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Abstract. Kobayashi-Ochiai’s theorem states that the set of dominant rational maps
from a complex variety to a complex variety of general type is finite. Kazuya Kato conjectured
a similar result in the category of log schemes. Our main theorem of this paper is a solution to
his conjecture.

Introduction. In the paper [6], Kobayashi and Ochiai proved that the set of dominant
rational maps from a complex variety to a complex variety of general type is finite. This result
was generalized to the case over a field of positive characteristic by Dechamps and Menegaux
[2]. Furthermore, Tsushima [13] established finiteness for open varieties over a field of char-
acteristic zero. With these foregoing results, Kazuya Kato conjectured a similar result in the
category of log schemes. As we know, logarithmic geometry is a general framework to cover
compactification and singularities in degeneration. The most typical example of these mixed
phenomena is a logarithmic structure on a semistable variety (cf. Conventions and termi-
nology 9 below). Actually, we deal with a log rational map on a semistable variety with a
logarithmic structure. The following finiteness theorem is our solution to Kato’s conjecture:

THEOREM A (Finiteness theorem). Let k be an algebraically closed field and My a
fine log structure on Spec(k). Let X and Y be proper semistable varieties over k, endowed
with fine log structures Mx and My over M, respectively, such that

(X, Mx) — (Spec(k), M) and (Y, My) — (Spec(k), My)

are log smooth and integral. We assume that (Y, My) is of log general type over (Spec(k),
My), that is, det(.Q},/k(log(My/Mk))) is a big line bundle on Y (see Conventions and termi-
nology 10 below). Then the set of all log rational maps

(¢, h) - (X, Mx) --» (Y, My)

over (Spec(k), My) with the following properties (1) and (2) is finite:

(1) ¢ : X --»Y isarational map defined over a dense open set U with codim(X\U) >
2,and (¢, h) : (U, Mx|y) — (Y, My) is a log morphism over (Spec(k), My).

(2) For any irreducible component X' of X, there is an irreducible component Y' of
Y such that $(X') C Y’ and the induced rational map ¢’ : X' --+ Y’ is dominant and
separable.
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As an immediate consequence of the above theorem, we have the following corollary.

COROLLARY B. Let X be a proper semistable variety over k, endowed with a fine log
structure My over My, such that (X, Mx) — (Spec(k), My) is log smooth and integral. If
(X, Mx) is of log general type over (Spec(k), My), then the set of automorphisms of (X, M)
over (Spec(k), My) is finite.

Let us explain how we can obtain the main results of [2] and [13] from Theorem A.
Let (X, Mx) — (Spec(k), My) and (Y, My) — (Spec(k), M) be log smooth and integral
morphisms to a fine log scheme (Speck, My). Assume that X and Y are proper semistable
varieties and (Y, My) is of log general type over (Spec(k), M). If we suppose further that
My, My and M are trivial log structures, then Theorem A is nothing but [2, Theorém 2]. In
virtue of Hironaka’s resolution of singularities ([3]) and Nagata’s compactification theorem
([9)), the result [13, Theorem] follows from Theorem A in the case when X and Y are smooth
over the field k of characteristic zero, Mx (resp. My) is a fine log structure arising from a
normal crossing divisor Dy C X (resp. Dy C Y) and M is a trivial log structure. The main
advance of Theorem A relative to [2] and [13] is that we can allow X and Y to have a cer-
tain kind of singularities. Since our work is partly motivated by logarithmic compactification
problems for moduli spaces, a semistable variety X endowed with a smooth log structure My
is a quite natural object to study. Roughly speaking, our proof of Theorem A except analyses
of log structures is technically a modification of the algebraic proof in [2] (see also [13, page
96-98]). Since (X, M) and (Y, My) behave as if they are smooth objects in the category of
log schemes (for example, their log differential sheave are locally free), the argument in [2]
works in our situation. Let us give a sketch of the proof of Theorem A. For this purpose, we
need to consider the following two problems:

(i) The finiteness of the underlying rational maps.

(ii)) How many do log morphisms exist for a fixed underlying rational map?
As mentioned above, the first problem is closely related to the classical case, that is, the case
where My = k*, and X and Y are smooth over k. In this case, we can use similar arguments
asin [2]. Actually, we prove it under weaker conditions (cf. Theorem 7.1). In this sense, from
the viewpoint of logarithmic geometry, the second problem is crucial for our consideration.
The following rigidity theorem of log morphisms over a fixed scheme morphism, which is
one of the main results of this paper, is our answer to the second problem.

THEOREM C (Rigidity theorem). Let X and Y be semistable varieties over k, en-
dowed with fine log structures Mx and My over My, respectively, such that (X, Mx) and
(Y, My) are log smooth and integral over (Spec(k), My). Let Supp(My /My) be the union of
Sing(Y) and the boundaries of the log structure of My over My, that is,

Supp(My/My) ={y € Y | My x O;y — My,5 is not surjective} .

Let ¢ : X — Y be a morphism over k such that ¢(X") € Supp(My /My) for any irreducible
component X' of X. If (¢, h) : (X, Mx) — (Y, My) and (¢, h’) : (X, Mx) — (Y, My) are
morphisms of log schemes over (Spec(k), My), then h = I'.
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For the proof of the rigidity theorem, we have to determine a local description of a log
structure. Indeed, we have the following theorem, which is a generalization of results in [4,
Theorem 1.3 and (1.8)] and [12, Theorem 2.7].

THEOREM D (Local structure theorem). Let X be a semistable variety over k, which
is endowed with a fine log structure Mx of X over My such that (X, Mx) — (Spec(k), My)
is log smooth and integral. Let us take a fine sharp monoid Q with My = Q x k*. For a
closed point x € X, there is a good chart (Q — My, P - Mx :, O — P)of (X, Mx) —
(Spec(k), My) at x, namely,

(a QO — My/k* and P — MXJ?/O;,)E are bijective,

(b) the diagram

QO — P

L

My — Mx;

is commutative,
(©) k ®io) k[P] — Ox z is smooth.
Moreover, using the good chart (Q — My, P — Mx 3, O — P), we can determine the
local structure in the following manner:
(1) If the multiplicity of X at x is equal to 1, then Q — P splitsand P >~ Q x N' for
some r.
(2) If the multiplicity of X at x is equal to 2, then we have one of the following:
(2.1) If Q — P does not split, then P is of semistable type over Q.
(2.2) If Q — P splits, then char(k) # 2 and there is a submonoid N of P such that
P >~ Q x N and N is isomorphic to the momoid arising from the monomials
of kIT1, Ta, ..., T,1/(T} — T}) for some a > 2.
(3) If the multiplicity of X at x is greater than or equal to 3, then Q — P does not
split and P is of semistable type over Q.
For the definition of a monoid of semistable type, see §2.

