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1. Introduction. In this note we set
Sy(t) = 21:‘, @, cos 27, (t + a,) and Ay = <2”1 ZT‘, af,,)llz ,
where @, = 0 and {»n,} is a sequence of positive integers satisfying the
gap condition
1.1) Romsr/Tow =1 + em™, for some ¢ >0 and 0 S <1/2.
For @« = 0, M. Weiss [5] proved that if
Ay— 4+ and ay = 0o(Ay(loglog 4,)”?), as N— + o ,
then for any sequence of {a,}
@(2A?V' log log A,)™2S,(t) =1, a.e..

For « > 0, we proved the following
THEOREM A [4]. If
Ay— + and ay = O(AyN *(log Ay) **97), a8 N— + oo ,
where € 18 a positive number, then we have
l_iNﬁ(2Af,, loglog A,)™2Sy(t) <1, a.e..
The purpose of the present note is to prove the
THEOREM B. Suppose
1.2) Ay — +o0 and ay = O(AyN*w3"), as N— +o ,
where 0y = (log N)? (log Ay) + (log Ay)® and B > 1/2, then we have
@n—(ZAﬁv log log A,)™2Sy(t) =1, a.e..

If « <1/2 and {a,} is non-increasing, then by Theorem A and B we
obtain
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lim (242 log log A,)"2Sy(t) =1, a.e..
N

In §§2-5 we prove Theorem B. The method of the proof is to ap-
proximate Sy(f) by the sums of a “almost strongly multiplicative” system
and apply the method of P. Révész [2].

2. Preliminaries. Let us put, for £k =0, 1, 2---,
p(k) = max{m; n, < 2"},
4(t) = Spiesn(®) — Sp(t) and B, = Apgs -
If p(k) + 1 < p(k + 1), (1.1) implies that
p(k+1)—1

2> nmk+1)/np(k)+1 > 11 (1 + cm‘“)

m=p(k)+1
>1+cefpk+ 1) — pk) —1}p~(k+ 1),
and hence
[Ptk + 1) — p(k) = O(p(k)) ,
(p(k + 1)/p(k) — 1, as k— +oo .
Therefore, we have, by (1.2) and (2.1),

b, = max (| x|, p(k) < m < 906 + 1} = O(Buiep=())
2.2 plk+1)
@2) ) < ok + 1) — D)} = OBuwsh) s s k— +oo .

p(k)+1

@.1)

LEMMA 1. For any given k,j,q and h satisfying p(j) + 1 < h =
(7 +1) < pk) + 1< q = ok + 1), the number of solutions (n,, n,) of the
equations

Ng — Ny = Ny, = 0¥

where p(j) <1 < h and pk) <r <q, is at most C2 *p*(k) where C 1is
a positive constant independent of k, j, ¢ and h.

Proor. If k< j+ 8, the lemma is evident by (2.1). We assume
that k= 7 + 3. If we denote m the smallest number r of the solutions
(n,, »;), then the number of solutions is not greater than ¢ — m. Since
(n, = n,) < 27*%, we have

Nom = Mg — 2572 > m(1 — 27727F) = q (1 + 277%.5)71
Therefore, we have, by (1.1)

1+ 2755 > ngfn, > {1 (L + 657 = 1+ (g — m)p~(k + 1) .

*  Clearly, n¢ + ny = mp £+ n; has no solutions.
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Thus, by (2.1) we can prove the lemma.
In the same way we can prove the following

LEMMA 1. For any given k, j, @ and h such that j<k—2, p(7 +1) <
h =2 +2) and p(k+ 1) < q¢ < p(k + 2), the number of solutions (n,, n;)
of the equations

Ng — Ny = Ny, £ Ny

where p(J) < 1 < p(4 + 1) and pk) < r < p(k + 1), is at most C2*p=(k),
where C is a positive constant independent of k, 7, ¢ and h.

LEMMA 2. We have, for any M and N (M < N),
(i)

. | N
(ll) ilB&‘z%‘AmAm—l

N
Bt 35 (4 — 1 4a11)

= O((log By)™) ,

[ — O((log By)™) ,® as N— +co .
|
Proor. (i) Let us put, for k=1,2.-.
p(k+1
Ult) = £4(t) — || 4 |IP — 2 ‘ki 'at, cos 4nn(t + ) .
plk)+1

Then we have, by (2.2),
| Ui ll. = O(Bi(log By)™),

ot :

v 2L (4 — (1 4a11)

M

k—1

=287 3, 3 | Uo)Usdt + O(log B)™) ,

k=M+1 j=M Jo

as N— 4o .
Further, by Lemma 1 and (2.2), we have, for &k > j

1 . pk+1) pE+1)
[ .0t = comp) 'S lailb 'Sl
0 q=p(k)+1 h=p(5)+1

= 07" || 4, || | 4; ||p*"(k)p~*"*(3) Bi(log By)™) ,
as N— 4+ .

