained fromp by base change and normalization. Write
go = g1+ g2+ g3. By [Pa, 83], the components of the branch divisopare the following:

Dy = y* Dglfg;égo,...,gg, g = V*Dgy + E, Dgz = y*Dy, —Efori =1,23.
The surfaceX is smooth aboveZ andy ~1(E) is a—2-curve. Hence&X has a rational double
point of typeA; over P. We have Xx = ¢*(Op2(1)), and hence& x is ample andX is the
canonical model of a surfaceof general type withK§ = 2. By the projection formulae for
abelian covers we haveK x| = ¥*|Op2(1)|, and hencé®(X,2Kx) =3, x(S) = x(X) =1
andy is the bicanonical map of.

Kulikov [Ku, Thm. 4.2] shows that the automorphism group of the general surface in this
family coincides with the Galois groug = zg of the bicanonical map. The result that follows
is a partial refinement of his, and gives evidence for the difficulty of finding an involution of
a numerical Campedelli surface such thabicanonical map is not composed with it.

PROPOSITION 5.1. Let S be a numerical Campedelli surface with torsion Z3 and let
o beaninvolution of S. Then o isin the Galoisgroup G = zg of the bicanonical map of S.

PROOF. Assume by contradiction thatis an involution ofS such that the bicanonical
mapg: S — P?is not composed with . SinceG is defined intrinsically, we haveGo = G
ando induces an involution oP? that we denote by. Since the set of line®, contains at
least 4 lines in general positiof,induces a nontrivial permutation of tfi&,. Denote by: the
automorphism oft; defined byi(g) = ogo. Then we haver (Dy) = Dj(g), and it follows
thath is a non trivial automorphism @¥. Sinceh has order 2, we can find generaterses, e3
of G such thati(e;) = ¢; fori = 1, 2 andh(e3) = e3+ e1. Hence the lined,,, De,, Dej+e,
are fixed forg, while D,, andD,,., are exchanged by and the same happensio, ., and
Deyrenter- Then, taking also into account the combinatorial conditions on the configuration
of the linesDg, up to exchanging, ande; + ez, we can find homogeneous coordinates on
P2 such that (x0, x1, x2) = (x0, x1, —x2) and such that:

Del = {x1 =0}, Dez = {x0 =0}, De1+e2 = {x2 =0},
Doy = {axo+bx1+cx2 =0}, Degyey = {axo+ bxy — cx2 =0},

De3+eg = {a/xo + b/xl + C/XZ =0}, D63+el+e2 = {a X0+ b X1 — ol x2 =0}.
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Sinceh maps the subgroufl of G generated by; andes to itself, o induces an involution of
the surfaceZ := S/ H that liftsg. On the other hand, the function fie{Z) is the quadratic
extension ofC(P?) obtained by adding the square rootxafia’xo + b'x1 + ¢'x2)(a'xo +
b'x1 — 'x2) /xg, and it is easy to check that the actionsobn C(P?) cannot be extended to
an automorphism of order 2 6f(Z). Hence we have obtained a contradiction. a

We now study the involutions af. There are different cases, according to the relative
positions of the lines im.

Casel. Thelines ofA are in general position.

In this caseK s is ample and therefor# = W’ for any involution ofS by Remark 2.7.

The divisorial partr of the fixed locus or$ of any 0# o € G is a paracanonical curve.
Hence, the adjunction formulls = 7* Ky + R gives that Xy = 0 andX is an Enriques
surface with 6 nodes. So this is an instance of case 3.1 of 83. Other examples of this case,
with torsionZy x Z4, appear in [Nal].

Case 2. The divisorA has one triple poinP, lying on the Imengl, Dyg,, Dg,. Con-
sider the mvolutlongo := g1 + g2 + ¢3. In this case the covep: X — P is smooth and
we haveS = X. The divisorial part of the fixed locus @f on S is the disjoint union of
the —2-curve that resolves the singularity ¥fand of a paracanonical curve. Hence one gets
K%, = —1. Since the only-2-curve ofS§ is in the fixed locus ofiy, we haveW’ = W and the
surfaceW is rational by Proposition 3.3, nhamely this is an example of case 3.2. Indeed, it is
easy to check that the lines through the pdine P? pull back to a pencil of rational curves
on W, which in turn gives a free pencil of hyperelliptic curves of genus 3 with three double
fibres onS.