To verify the existence of the good charts above, we use a general result of good charts
due to Ogus (cf. [10, Theorem 2.13]). It is however currently difficult to obtain the preprint
[10]. By this reason, we show the well-known result of good charts for the benefit of readers
in Appendix.

Acknowledgement. 'We would like to express our sincere thanks to Professor Kazuya
Kato for informing us of the fantastic finiteness problem. We also want to thank the referee
for his careful reading and helpful suggestions.

CONVENTION AND TERMINOLOGY. Here we fix some of our convention and termi-
nology in this paper.

1. Throughout this paper, we work within the logarithmic structures in the sense of
J.-M Fontaine, L. Illusie and K. Kato. For the details, we refer to [5]. All log structures on
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schemes are considered with respect to the étale topology. We often denote the log structure
on a scheme X by Mx and the quotient Mx /O by My.

2. Wedenote by N the set of natural integers. Note that0 € N. For I = (ay,...,a,) €
N", we define Supp(/) and deg(/) to be

n
Supp(l) = {i |a; > 0} and deg(l) = Za;.
i=1

The i-th entry of [ is denoted by I (i), i.e., (i) = a;. For I, J € N", a partial order I > J
is defined by I(i) > J(i) for all i = 1,...,n. The non-negative integer g with gZ =
ZI(1)+---+ ZI(n) is denoted by gcd(7).

3. Here let us briefly recall some generalities on monoids. All monoids in this paper
are commutative with the unit element. The binary operation of a monoid is often written
additively. We say a monoid P is finitely generated if there are pi, ..., p, € P such that
P = Npj1 +---+ Np,. Moreover, P is said to be integral if whenever x + z = y + z for
elements x, y, z € P, we have x = y. An integral and finitely generated monoid is said to be
fine. We say P is sharp if whenever x +y = O for x, y € P, then x = y = 0. For a sharp
monoid P, an element x of P is said to be irreducible if whenever x = y+zfory, z € P, then
either y = 0 or z = 0. It is well known that if P is fine and sharp, then there are only finitely
many irreducible elements and P is generated by irreducible elements (cf. [11, Lemma 3.9]).
If k is a field and P is a sharp monoid, then Mp = P xeP\(0} k - x forms the maximal ideal
of k[ P]. This Mp is called the origin of k[ P]. An integral monoid P is said to be saturated if
nx € P forx € P8 andn > 0, then x € P, where PP is the Grothendieck group associated
with P. A homomorphism f : Q@ — P of monoids is said to be integral if f is injective and
an equation f(q) + p = f(¢") + p' (p, p' € P, q,q" € Q) implies that p = f(q1) + p” and
p' = f(q2) + p’ for some p” € P and some q1, g2 € Q with ¢ + g1 = ¢’ + g2. Moreover,
we say an injective homomorphism f : Q — P splits if there is a submonoid N of P with
P = f(Q) x N. Finally, let us recall a congruence relation. A congruence relation on a
monoid P is a subset S C P x P which is both a submonoid and a set-theoretic equivalence
relation. We say that a subset T C S generates the congruence relation S if § is the smallest
congruence relation on P containing 7. Let S be an equivalence relation on P. It is easy to
see that P — P/S gives rise a structure of a monoid on P/S if and only if S is a congruence
relation.

4. Let P and Q be integral monoids and let f : N — P and g : N — QO be homo-
morphisms with p = f(1) and ¢ = g(1). Let P xxn Q be the pushout of f : N — P and
g : N — Q in the category of integral monoids:

N — 0

l l

P — PxnyOQ.
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Namely, P xy Q = P x Q/~, where

(P.q)~ (P q) = (p.q)+ (f(x), 9(») = (p'.¢") + (f(y), g(x)) forsome x,y € N.

We denote this pushout P xny Q by P X 4) O.

5. Let k be a field and let R be either the ring of polynomials of n-variables over
k, or the ring of formal power series of n-variables over k, that is, R = k[X1,..., X,] or
k[ X1,..., X,1. For I € N", we denote the monomial X{(l) S Xﬁ(”) by x!.

6. Let P be a monoid, pi,..., p, € P and I € N". For simplicity, Z?:l 1(i)p; is
often denoted by I - p.

7. Let (X, Mx) be a log scheme and @ : My — Oy the structure homomorphism.
Then, a(My) \ {zero divisors of Oy} gives rise to a log structure because

Oy € a(Mx) \ {zero divisors of Ox} .

a(Mx) \ {zero divisors of Oy} is called the underlying log structure of Mx and is denoted
by M. Let f : (X, Mx) — (Y, My) be a morphism of log schemes such that one of the
following conditions is satisfied:

(1) X — Y isflat.

(2) X and Y are integral schemes and X — Y is a dominant morphism.

Then we have the induced morphism f* : (X, My) — (Y, My).

8. Let X and Y be reduced noetherian schemes. Let ¢ : X --» Y be a rational map.
We say ¢ is dominant (resp. separably dominant) if for any irreducible component X’ of X,
there is an irreducible component ¥’ of Y such that ¢ (X’) C Y’ and the induced rational map
¢’ : X’ --» Y’ is dominant (resp. dominant and separable). Moreover, we say ¢ is defined
in codimension one if there is a dense open set U of X such that ¢ is defined over U and
codim(X \ U) > 2.

Let f : X — T and g : Y — T be morphisms of reduced noetherian schemes. A
rational map ¢ : X --» Y is called a relative rational map if there is a dense open set U
of X such that ¢ is defined on U, ¢ : U — Y is a morphism over T (i.e., f = ¢ - ¢) and
X:NU #Wforallt eT.

9. Let k be an algebraically closed field and X a reduced algebraic scheme over k
(i.e., reduced algebraic scheme of finite type over k). We say X is a semistable variety if
for any closed point x € X, the completion @X,x at x is isomorphic to a ring of the type
KIIX1, ..., XD/ (X -+ - X)),

10. Let k be an algebraically closed field. Let X be a proper reduced algebraic scheme
over k and H a line bundle on X. We say H is very big if there is a dense open set U
of X such that HO(X, H) ® Ox — H is surjective on U and the induced rational map
X --» P(H(X, H)) is birational to the image. Moreover, H is said to be big if H®" is very
big for some positive integer m.