Since p(j + 1)/p(j) —1, as j— +oo, we have, for every k,
kﬁ‘: 21 kp=%(5) £ C'p~*(k) , for some C'>0.
i=t

Hence, we have

% || f]] denotes L%norm unless otherwise stated.



394 S. TAKAHASHI

k—1

N . .
> 227 4| 45 ]| p(R)p~*"*(7)

k=XN+1 ;=M

N k=1 ' 1/2
<0 3 14l (2 1401

=M+1

W 12/ N k=1 ' 1/2
=c( 2 14 (S St = oE,
k=M+1 k=M+1 j=1
as N— 4o,
Therefore, by the above relations we can prove (i).
(ii) Using Lemma 1’ we can prove (ii) in the same way.

LEMMA 8. If M < N and Ay = o((log Ay)*"'*), as N— + o, then
. 1 NZ N
(1) [exp{23(an —yanim}ar =1+ o),
0 B} &
.. 1 NZ N
(i) ‘ exp {_N_ZAMA,,H}dt —1+0l), as Ne— +oo.
Jo B} “n

Proor. (i) From (1.1), the frequencies of terms of 42 — || 4,|
are in the interval [2™c¢p~*(m + 1), 2™"*]. Since »(j + 1)/p(j)—1, as
j— +oo, we may assume that

(2.3) 2mep~*(m + 1)+, as m] +oo.
We set m(0) = M and if m(j) is defined, then we put
(2.4) m(7 + 1) = min {m + m(j); c2™?*™p~*(m(5) + m + 1) > 2»9*%} |

By (2.1) we can define m(j) for every j and if m(j") = N < m(j" + 1),
then we put

m(j+1)

SO~ 4alpy, i 055<
T,(t) = » 4 . . '
%){A;(t) - || Am“2} ’ if J = :)' .

From (2.2) it is seen that

j+1)—1
| T;lle <2max]| Am”gﬂ—l)lzﬁmui [ 4, [|28+0 28
™ m(3)

= O(Bi(log By)* ™ 5, (log plm + 1))+,
m(g)
as N— 4.
If1=<m<m@ + 1) — m(5), we have, by (2.4)
p*(m(3) + m + 1) = C'2™** , for some C’' > 0.

Hence we have, for some constants 4 and A4,
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i~ (log p(m + 1))—(2,§+1)I2 < A Z m—(25+1)/2 A'
m(g)
and we obtain
(2.5) ey =max (|| Tille; 0 = J < ') = O(Bi(log By)“—0i2)
as N— +o .
Therefore,
m(j+1)—1 . . m(j+1)
T; < eyl T;| <én MZ(;,) (4 = | 4n ) + 2ex M(Zj.) [| 4| .

Using the inequality e* < (1 + x)e*” for | x| < 1/2, we have, by (2.5)

exp {z_iz )< {fi(1+ 2;12:: 1)} exp {2 £ 1
i B e B S ]
This shows that, as N— +oo .
|, exp {3(1 - Z) S5 1 }as
= {001 (1 + 2 ) "arfer
e B o+ Bl
a5 N ton,

where I, (or II.) denotes the product over all j satisfying 0 < 25 < 5’
(or 0 <25 +1=<j). From the definitions of {T;} and (2.3), the frequencies
of T,;(t) are not less than ¢2™*"p~*(m(25) + 1) and

{frequenmes of terms of H( i;“ y T2,,>} < 2mei-ute

therefore we have, by (2.4)

SH (1 n %V%V—Tz,-)dt — 1 and SO L. (1

2
+ %;“ZN sz)dt ~1.
N

Hence, we have

Sexp{;;"(l 2%"3“”)2T}dt—1+0(1),*’ as N— 4o .

1 s
*) By Jenssen’s inequality we have Soexp (4B X Tidt = 1.
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Since ey\4B3* = o(1), as N— + , the above relation proves (i). Using
the same method and (i) we can prove (ii).