Case 3. The divisorA has a triple pointPy, lying on the linesDy,, Dgy,, Dy, and
another triple poinf,, lying on the linesDy,, , Dy, andDj,,, With g1+ go+93 = h1+ho+h3 =:
go-

Arguing as in Case 2, one shows that the fixed locug@h S is the disjoint union of a
paracanonical curve and of the tw@-curves that resolve the double pointsolying above
P1andPp. We haveW = W/, K w = —2 andW is rational. Hence this is an example of Case
3.3.

Case4. The divisorA has three triple pointsPy, lying on the linesDy,, Dgy,, Dy, P2,
lying on the linesDy,,, Dy, andDy,,, andPs, lying on the linesDy,, D, andD f,. Moreover,
we assume thajs + g2 + g3 = h1 + ho + h3z = f1+ fo + f3 =: go. We remark that the
existence of such a configuration of lines is not difficult to verify.

Arguing as in Case 2, one shows that the fixed locugyain S is the disjoint union of
a paracanonical curve and of the thre-curves that resolve the double pointsioflying
above Py, P, and P3s. We haveW = W/, KVZV = —3 andW is rational. Hence this is an
example of Case 3.4.

REMARK 5.2. One can check that cannot have four triple point®, ..., P4 such
that P; lies on Dy, Dg,, Dy, With g1; + g2i + g3 = g1; + g2; + g3j # O for every
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i,j =1,...,4. Hence, by Proposition 5.1 the cases 1-4 described above are essentially the
only possibilities for an involution of a numerical Campedelli surface with torzgan

ExampLE 2. A family of numerical Campedelli surfaceswith torsion Z% and two in-
volutions.

This example has been kindly communicated to us by JongHae Keum, who attributes it to
X. Gang and A. Beauville (cf. also Example 3.8 of [Cat]). For the classification of numerical
Campedelli surfaces with torsia‘t§ see [MP].

ConsiderX := P? x P? with homogeneous coordinatésy, x1, x2; yo, y1, y2) and let
two generatorg; andgp of the groupG := Z% act onX as follows:

. 91 . .
(x0, X1, X2; Y0, Y1, y2) = (X1, X2, X0; ¥1, ¥2, Y0) ;
. 92 2. 2
(x0, X1, X2; Y0, ¥1, y2) > (X0, wX1, ®“X2; Y0, @“Yy1, @y2) ,

wherew is a primitive 3-rd root of 1Consider the family of surfacas of X defined by the
equations:

x0yo + x1y1 + x2y2 =0,
3, .3, 3,3, 3, .3 _
(xg +x1 +x3)(yg + ¥y1 +¥3) + Axoxaxzyoy1y2 = 0.

For a general value of the parametee C the surfacel is smooth and simply connected
with K§ = 18, py(Y) = 8, and the grou acts freely on it. Hence the quotient surface
S :=Y/G is a numerical Campedelli surface with fundamental group equal to

The surface’” is mapped to itself also by the involutién of X defined by

a1
(x0, X1, X2; Y0, ¥1, y2) = (Y0, ¥1, ¥2; X0, X1, X2) .

The involutions, satisfies the following relations
(5.1) 0191 = g101, 012 = 9225l»

and henc& andai generate a grou@o of order 18, the involutio; induces an involution
o1 of S and we have’/Gg = S/o1.

The fixed locus o061 on Y consists of 12 points and the same is truedfgy, and&lgzz,
since these involutions are conjugatedio Consider now an element 6fg of the forma g,
whereg € G\ (g2). The relations (5.1) imply th&t7 ¢)? is a nonzero element @f, and hence
in particulara1g has no fixed points oiif. It follows thato; has 4 fixed points o and the
quotient surfacd’ := S/o1 is a numerical Godeaux surface. By [Ba2, §0], the fundamental
group ofT' is isomorphic taZ3. Hence we have an example in which the bicanonical map is
not composed with the involution and the quotient surface is of general type, that is Case (i)
of Proposition 4.3.