1. Existence of a good chart on a polysemistable variety. Let k be an algebraically
closed field and X an algebraic scheme over k. We say X is a polysemistable variety if, for
any closed point x of X, the completion Oy , of Oy , is isomorphic to a ring of the following
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type:
KITi, ..., T.O/(TA, ..., TA),

where Ay, ..., A; are elements of N¢ \ {0} such that A;(j) is either 0 or 1 for all i, j (cf.
Convention and terminology 2 and 5). Note that a polysemistable variety is a reduced scheme
(cf. Lemma 1.5).

Let My and My be fine log structures on Spec(k) and X, respectively. We assume that
(X, Mx) is log smooth and integral over (Spec(k), My). Since the map x — x" on k is
surjective for any positive integer n, the projection My — My splits (for the definition of M
of a log structure M, see Convention and terminology 1). Thus, there is a fine sharp monoid
Q together with a chart mp : Q — M such that Q — My — My is bijective.

Next, let us choose a closed point x of X. In the case where X is a polysemistable
variety, we would like to construct a chart wp : P — My ; together with a homomorphism
f QO — Psuchthat P - Mx; — MX,; is bijective, the natural morphism X —
Spec(k) xko) Spec(k[ P]) is smooth and the following diagram is commutative:

o L. p

an lﬂp

My — Mx ;.

Then, the triple (0 — My, P — Mx, Q — P) is called a good chart of (X, Mx) —
(Spec(k), My) at x. For this purpose, we need to see the following theorem.

THEOREM 1.1. Let u: (X, Mx) — (Y, My) be a log smooth and integral morphism
of fine log schemes. Let x € X and y = p(x). Let k be the algebraic closure of the residue
field at x and n : Spec(k) — X L5 Y the induced morphism. If X xy Spec(k) is a
polysemistable variety over k, then the torsion part of Coker(M f;% - M ;g(l?j) is a finite group
of order invertible in Ox .

PROOF. We denote X xy Spec(k) by X’. Then we have the following commutative
diagram:

X < x

b
y < Spec(k) .

Note that the natural morphism " : Spec(k) — X’ gives rise to a section of u’ : X' —
Spec(k). Let x’ be the image of ’. We consider the natural commutative diagram:

Mxs — 0*(Mx)x o — 0" (7*(Mx))

| | |

Mys — n*(My) == n*(My).
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Notice that
Mys — n*(My) and  7*(Mx)yx ¢ — 0" ((*(Mx))
are bijective. Moreover, since " (7*(Mx)) = (ij - n’)*(My), the composition
My — 7*(Mx)x 3 — 0" (7*(Mx))
is also bijective. Thus, we can see that
My iz — *(Mx) x5

is an isomorphism. Moreover, (X', 7*(Mx)) — (Spec(k), n*(My)) is smooth and integral.
Thus, we may assume that ¥ = Spec(k), X is a polysemistable variety over k and x is a closed
point of X.

Clearly, we may assume that p = char(k) > 0. We can take a fine sharp monoid Q with
My=0 xk*. Let f: Q— Mxxand f 0 — MX,; be the canonical homomorphisms.

Let us choose #1, ..., € Mx ; such that dlog(t1), ..., d log(t;) form a free basis of
Q}(/k’i(log(Mx/Mk)). Then, in the same way as in [5, (3.13)], we have the following:

(i) Ifweset Pt = N" x Q and a homomorphism mj : P — My i by

mia,....ar,q) =a1t1 +- - +aty + f(q),

then there is a fine monoid P such that P 2 Py, P&P/ Plgp is a finite group of order invertible
in Ox 5 and that 1 : P — My 5 extends to the surjective homomorphism 7 : P — Mx z.
Moreover, P gives a local chart around x. Here we have the natural homomorphism 4 : Q —
P; — P. Then the following diagram is commutative:

o 5 p

Lk

Mk —_— MX,;.

(ii) The natural morphism g : X — Spec(k) Xspeck[o]) Spec(k[P]) is €tale around x.

Let p1, ..., p; be all irreducible elements of My ; not lying in the image O — My ;.
Let us choose pi, ..., p € My ; such that the image of p; in Mx,; is p;. Leta : My —
Oyx be the canonical homomorphism. We set z; = a(p;) fori = 1,...,l. Since (’A)X,x ~
(k ®r0] k[P])/g\(y) and p; € h(Q \ {0}) + P, we can see that z; # 01in Oy i for all i.

Note that My ; is generated by p1, ..., pi, O;;,x and the image of Q in My 3, so that,
from now on, we always choose f1, ..., t, from elements of the following types:

pilt (ueO;i, i=1,...,]) and v (UGO;,)E)'

We set x; = a(t;) fori =1,...,r.
CLamm 1.1.1. (a) xi” -+ x/" # 0 for any non-negative integers ai, . . . , dy.
. a} ! ..
(b) If)cf1 B x e - Xy for non-negative integers ai, . . ., ar, aiy,...,a, then

(at,...,a;) =(aj,...,a.).
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PROOF. Let T; be an element of k ®x[ o) k[ P] arising frome; = (0, ..., 1,...,0) € N”

(i-th standard basis of N”), namely, 7; = 1 ® ¢;. Let us choose uj,...,u, € P such
that the kernel of P8P — M)gfx is generated by uy,...,u,. Let P’ be the submonoid of

PP generated by ey, ..., +e,, £uy,...,*u, and P. Since the map k[Q] — k[7(P)]
is flat, thus f : Q — 7(P’) is integral by [5, Proposition (4.1)]. By using this fact, we
can easily observe that the natural injective homomorphism v : Q x Z" — P’ given by
v(g,I) = f(q) + I - eis also integral. Therefore, by [5, Proposition (4.1)], k[ P'] is flat over
k[Q x Z"]. Moreover, since
k Qkpo1 k[P'] = (k @101 k[Q x Z"]) ®oxzr) k[P'],
the following diagram
Spec(k Qkjo) kK[P']) ——  Spec(k[P'])

l l

Spec(k @01 k[Q x Z"]) —— Spec(k[Q x Z"])
is Cartesian. Therefore,
Spec(k ®xio) k[P'T) — Spec(k ®x(01 k[Q x Z'1) = Spec(k[Z'])
is flat. In particular,
B k[Z"] =k Qipo1 k[Q x Z"'] — k ®u101 k[P']

is injective because k[Z"] is a integral domain. Further, 8(Y;) = T; fori = 1, ..., r, where
k[Z'] = k[YE, ... YA

Let U be an étale neighborhood at x and V' a non-empty open set of Spec(k ®xo) k[ P])
such that V.= ¢g(U) and g : U — V is étale. Moreover, we set W = Spec(k ®xk[g] k[P']).
Then, W is an open set of Spec(k ®«[g] k[ P]), i.e.,

W = {t € Spec(k @01 k[P]) | Ti(¢t) #0foralli and (1 ® u;)(t) # O forall j}.
Let W be the closure of W. Note that
Spec(k ®ko1 k[ P])
=WU{T1 =0}U---U{T, =0} U{lQu; =0}U---U{l Qu, =0} .