3. Almost Multiplicatively Orthogonal Summands. Putting ¢(k) =
S (loglog B, + 1), we take a sequence {q(k)} of integers satisfying

9(0) = 0 and || 4o || = min {|[[ 4, [|; g2k — 1) < m = ¢(2k)} .

Set
qk)—2 k
QO = "3 2.0 and D=3
then
N
3.1 H Z Aq(k)—ll =0(Dy), Dy~ Byw-z, 88 N— +oo
and

(3.2) z?; )2|| 4, || = O(Dy(log D,)~*log log By,
= O(D,(log D,) %loglog D,), as k— + o,
since q(k) — 2= ¢(2k — 1) > 2k — 1 and B,/B,,,— 1, as k— + o,
LEMMA 4. If M < N, then

N
D7 S @ —11Qu )
ProoF. Let us put

Am(t)’ lfq(k_l)éméq(k)——z’ k;lyzy"'v
0, if otherwise ,

| — O((log D,)™), as N— +oo.

(3.3) () = {

and

4, if qk—1)+2<m<qk)—2, k=1,2 -,
(3.4) T;(z:):{j:q%-n’ it gk —1)+2=m <qk)

0, if otherwise .

Then we have

N . . g(N)—2 ' q(N)—2 , , q(N)—2 ,2 ' e
@ —11QlP) =2 > dudny +2 3 4Tn+ X (dn— |40l .
M q(M—1) g(M—1) q(M—1)
By Lemma 2, it is sufficient to show that
| S5 el = O(log DY) ), as N— +oo .
q(M~—1)

Since S L TLATIdt = 0 if |m — n| = 2, we have, by (3.2)
0
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q(N)—2 , , 2 q(N)—2 (1 ' )2
>4 s2' 3| arrae
q(M—1) q(m—1) JO

= O(Di(log DN)‘“’(log log Dy)*D%) = o(D4(log D)™™y,
as N-— 4 oo,

LEMMA 5. If Ay = o((log Dy)*“*»), as N — + oo, then we have
1 2 N
[lexp{2h 5 (@s — 1QuIn}dt =1+ o)), as N— 4o
0 D} ‘w

Proor. We use the same notation as in the proof of Lemma 4.
Therefore, by Lemma 3 and Jenssen’s inequality it is sufficient to show
that

1 )\12 q(N)—2
(3.5) Sexp{ yos A;T,ﬁ,}dt=1+o(1), as N— 4o,
[

D} qr=)

By (3.2) and (3.4), we have

exp{z;f ZAZ..T,L} =< {H (1 + 25;: A;T,;)}lfzexp{%z A;:T,;f}

- {H (1 T _z_hﬁzlfvg_ﬂ;)}llzexp {o(D* > 47)}, as N— +oo .

Hence, for the proof of (3.5) it is enough to show that

t 2\ 45 Tom S‘ 2Ny iy Tomir\ 75
(3.6) SOH* (1 Bt )dt L. (1 + el )dt =1.

Further, both of the sequences {4..T:.} and {4;,..T:...} are multiplica-

tively orthogonal, we can prove (3.6).
We take a constant 6 > 1 which will be determined more precisely

in §5 and put
k+1
N(O) =1, N(k)=min{m;D%> 6%, X,)= Z:%Qm(t) ,
Vi = || Xi|l and 7, = max (|| @n|l- Vi", N(k) <m = N(k + 1)) .
Then by (3.1) and (3.2), we have
D]%{(k) ~ 02]: R V,f ~ 02k+2 — 62]:
7]/6 = ()(Ii;._8 ].Og k) 9 as k-—) +oo .
LEMMA 6. We have
— k
(i)  Tm(@Diwloglog Dyu) " S QS 1, ae.,

(3.7)

R N(k)
(i)  m (2D log log D)™ 3 dum-(H) =0, . .
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PROOF. Cf. [4] p. 326 (i) and (ii).

Hence for the proof of our theorem it is sufficient to show that
k
(3.8) (20**log k)™ >, X, (t) =1, a.e..

4. Characteristic Functions. In the following let f, .(u, v) denote
the characteristic function of the random vector (X, V7!, X, Vi), that
is,

Foiw, v) = S:exp (X, () V' + inXy(8) Vit)de

LEMMA 7. Let ¢ be a positive number satisfying

(4.1) e<1/T and 2s+i<1.