Consider now the involutiof, defined by

G2
(x0, X1, X2: Y0, y1, ¥2) => (X0, X2, X1; Y0, y2, Y1) -
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For everyg € G one has the relatiodi,g = ¢~16>. Hence the grougo generated by
andaé» has order 18G( contains nine elements of order 2, that form a conjugacy class. The
surfaceY is mapped to itself by, andao» induces an involution of that we denote by-.
We haveY/Go = S/o2.

The fixed locus 062 on the threefoldxgyo+x1y1+x2y2 = 0} C X consists of 3 disjoint
rational curves:y = {(0,1, —=1;a, b,b) | (a,b) € PY}, I’ = {(a,b,b;0,1,-1) | (a,b) €
P}, I3 = {(a, b, b; —2b,a,a) | (a,b) € P}. Itis not difficult to check thaf™, andI'> are
contained inY, while I's meets the generdl at 6 distinct points. Sinc&y is the restriction
of Op2,p2(1,1) to Y, we haveKyl; = 1, fori = 1,2 and/1, I are —3-curves ony.
Hence the fixed locus @f, on S is the union of 6 isolated points and tweB-curves, and thus
K2, = —4.1f Y is smooth, therky andK g are ample and we haw® = W’ by Remark 2.7.
So this surface is also an example of Case 3.5.

We are now going to show that the involutiegn of S is actually induced by a genus 2
pencil, as explained in 3.5. Consider the pencil of hypersurfac&ssgfanned byox1x2 and
x84+ x3 + x3 and denote byF| the restriction of this pencil t&. The fixed part of F| is the
union of the curves in the orbit df; under the grougs. Then we can writ¢F| = Z + |C|,
where theZ is the disjoint union of nine-3-curves andC| has no fixed part. On the surface
Y we haveF? = 27, Ky F = 27. Using this and"I" = 0 for every componenk’ of Z, one
getsCI" = 3, KyC = 18,C? = 0. Every element ofC| is mapped to itself by5o. Hence
|C| induces a genus 2 penc¢d’| of S such that every element ¢f’| is mapped to itself by
o2. Finally, usingl>F = 3 and the fact that th&-orbits of I'; and I'; are disjoint, we get
CIy = CI> = 3. So the general’ meets the fixed locus af, at 6 points, and hence
restricts to the hyperelliptic involution ofi'.

ExamPLE 3. Numerical Campedelli surfaces with an involution with which the bi-
canonical map is not composed and such that the quotient is not of general type.

Here we provide examples for Cases (ii) and (iii) of Proposition 4.3. These examples are
obtained by specializing a construction due to Barlow ([Bal]). We start by recalling briefly
her construction.

Consider the spac@6 with homogeneous coordinatés;, ..., x7) and the automor-
phisms ofP® defined as follows:

(x1,...,x7) > (Cx1,¢%x2, ..., ¢ x7),

a
(x1,...,x7) = (x3, X6, X1, X4, X7, X2, X5) ,

where¢ is a primitive 8-th root of 1. The automorphismhas order 8, the automorphism
has order 2 and one has

ata = 13.

Hencea and: generate a subgroup of order 16 of AutP®). Consider the intersection of
the following four quadrics oP®:

Fo := b(x1x7 + x3x5) + axi + fxoxe,
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F = cxf + dx3x7 + exgqxe + hxg ,
Fy:= k(x% + xg) + gx1x3 + mxsx7,

Fg = cx% + dx1x5 + exqx2 + hx%.

Barlow proves that for a general choice of the coefficient, c, d, e, f, g, h, k, m the
following are true:

e Y is a smooth surface mapped to itself @y

e the subgrouZs of G generated by acts freely orv’;

e the involutiona has 8 isolated fixed points dn
It follows easily from the properties above that the quotient surface Y /Zg is a numerical
Campedelli surface with torsiafg. In addition, the involutior: of Y induces an involution
o of S with four isolated fixed points. The quotient surfaEe:= S/o has four nodes and
its minimal desingularizatior is a minimal surface of general type Wim%, = 1and
pg(W) = 0, namely a numerical Godeaux surface. Barlow also showsrifi#it) = Z».