Moreover, if we set y = g(x), then (1 ® u;)(y) # 0 for all j because 7 (u;) € (’);i. Note
that the local ring (k ®y[o k[ P])y is reduced, since g* : (k ®[p] k[P])y — Oy, ; is étale.
Therefore, if y ¢ W, then T; = 0 in (k ®k[) k[ P])y. This contradicts the fact that z; # 0 in
Ox 5 for all i because ¢*(7;) = x;. Thus, y € W. Let us consider

B g*
y 1 k[Z'] — Ow —> Owny —> Og*l(WﬂV)‘

Then, y (Y;) = x;. Further, y is injective, since 8 and ¢* are injective and k[Z"] is an integral
domain. Thus, we get the claim. |

Fix t1,...,t € Mx 3 with the following properties:



DOMINANT RATIONAL MAPS IN LOG SCHEMES 489

(1) t; is equal to either pju (u € Ox 3) or aunit v for all i.
(2) dlog(ty),...,dlog(t) form a free basis of .Q)l(/kj(log(Mx/Mk)).
(3) If we replace the non-unit#; ¢ Oy ; by aunits; € Oy ;, then
dlog(t1), ..., dlog(t)), ..., dlog(t)
do not form a free basis of Q}(/kﬁx(log(MX/Mk)).
CLAIM 1.1.2. Foranon-unitt; andu € O;Ej,
dlog(ty),...,dlog(tiu), ..., dlog(t)
form a free basis of.Q)l(/k’i(log(MX/Mk)).

PROOF. Wesetdlog(u) = fidlog(ty) +---+ frdlog(t,). If f; € (’);i, then d log(#;)
belongs to a submodule generated by

dlog(u),dlog(ty),...,dlog(ti—1), dlog(ti+1), ...,dlog(t) .

Thus, dlog(u), dlog(t1), - - -, dlog(ti—1), d log(ti+1), - - -, d log(t,) form a basis, so that f;
belongs to the maximal ideal of Oy ;. Therefore,

dlog(tiu) = (1 + fi)dlog(t;) + Y _ fidlog(t;),

J#i
and 1+ f; € (’);j. Thus, we get the claim. O
Renumbering 1, . .., t,, we may assume that
{t1,...,t;} = {t; | t; is not a unit} .
CLAM 1.1.3. Letay,...,as, ai, R aé be non-negative integers such that either a;
ora is zero for all i. Foru € O)X(,x’ if
X0 :uxi{i cx

thenay =---=ay=a)=---=a;,=0andu = 1.
PROOF. Assume the contrary. Let us choose a non-negative integer k such that a; =
p¥b; and a! = p*b! forall i and that
ged(by, ..., bs, by, ..., bY)
is prime to p. Then, by Lemma 1.3, there is v € (9;(’)E with

’
k a ag

=t xgt

aj
xl .. xS
Moreover by our construction, replacing v by v~! if necessarily, we can find b} prime to
/
p. Thus, there is v/ € (9; & with v/ bi = . Hence, if we replace t; by v't;, then we have

xplexgt = x?‘ .-+ xy". Therefore, by Claim 1.1.1 and Claim 1.1.2, a; = ay,....as = aj,
which implies thata; = -+ = a; = ai = ... =ga} = 0. This is a contradiction.

CLAM 1.1.4. 11,...,1t are linearly independent over Z in Coker(Q®P — M}g&).
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PROOF. We assume that a non-trivial relation at| + - - - + asty; = 0 (ay,...,as € Z)
holds in Coker(Q& — M;g&). Let 7; be the class of #; in Mx ;. Then, ajfy + - - - + asiy =
f(q) for some g € QFfP. Renumbering t1, ..., t;, we may assume that aj, ..., > 0 and
aj+1, ..., as < 0. Thus, we have

biiy + -+ bl + f(q1) = b1 + -+ + bl + f(q2)
for some g1, g2 € Q, where by = ay,...,b; = q; and bj4+1 = —aj41, ..., bs = —a,. Since

f is integral, there are g3, g4 € O, x € Mx z andu,u’ € O}?,x with

q1 t+q93=q2+4q4,
biti+---+bitr = f(g3)+x+u,
biyitip1 + -+ bty = fqa) +x+u'.

Thus, if g3 # 0, then xf' .- -xf“ = 0, which contradicts to Claim 1.1.1. Therefore, g3 = 0. In
the same way, g4 = 0. Thus, we get

bity + -+ bit; = bry1t1 + - - + bty + vo

b .
for some vy € O% ;. Hence xf' ~-~xlb’ = voxl_fl1 -..xP . Therefore, by Claim 1.1.3, by =
- =b; =bjy1 =--- =bg =0. This is a contradiction. O

LetA: P — M )g({) - be the natural surjective homomorphism and
)\ : Coker(Q% — P&P) — Coker(Q%¥ — M}g&)
the induced homomorphism. Then, by using Claim 1.1.4, if we set
T = Coker(Zt; @ - -- ® Zt, — Coker(Q® — P%P))

and
T' = Coker(Zt) ® - - - & Zt; — Coker(Q* — MY"))),
then we have the following commutative diagram:
0 — ZH®d---®Zt, —> Coker(Q%® — P) — T — 0

lprojecﬁon J{ b l

0 — ZH® ---® Zty, —> Coker(Q% — M}g}?i) — T — 0

! ! l

0 0 0.
Here T is a torsion group of order prime to p. Therefore, we get our assertion. O

LEMMA 1.2. Let R be aring and f : Q — P a homomorphism of commutative
monoids with the unity. Then, the kernel of the induced ring homomorphism R[Q] — R[P]

by f is generated by elements of type [q] — [q'] with f(q) = f(q)).
PROOF. The proof of this is left to the reader. |



DOMINANT RATIONAL MAPS IN LOG SCHEMES 491

LEMMA 1.3. Let X be a polysemistable variety over an algebraically closed field k of
characteristic p > 0 and x a closed point of X. Let Ox i be the local ring at x in the étale
topology. Let H and G be elements of Ox z and u € O)X(,)? Iprku = ka, then there is

v e O ; with (Hv)? = G"".