Then for any (k, 1) and (u, v) such that
(4.2) Elvreo <1<k and max(Jul|,|v]) <k,
iof k> k,, then we have
| fri(u, v) — exp {—(u* + v*)/2}|
SCE S |ulloghk + 1 8|vfflogk + k" |ul+ 1|0,
where C is a positive constant.

ProorF. We have

uzPé(t)z— v'Pi(t) H

IA

‘exp {W“X" + WX’} — P,(u, t)Py(v, t) exp{ —
l 'LuX £) — P, exp <_l;2Pk)

2P'
+ \exp”‘?’) — P, ex]@)(——v2 ‘)' ,

l

where Py(u, t) = TIa%t + {1 +1uQn(¢)/ Vil and  Pit) = Vi* S @u(d).
Since (3.7) and (4.2) imply that un, = o(1) and vy, = o(1), as k— + o,
we have, for k > k,,

exp (1uX, Vi') = Py(u, t) exp {—u’27'Pi(t) + Ri(u, t)}
where

N(k+1)
| Bu(w, )] =l 3 1Qu V' =7 [ul Pilt) .

By Lemma 4 and 5, we have
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[, lexp GuX, V') — Pu(u, 0) exp (—w2 Pi(o)} | de
0

= lexp (Rutw, 1) — 11t < | Ru(w, 0)] exp (| Rulw, ¢) ot

< 7. |ult |, Pitt) exp o, | u | Pit)at
< e |w || Pell exp {ne | w [HL + o(1))
<Cplul, for some constant C >0,

and the same inequality holds for I.

On the other hand since {Q.(f)} is multiplicatively orthogonal, it is
seen that

gl Py(u, )Pv, t)dt = 1,
0
and we have, by Lemma 4 and 5,

’ g P,(u, t)P(v, t) exp {_“213 () - v Py(t) e

— ' S: Pk(u, t)Pl(’U’ t) [exp { —uzPI:(t)z— va;(t)} — e—(u2+02)/2]dt‘

IA

g‘ [1 — exp {2-u¥(P — 1) + 2P} — 1)} | d¢
0

= | JwPi = 1) + (P - D)

X [exp {27'u*(Py — 1) + 27 P} — 1)} + 1]dt
s || Pe — 1] +v*|| i — 1]}
X {|lexp {27 (P; — 1) + 270 P] — 1)} || + 1}
< Cwk™ + 2177
X {|l exp (27'u*(Pr — 1) ||, || exp 27 (P; — 1) |, + 1}
S Cwk™ 4+ ¥4177), for some C > 0.
LEMMA 8. [3] Let F(x,y) and G(x,y) be two dimensional distri-

bution fumctions. Denote the corresponding characteristic functions by

f(u, v) and g(u, v). Suppose that G(z, y) has a bounded density function.
Further set

fu, v) = f(u, v) — f(w, 0)£(0, v)
and

g(u, v) = g(u, v) — 9(u, 0)g(0, v) .
Then
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sup | F(z, ¥) — Gz, )|
= C<S:S: fw, ’v);v@(u, v) }dudv + S:

n S: £(0, v) — 9(0, v) Id” + %)

v
for any T > 0, where C is a positive constant.

w

Making use of Lemmas 7 and 8 we can prove the

LEMMA 9. Let F,,(x,y) denote the distribution function of the
vector (X, () Vit Xi(()Vi'). Then we have

sup | F(x, y) — (272:)"1Sac S” exp {—(2* + 2"")/2}dzdz’
< C(log k)*k®1®
for kMo < | < k, where ¢ satisfies (4.1) and C is a constant.

PROOF. Set f(u, v) = fi..(u, v) and g(u, v) = e~ *****2, Then §(u, v) =0
and by Lemma 4,

o, = [ o 250} _ s 0 exs {2500} -,

< |uv| Vi Vi S:[S:le(t) — X dt’:“: | X.() — X&) | dt’]dt
<4|uv|.

‘In Lemma 8 we put T = k*. Then we have

([ T\f(u D = 506 9| gy
Flu, v)

uv
- S L(k) uv

where A(k) = {(u, v); k™ <|u| =¥, k* <|v| = ¥} and B(k) = {(x, v); |u| =
K, |v| =k} — A(k). By Lemma 7, we have

ol
.o

In the same way we can obtain

dudv + SS i(l";—”)ldudv,

B(k)

f(u’ 2 \ dudv < Ck'(log k)1™*

f(u v)ldudv<8k 2
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T
I,
T
I,

Thus, we can complete the proof.