Let I" be the group of automorphisms Bf of the form Diad1, A, 1, i1, v, A, v) for
A, i, v € C*. The elements of' commute witha ands and act on the family of surfacés
and hence the family of numeal Campedelli surfaceSthat we obtain has at most 4 moduli.

We are going to specialize this construction by lettiigcquire one or two ordinary
double points which are fixed by and whose images i¥ are quotient singularities of type
(1/4) (1, 1). Passing to the minimal desingularizati§hof S we obtain an involution whose
fixed locus consists of four isolated points and of ti&curves that resolve the singularities
of Y. In the case of one double point we get an example of Case (ii) of Proposition 4.3. In
particular, the minimal desingularizatid# of X' is a properly elliptic surface. In the case of
two double points we have an example of Case (iii) of Proposition 4.3 and we will show that
W is a nonminimal Enriques surface.

The fixed locus of: on P8 consists of thé>® defined by

Xx1—x3=x2—xg=x5—x7=0
and of theP? defined by
x1+x3=x2+x6=x5+x7=x4=0.

In [Bal] it is shown that the gener&l intersects thé3 in 8 points and it does not intersect
the P?. Let P; € P? be the point(1,1, —1,0,1, —1, —1) and letP, := r*(P1) € P? the
point(1, —1,—-1,0,1,1, —1). Let P3, ..., Pg denote the remaining points in the orbit &f
under the action ofg. The surface¥ that containP, ..., Pg are defined by four quadrics
as follows:

Fo := b(x1x7 + x3x5) + axf — 2bxoxg,
= cx% + dx3x7 + exaxg — (c + d)xg ,
Fa = k(x5 + x2) + gx1x3 + (2k — g)xsx7,
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Fg := cx§ + dx1x5 + exgx2 — (¢ + d)x% .

It is easy to verify that the tangent space to the geriéral P; has dimension 3 and acts
on it as multiplication by-1. Since the point#y, ..., Pg form an orbit under the action of
andY is mapped to itself by, the singularities of at P1, ..., Pg are isomorphic.

REMARK 5.3. The orbit ofP; under the action of” is dense in thé®? fixed by a.
It follows that if a surface’ intersects thi$? in a point P, thenY is singular atP and the
subspace of the tangent spacé’tat P on whicha acts as multiplication by-1 has dimension
at least 3. In addition, i satisfiestr1xoxs # 0 andY is general among the surfaces through
P, then the tangent spaceYoat P has dimension 3 andacts on it as multiplication by-1.

We claim that for a general choice of the parameters, ¢, d, e, g, k the surfacey
satisfies the following conditions:

1) the subgroup generated bycts freely orv;

2) Y meets thé® fixed bya in 8 points and it meets the? fixed bya in Py and P,;

3) Y has an ordinary double pointify, ..., Pgand it is smooth elsewhere.

Conditions 1)-3) are open, and hence it is enough to check them for one surfaee
Yo be the surface corresponding to the following choice of parameters:

a=e=-1, b=c=d=g=k=1.

Using a computer program (we have used Singular), one checks the following:

e Yp does not intersect the spacls := {x1 = x3 = x5 = x7 = 0} and H2 := {x2 =
x4 = xg = 0} fixed bys4, and hence condition 1) is satisfied;

e Ypintersects th@? fixed by Y at 8 points;

e the scheme of singular points B has dimension 0 and degree 8.

Since we already know thatis singular atPy, . . ., Pg, the last condition above implies
3). The fact that’p meets theP? fixed bya only at P, P> is now a consequence of Remark
5.3. Hence Conditions 1)-3) are satisfiedfgyand therefore they are satisfied by the general
Y that has nonempty intersection with tRé fixed bya. For such a surfacg, the quotient
surfaceS := Y/Zg has an ordinary double point at the image pdtndf Py, ..., Pganditis
smooth elsewhere. Hendckeis the canonical model of a numerical Campedelli surface. Let
S’ be the minimal resolution of, let Z be the exceptional curve and tetbe the involution
of §” induced bya. Sincea acts on the tangent spaceltat P; as multiplication by—1, the
fixed locus ofs’ on S’ consists of the curv& and of 4 isolated fixed points. Hence we have
K%, = 0by Lemma4.1 andV is minimal and properly elliptic by Proposition 4.3. Applying
the argument used in [Bal], one can show that the fundamental graUgoZ».