PROOF. By Artin’s approximation theorem, it is sufficient to find v in o x.z. Since X is
a polysemistable variety, we can set

Oxi =k[Ty, ..., TN/ (TY, ..., T4,

where Ay, ..., A; € N°\ {0}. We set
i I
2 = U(A,- + N¢%, X =N°\ U(A,- + N and Xy ={l€X| pk|A(i) for all i} .

i=1 i=1

Then, any elements of o x.z can be uniquely written in a form

ZO([TI .

leX

Wesetu =3 ;.5 ajT! and H = Yoles b;T'. Moreover, we set

u = Z a;jT! and u" = Z aT!.

IeXy, I1¢%y

. . . k k k
Then, u = u’ + u” and there is a unit v with v» = u’. Thus, H? u” = (G — Hv)" .

Therefore,
(G — Hv)?" = <Z bfkTpk1)< 3 a1T1> .

Iex 1€

Even if we delete the terms 77 with J € £2, the left hand side of the above equation consists
of the terms 77/ with J € X and the right hand side does not contain the terms T*/ with
J € . Thus, (G — Hv)?" = 0. 0

As a corollary of Theorem 1.1, we have the following existence of a good chart of a log
morphism.

COROLLARY 1.4. Let X be a polysemistable variety over an algebraically closed field
k. Let My and My be fine log structures on Spec(k) and X, respectively. We assume that
(X, M) is log smooth and integral over (Spec(k), My). Let Q be a fine sharp monoid with
M =~ Q xk* and g : Q — My the composition of Q — Q x k* (¢ — (q,1)) and
0 x kX —> My. Moreover, let x be a closed point of X. Then, there is a fine sharp monoid
P together with homomorphisms wp : P — Mx z and f : Q — P such that a triple (7o :
Q— My, mp: P — Mx i, [: Q— P)isagood chart of (X, Mx) — (Spec(k), My) at
x, namely, the following properties are satisfied.:
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(1) The diagram

o L, p

an lnp

Mk _—> MX’);
is commutative.
(2) The homomorphism P — My z — MX’; is an isomorphism.
(3) The natural morphism g : X — Spec(k) Xspec(k[0]) Spec(k[P]) is smooth in the
usual sense.

PROOF. This is a corollary of Theorem 1.1 together with Proposition A.1 and Proposi-
tion A.2. ]

Finally, let us consider the following lemma, which is in use to show that a poly-
semistable variety is a reduced scheme.

LEMMA 1.5. Letk[T,..., T.] be the ring of formal power series overk. Let Ay, ...,
A; be elements of N¢ \ {0} such that A;(j) is either O or 1 for all i, j. Let I be an ideal of
kT, ..., T.] generated by TAvL ... T4l Then, I is reduced, i.e., JI=1.

PROOF. We prove this by induction on e. If e = 1, our assertion is obvious, so that we
assume that e > 1. Let f € +/I. Then, there is n > 0 with f" € I. It is easy to see that there
areay,...,a. € k[T1,...,Ti—1, Tit1,..., Telland b € k[[T1, ..., T.]] with

f=a+Ta+ --+T---Tiyai+--+T1- - Te—rae +T1--- T,b.
Then, f(0, T, ..., T,) = a1 € k[T, ..., T.]. If 1 € Supp(A;) for all i, then
fO, T, ....,T,)"=0.
Thus, a; = 0. In particular, a; € I. Otherwise,

al = f0.Tp.....T.)" € > TY[Th....T.].
1¢Supp(A;)

Thus, by induction hypothesis , a; € I. Therefore, (f — a1)" € I. Note that (f — a)(T1, 0,

T3, ..., T.) = Tiay. Thus, in the same way as before, we can see that Tjap € I. Hence,
(f —a1 — Thap)" € I. Proceeding with the same argument, 77 --- T;_1a; € I foralli. On
the other hand, 7} - - - T, € I. Therefore, f € I. O

REMARK 1.6. It is very natural to ask a generalization of Theorem 1.1 to the case
of idealized log schemes. However we do not use idealized log schemes in this paper. This
problem is left to the reader.

2. Monoids of semistable type. In this section, we consider a monoid of semistable
type. First of all, let us give its definition. Let f : Q — P be an integral homomorphism of
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fine sharp monoids with Q # {0}. We say P is of semi-stable type

(r,l,p1,....pr.qo, big1, ..., by)
over Q if the following conditions are satisfied:

(1) r and [ are positive integers with r > [, p1,....pr € P, go € QO \ {0}, and
bi11, ..., by are non-negative integers.

(2) Pisgenerated by f(Q)and pq, ..., pr. The submonoid of P generated by py, ...,
pr in P, which is denoted by N, is canonically isomorphic to N”, namely, the homomorphism
N" — N givenby (f1,...,1) Zi t; pi 1s an isomorphism.

(3) Weset A;, B € N" as follows:

Ar=(,...,1,0,...,0) and B=(0,....,0,bis1,....by).
—_—— —— — —_———
1 r—I 1
Then, A; - p = f(q0) + B - p,ie, p1 +---+ pi = f(qo) + Y_;-; bi pi (cf. Convention and

terminology 6).
(4) If we have a relation

I-p=f@+J-p (U JeN")
with g # 0, then /(i) > Oforalli =1, ..., (cf. Convention and terminology 2).

REMARK 2.1. Under the assumption as above, let U C P (resp. V C P) be the
submonoid of P generated by p1, ..., p; (resp. f(Q) and pj41, ..., pr). According to (3),
there is a natural map

U X@arp, fao+sp V= P
See Convention and terminology 4 for the definition of U X (4;.p, f(go)+B-p) V-

REMARK 2.2. In the case where [ = 1, by using (2) of the following proposition, we
cansee P = f(Q) x Npy x --- x Np,. Conversely, if P has a form f(Q) x N"~! and
0O # {0}, then P is of semistable type in the following way: Let go be an irreducible element
of O and p; = f(qo). Let ¢; be the standard basis of N1 We set pi = (0,ej—1) fori =
2,...,r. Then, since Q is sharp, Np; >~ N. Thus, the submonoid generated by p1, ..., p,
in P is isomorphic to N”. Finally, let us consider a relation ) ; a; p; = f(gq) + Y_; ¢; pi with
q # 0. Then,

flaigo) + Y aipi = f(q +c190) + Y _cipi-
i>2 i>2

Thus, a1qo = q + c1q90. Hence, if a; = 0, then g = 0. Therefore, a; > 0.
First, let us see elementary properties of a monoid of semistable type.