Sf(u, 0) — g(u, 0) (du < Cklogk
u

and

f(0, v) — 9(0, v) ldv < CkI*log k .
v

5. Proof of (3.8). The following lemma is an extension of the Borel-
Cantelli lemma.

LEMMA 10. [1] If {E.} is a sequence of arbitrary events, fulfilling
the conditions

>V P(E,) = + and lim

n

53 P@EE) S PE) =1,

them we have P{E, t.0.} = 1.

LEMMA 11. Let € be a positive number satisfying the condition (4.1).
Then we have

[{t; Xu(t) = {2 — €) log K}V, 1.0} [ =1.
ProOF. Let us put C, = [t; X, (t) = {(2 — ¢) log r}'*V,] and

(5'1) ’728/7’ U =V (2'—6,)10g7'r y,.=u,-/2,
where ¢’ is a positive number satisfying
(5.2) e<e <21+ A+ 7Y,

Further, let 3, 3. and 3; denote the summation over the (k, [)-sets
Lk=sn, Y <I<k), Isksn, 151<n"} and <k <,
n* < 1 < EY**71} respectively. On the other hand by Lemma 9, we have

(5.3) P(C,) = (27:)-1/25
~ (27r)—1/2k—1+e/2((2 _ 6) log k)—l/z ) as k— +oo .

e~ *dz + O(k*(log k)?)

v{2—e)logk

Therefore, we have

n n 2
(54  SLP(C.C)S w3 P(C) = o{(kg P(C,,)) } , as m— + oo .
By Lemma 9 we have, for k0o < gVotn <1 < [k,

| P(C.C)) — P(C)P(C)| = o(P(CP(C)) , as k— +oo
and by (5.3), it is seen that

* P denotes the Lebesgue measure on [0, 1].



402 S. TAKAHASHI

65 {3 PCI} ~25 PCIP(C) ~ 25, P(C.C), asn— + <.

Using the inequality e < (1 + x) exp{27'(x* + |« [*)} for |2| < 1/3 and the
multiplicative orthogonality of {Q.(¢)}, we have

! w Xy uiPi(?) wX, _ uiPi(t)
Soexp{ v, > @+ upm) + v 2 a+ W}z)}dt

1 N(k+1) N(l+1)
= S II O+ w@.Ve) II 1+ %wQVi)dt=1.

0 m=NUk)+1 s=N(D)+1
By Tschebyschev’s inequality, it is seen that
PX, V' = 27P,() + w.)u, = ¥, v =k, 1}
< exp (— YUy, — Vi) -
Putting Ay = 7* in Lemma 5, it is seen that
P{P(t)>1+ r'} < Ce", for some constant C > 0.

Since (5.1), (5.2) and (3.7) imply that C,c{X, V' >y, +27' A+ YA +u,9,)u,}
for r > r,, we have, for n >n, and &t > 1= n**

P(C,C)) < P[C,C, and L}!l{Pﬁ(t) >1+ r}]
+ P{X, V7' >y, + 2P (YA + . )u,, PO) 1+, r=kF,1}

< 2Cexp(—n*) + exp{—(1 — &'/2) logk — (1 — €'/2) log I}
< Ckrerpter - for some CP > 0.

Therefore, by (5.2) and (5.3)
(5.6) S P(C,.C)) = O(nt+u+tnT2)

- o{(éP(CD)zl» , as m— +oo .

By (5.4), (5.5) and (5.6) we can prove the lemma.

Since ¢ in Lemma 11 is small as we please, we have

(5.1) @ @2Vilog k)2 X,(t) =1 a.e..
Let 6,0 <6 <1/2, be an arbitrary number. Then by (3.7) we can
take the constant & which is used to define {N(k)} in §4 so large that
D?V(k) é 52D12V(k+1) ’

then
Vi = Diwy — Dy = (1 — 0°)Djusny = (1 — 0)67*
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By Lemma 5 and (5.1), we have
likE(Zva(,,H) log log Dy ry) ™2 i Xn(t)
> Tim (204 log k)™ z"', X.(£)

> Tim (264 log k)™ X,(t) — Tim (26°*" log k)RSt X (8)
=2(1—-0)—0=1—20. a.e..

Since 6 is arbitrary we can prove (3.8).
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