Since the elements df with A = v = 1 act on the family of surfaces passing through
P4, the family of Campedelli surfaces with one node that we have constructed has at most 3
moduli.

We are now going to degenerate the construction further, leftingquire two double
points, and thus obtain an example WRT%, = -1.SetQ1 :=(1,2,-1,0,4, -2, —4) and
02 :=1*01 = (1, -2, —1,0, 4, 2, —4) and denote by)s, ..., Qg the remaining points in
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the orbit of 01 under the action of. The surface§ throughPs, ..., PsandQ1, ..., Qg are
defined by the following four quadrics:

Fo := b(x1x7 + x3x5) + axz — 2bxoxg,
2 O 15

Iy :=cx] — Zcx3x7 + exaxe + Zcx5 ,
Fy := 5(x5 4 xZ) + 8x1x3 + 2x5x7,

2 5 1 2
Fg := cx3 — Zcx1X5 + exqx2 + Zcx? .

By Remark 5.3 every surface as above is singulahat . ., Pg, Q1, ..., Og. Let now
Yo be the surface corresponding to the following choice of parameters:

a=-1, b=1, c=4, e=-1.

Also in this case, we have used the computer program Singular to checKottnets the
following properties:

e the automorphism acts freely onvp;

e Yy intersects th@? fixed bya at 8 points;

e Y intersects th®? fixed bya at 01, 0o, P1, P5;

e the scheme of singular points 8§ has dimension 0 and degree 16, and thgbas a
node atPy, ..., Pg, O1, ..., Qg and is smooth elsewhere.

Since these properties are open, they hold for the gefiigpaksing throughf; and Q1. The
guotient surfaceS := Y /Zg has two nodes which are fixed layand K5 is ample. LetS’ be
the minimal desingularization df, let Z; andZ» be the exceptional curves shand leto be
the involution ofS induced bya. The fixed locus o6 on S consists of 4 isolated points and
of the curvesZ1 andZ (cf. Remark 5.3). Hence we ha\lﬁ, = —1 and this is an example
of Case (iii) of Proposition 4.3.

As in the case of one node, one can use the same argument as in [Bal] to show that
71(W) = Zp. HenceW is not rational and, by Proposition 4.3, it is birational either to
an Enriques surface or to a properly elliptic surface. We are going to see that W fesct
birational to an Enriques surface.

The intersection of with the hypersurfacef = Ois a bicanonical curve which descends
to a bicanonical curve@ c S passing through the nodes &f Pulling back taS’, we obtain
a bicanonical curve@ = 271 + 272 + 2G’, whereG’ is effective.

By the adjunction formula, there is an effective divigoion W such thatG ~nym Kw
and such that the pull back @ to S" is G'. Lett: W — W be the morphism onto the
minimal model and le be the exceptional curve of We haveGE = KwE = —1, hence
G = E + Go, whereGg > 0 andGo ~num t*Ky,. Assume thatv is properly elliptic and
denote byF a general fibre of the elliptic fibration 7. Then there isx € Q, « > 0, such
thatGo ~numa F. Fori = 1, 2 letI'; be the image of; in W. The curved andl» are—4-
curves, and hence we haveAKy (I'm+ 1) = E(I1+12)+ Go(I'1+ I2). By construction,
the curveRy does not meet the nodal curw¥s, . .., N4 of W contained in the branch divisor
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Bg of the double coveV — W. HenceEBg = E(I'1 + I») andGoBo = E(I1L + I») are
both even. Moreover, we havéBy > 0, since otherwiseZ would pull back onS$’ to the
disjoint union of two—1-curves, contradicting the minimality of, andGoBo > 0, since
otherwise| F| would pull back onS’ to a pencil of elliptic curves, contradicting the fact that
S is of general type. Hence we halisBy = GoBo = 2 and the pull back of on S’ is either

a —2-curve or the union of twe-2-curves meeting in a point. This is not possible, sidge
andZ, are the only—2-curves ofS’ by construction. Hence we have reached a contradiction
and the only possibility is tha¥ is birational to an Enriques surface.
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