PROPOSITION 2.3. Let f : Q — P be an integral homomorphism of fine sharp
monoids. We assume that P is of semi-stable type

(rvlvplv"'spr7q07bl+11"'7br)

over Q. Then we have the following:
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(1) Letl-p=f(q)+J-pU,J € N")bearelation with q # 0. Then, g = nqo for
some n € N. Moreover, if Supp(I) N Supp(J) = @, then [ =nA; and J = nB.
(2) Let us consider two elements

f@+T-p and f(gH+T -p
of P such that there are i and j with1 <i,j <land T(i)=T'(j)=0.If f(¢)+T -p =
f@H)+T -p,theng =q" andT =T'.

(3) Let U (resp. V) be the submonoid of P generated by py, ..., pi (resp. f(Q) and
Pi+1s - -+ pr) (¢f. Remark 2.1). Then, U =~ Nl, V>~Q0x N and the natural homomor-
phism

UX@rp, fao+sp V=P
is bijective.

PROOF. (1) First we assume that Supp(/) N Supp(J) = . We set

n=min{/(1),...,I()} and I'=1—-nA;.
Then, I'(i) = 0 for some i with1 <i <landI-p=nA;-p~+ 1 p. Thus,

fgo)+mB+1)-p=fl@+J p.

Therefore, since f : Q — P is integral, there are ¢, g2 € Q and T € N’ such that
nqo+q1 =49+ q2,

mB+1)-p=fg)+T-p and J-p=f(g)+T-p.

Note that (nB + I')(i) = 0 for some i (1 < i <[). Thus, g, = 0 by Property (4). Moreover,
since {1, ...,l} € Supp(/), we have Supp(J) € {{ + 1, ...,r}, so that go = O by Property
(4). Therefore, ¢ = ngo and (nB + I') - p = J - p. In particular, nB + I’ = J. Note that
mB+1Yi)=1I'l)and J(i) =0fori = 1,...,1. Thus, I'(1) = --- = I'(l) = 0. We
assume that Supp(I’) # #. Let us choose i € Supp(I’). Then, i > [ and J(i) = 0. Thus,
nB(i)+1'(i) = 0, whichimplies I'(i) = 0. This is a contradiction. Hence, I’ = 0. Therefore,
q =nqo, I =nA;and J =nB.

Next let us consider the general case. We define T € N" by T (i) = min{/ (i), J(i)}, and
weset!’=1—TandJ' = J—T.Then,I'-p = f(q)+J - p and Supp(I") N Supp(J') = @.
Thus, g = nqq for somen € N.

(2) Since f : Q — P is integral, there are g1, g2 € Qandh € Np; +---+ Np,
suchthat T - p = f(q)) +h, T -p = f(gz2) +handqg +q, = q' +q>. Here T(i) = 0
for some i = 1,...,1. Thus, g; = 0. In the same way, g» = 0. Therefore, ¢ = ¢'. Hence
T -p=T -p.

(3) By (2),itis easy to see that U =~ N'andV ~ OxN’"~!. Letuschoose I, I, J, J' €
N" such that Supp(), Supp(I’) € {1,...,1} and Supp(J), Supp(J") € {{ +1,...,r}. Itis
sufficient to see that if

L-p+f@+J-p=I-p+fl@H+J -p
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for some ¢, ¢’ € Q, then

I-p, f@+JT-p)~U -p, flgh+JT p)
iU Xap, fgo)+8-p) V- We set
n=min{l(1),...,I(1)} and »n =min{l'(1),...,I'()}.
Moreover,weset T =1 —nA;and T’ = I’ — n’ A;. Then
(T+J+nB) -p+ flg+ng) =T +J +n'B)-p+ f(q +n'q).
Thus, by 2), T +J +nB =T +J' +n'Band g + nqo = q’ + n’qo. In particular, T = T’
and J +nB = J' + n’'B. Therefore, since (A; - p, 0) ~ (0, f(go) + B - p),
(I-p, f@)+J-p)=UT+nA)-p, fg)+J-p)
~(T - p, f(g+nqo)+(J+nB)-p)
=(T"-p, fl@"+n'q0) + (" +n'B) - p)
~((T"+n'A)-p, fl@)+J - p)
={"-p, f@H+J -p). O

REMARK 2.4. By using a result of congruence relations [12, Lemma 2.8 (3)], we can
prove Proposition 2.3 in more direct way.

REMARK 2.5. By the properties above, k ®g[p) k[ P] is canonically isomorphic to
kX1, .o Xe 1/ (X1 -+ X0)
The converse of the above remark holds under a kind of assumptions of P.

PROPOSITION 2.6. Let k be a field and f : Q — P an integral homomorphism of
fine sharp monoids with Q # {0}. Let R be the completion of k Q) k[ P] at the origin and
m the maximal ideal of R, where the homomorphism k[ Q] — k = k[Q]/M is given by the
origin Mg of k[ Q). We assume the following:

(1) f:Q — P doesnot split, i.e., there is no submonoid N of P with P = f(Q) X N.

(2) Let R' = R[Ty, ..., T.] be the ring of formal power series of e-variables over R

and m' the maximal ideal of R'. Then, R’ is reduced, dimy m’/m’2 =dmR +1
and dim R'/K' = dim R’ for all minimal primes K’ of R’.
Let p1, ..., pr be all irreducible elements of P which are not lying in f(Q). Let | be the
number of minimal primes of R. Then, after renumbering pi, ..., pr, P is of semi-stable type

(ralapla-'-apraq()abl-'rla'-'7br)
over Q for some qp € Q \ {0} and bj41,...,b; € N.

PROOF. Let us consider the natural homomorphism

H:OxN — P
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givenby H(q,T) = f(q) + T - p. Since f : Q — P is integral, the system of congruence
relations of H is generated by
{Ii-p=Ff@)+ Jr Phieas
where for each A € A, g, € Q and I, J,, € N’ with Supp(l)) N Supp(J) = @. Let
¢ : k[X1,..., X, = R be the homomorphism arising from
KIN"] = k ®k01 k[Q x N"] — k ®x[o) k[P].
Then, by Lemma 1.2, the kernel of ¢ is generated by

(X5~ B@)X " iea,
where B is given by
1 if ¢g=0,
0 if ¢ #0.
Let m be the maximal ideal of R. By Assumption (2), it is easy to see that R is reduced,
dimg m/m? = dim R 4 1 and dim R/K = dim R for all minimal primes K of R. Let M be

the maximal ideal of k[ X1, ..., X, ]|. Here p;’s are irreducible. Thus, deg(/)) > 2 if g, # 0,
and deg([)) > 2 and deg(J,) > 2 if ¢, = 0. Hence, Ker(¢) C M?2. Therefore,

B(g) =

dimyg m/m? = dimg M/(M? + Ker(¢)) = dimy M/M? = r,

which implies that r = dim R + 1. Since R is reduced, Ker(¢) = +/Ker(¢). Thus, we have a
decomposition

Ker(¢p) = K1 N---NK;

such that K; are prime, K; € K for alli # j and each K; corresponds to a minimal prime
of R. Note that dimk[[ Xy, ..., X;]I/K; = r — 1 for each i. Here k[ X1, ..., X,] is a UFD.
Thus, each K;’s are generated by an irreducible element, so that we can see that there is
f €kl Xy, ..., X, ] with Ker(¢) = (f). Here we claim the following.

CLAIM 2.6.1. Thereis » € A with q; # 0.

We assume the contrary. Let N be a submonoid of P generated by p;’s. Let us see that
f@+n=f@g)+n" (q.9€QnneN) = gq=q. . n=n"

Since f : Q — P is integral, there are ¢1, g2 € Q and n” € N such that n = f(q1) + n”,
n' = f(g2)+n"andg+q1 = q'+¢g2. If g = Oforall A € A, then g; = g» = 0. We can see
q1 = q2 = 0. Thus, n = n’ = n” and ¢ = ¢’. This observation shows us that P = Q0 x N,
which contradicts to our assumption.

By the claim above, Ker(¢) contains an element of the form X% . Note that f is a factor
of X, R is reduced and R contains / minimal primes. Thus, after renumbering p1, ..., pr,
we canset f = X1 --- X; = X4, Next we claim the following.

CLAIM 2.6.2. gq; # Oforall A € A.
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We assume that there is A € A with ¢;, = 0. Then, X - - - X; divides X* — X/*_ This is
impossible because Supp(Z)) N Supp(Jy) = 9.

By the claim above, we can see that N is isomorphic to N”. Moreover, Ker(¢) is gener-
ated by {X/+} e Thus, there is 4 € A with I, = A;. Hence, we have a congruence relation
Ar-p=f(go)+B-p.

Finally, let us consider a relation

I-p=fl@+J-p
with g # 0. Then, X! is an element of Ker(¢). Thus, I(i) > Oforalli =1,...,1. |

3. Local structure theorem on a semistable variety. The purpose of this section
is to prove the following local structure theorem of a smooth log structure on a semistable
variety. Classification results of log structures on a semistable variety have been already ob-
tained in several important cases. F. Kato studied the local description of a log structure on
a log smooth and integral morphism with relative dimension one [4, Theorem 1.3 and (1.8)].
M. Olsson investigated the local description of a log structure on a log smooth, vertical and
integral morphism [12, Theorem 2.7]. (A morphism (¢, k) : (X, Mx) — (Y, My) is said to
be vertical if Coker(h : ¢*My — My) is a sheaf of groups.) We consider local structures
of a log structure on a log smooth and integral morphism on a semistable variety without the
assumptions of dimension and verticalness.

THEOREM 3.1. Let k be an algebraically closed field and My a fine log structure of
Spec(k). Let X be a semistable variety over k and Mx a fine log structure of X. We assume
that (X, M) is log smooth and integral over (Spec(k), My). For a closed point x € X,
let (Q — My, P — Mx 3z, QO — P) be a good chart of (X, Mx) — (Spec(k), My) at
x, that is, Q — My and P — M X,z are bijective homomorphisms of fine sharp monoids,
k k01 k[P] — Ogx z is smooth and the following diagram

QO — P

L

My — My x

is commutative. Then, we have the following:
(1) If the multiplicity of X at x is equal to 1, that is, x is a regular point, then Q — P
splits and P >~ Q x N" for some r.
(2) If the multiplicity of X at x is equal to 2, then we have one of the following:
(2.1) If Q — P does not split, then P is of semistable type over Q.
(2.2) If Q — P splits, then char(k) # 2 and there is a submonoid N of P such that
P >~ Q x N and N is isomorphic to the momoid arising from the monomials
of k[ X1, X2, ..., Xa]/(X% — X%) for some a > 2. In particular, @X,x is
canonically isomorphic to

K[X1, ..., X, 1/(X7 — X3).
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(3) If the multiplicity of X at x is greater than or equal to 3, then Q — P does not
split and P is of semistable type over Q.

@) Ifx is a singular point of X and P#P is torsion free, then Q — P does not split and
P is of semistable type over Q.

In particular, if My is saturated, then, for all x € X, P is a monoid of semistable type
over Q.

In order to prove the above theorem, we need several preparations. First, let us consider
a log smooth monoid on a smooth variety.

PROPOSITION 3.2. Let k be a field and f : Q — P an integral homomorphism of
fine sharp monoids (note that Q might be {0}). Let R be the completion of k ®yo1 k[ P] at the
origin and R|[ Ty, ..., T.]| the ring of formal power series of e-variables over R, where the
homomorphism k[ Q] — k = k[Q]/ My is given by the origin Mg of k| Q). If R[ T, ..., T,]l
is regular, then there are a nonnegative integer r and a homomorphism g : N — P such
that the homomorphism

h:Q0xN — P
given by h(q, x) = f(q) + g(x) is bijective.

PROOF. First of all, note that R is regular. Let py, ..., p, be all irreducible elements
of P which are not lying in f(Q). Then, we have a homomorphism g : N — P given
by g(n1,...,n,) = Z?:l n;pi. Thus, we get h : Q x N — P as in the statement of our
proposition. Clearly, 4 is surjective. Then, since f : QO — P is integral, the congruence
relation is generated by a system

{Ir-p= f(g)+ Jr-Plrca,

where ¢, € Q and I, J,, € N" with Supp() N Supp(Jy) = @ for each A. Then, by
Lemma 1.2, the kernel K of
k[X1,....,X;]1— R
is generated by
(X" = Blg) X }rea,
where S is given by
1 if ¢g=0,
0 if ¢g#0.
Using the fact that p;’s are irreducible, we can see that K C M 2 where M is the maximal
ideal of k[[ X1, ..., X, ]. Let m be the maximal ideal of R. Then,

m/m*=M/(M*>+K)=M/M?.

B(g) =

Thus, dimg m/m? = r. On the other hand, if we have a congruence relation, then K # {0}.
Thus, dim R < r. Therefore, K = {0}, which means that # is injective. O

In order to proceed with our arguments, let us see elementary facts of the ring

KIX1, ..., Xal/ (X — x70y.
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PROPOSITION 3.3. Letk beafieldandk[X1, ..., X, ] the ring of formal power series
of n-variables over k. Let Iy and Jy be elements of N" such that Supp(lo) N Supp(Jo) = 0,
Io #0,...,0)and Jo # (0, ..., 0). Consider the ring

R =k[X1,..., Xall/(XT0 — X0y,

The image of X' on R is denoted by x'. Then, we have the following:

(1) The multiplication of X; in R is injective.

(2) ForI,J € N"andh € R, zfxl =x"hand ]I # J, then either I > Iy or I > Jy
(cf. Convention and terminology 2).

(3) Letu and v be units of R. For I, J € N", ifxlu =x’v, thenu = vand x' = x’.

@) Forl,J €¢ N",set] =1 +aly+bJyand J = J + a'ly + b'Jy such that
a,b,a’,b' € Nandthat I' # Ip, I' # Jo, J' # loand J' # Jo. If x! = x/, then I' = J'
anda+b=a +0'.

(5) Ifged(lp) and ged(Jo) are coprime, then Xlo—x70 isirreducible in k[ X1, . .., Xull
(cf. Convention and terminology 2).

PROOF. The proof of (1), (2), (3) and (4) is elementary, so we left it to the reader. O
We only give a proof of (5). The following proof is due to the referee.

LEMMA 3.4. Letk bea fieldand f a polynomial in k[X1, ..., X,]. Assume that there
exists a non-trivial weight such that f is homogeneous with respect to it. Then f is irreducible
inkl[ X1, ..., Xnl if and only if f is irreducible in k[ X1, ..., X,].

PROOF. The “only if" direction is clear. To see the “if" direction, assume that there
exists a decomposition f = gh in k[[X1, ..., X,] such that both ¢ and % are not invertible
elements in k[ X1, ..., X, ]. By taking account of the (weighted) degrees of f, g and h, we
can easily see that f is not irreducible in k[ X1, ..., X, ]. Thus we conclude the claim. O

Return to the proof of (5). By an easy observation, we see that X/0 — X is irreducible
ink[X1, ..., X,]. Thus X0 — X/ is irreducible in k[ X1, ..., X,] by Lemma 3.4. 0

COROLLARY 3.5. We assume that k is algebraically closed. Let Iy and Jy be elements
of N such that deg(lp) > 1, deg(Jo) > 1 and Supp(lp) N Supp(Jo) = V. We set g =
ged(ged(lo), ged(Jo)), Io = gl and Jo = gJ;. Then,

Xl — x%0 = (x% — x%oy(x% — ¢x70)...(XIo — 971 x70)
is the irreducible decomposition of X'0 — X7, where ¢ is a g-th primitive root of the unity.

PROOF. It is sufficient to show that X — D¢ %0 is irreducible. Changing coordinates
X1,..., X, by c1X1,...,cn Xy, we can make Xl — X% of X% — ;iXJ(;. Thus, by (5) of
Proposition 3.3, we have our corollary. ]

COROLLARY 3.6. We assume that k is algebraically closed. Let Iy and Jo be elements
of N" such that deg(lp) > 1, deg(Jo) > 1 and Supp(lo) N Supp(Jo) = @. If

k[X1, ..., X, 0/ (xTo — x70)
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is isomorphic to a ring of the type k[[T1, ..., T, 1/(T1---T;) (I > 2), then char(k) # 2 and
therearei, j € {1,...,n} suchthati # j and X1 — xJ0 = Xl2 — X?.

PROOF. We set g = ged(ged(lo), ged(Jo)), Io = gl and Jo = gJj. Then, by the

above corollary,
Xl — x7o = (x% — x7oy(x" — ¢ x70)...(x0 — 97" x")

is the irreducible decomposition of X0 — X/0_ where ¢ is a g-th primitive root of the unity.
Since k[ X1, ..., X,1/(X!0—X/0)isreduced, char(k) does not divide g. Here k[[T1, . .., T, 1/
(Ty - - - T7) has [-minimal primes, so that g = /. Moreover, since every irreducible component
is regular, either X Iy or X is linear. Clearly, we may assume that X !5 is linear, namely,
xh = X; for some i. Let m be the maximal ideal of k[ X1, ..., Xn]]/(XI0 — XJO). Let V be
the vector subspace of m/m2 generated by X; — XJ(;, X; — ;Xjé, o X — ;l_lXJ(;. Then
we must have dimy V = [, since

KIX1, ..., X/ (X — X7y ~ k[T, ..., T,0/(T1 -+~ T)) .

If deg(Jj) > 2, then dimy V = 1. This contradict to the fact / > 2. Thus, deg(J)) = 1, so
that X% = X ; for some j. In this case, dimy V' < 2. Therefore, g =1 = 2. O

PROPOSITION 3.7. Letk be a field, N a fine sharp monoid, and k[[ N]| the completion
of k[N] at the origin. Let « : N — k[[N] be the canonical homomorphism. Let p1, ..., pr
be the irreducible elements of N and h : N* — N the natural homomorphism given by
h(ay,...,a,) = Z?:l aipi. Let ¢ : k[ X1, ..., X; 1 = k[[N] be the homomorphism induced
by h. Let R = k[NN[X1, ..., X.] be the ring of formal power series of e-variables over
k[NT and m’ the maximal ideal of R'. We assume that R’ is reduced, dimy, m’/m’2 =dim R+
1 and dim R'/K' = dim R’ for all minimal primes K' of R'. Then, we have the following:

(1) The kernel of ¢ is generated by an element of the form X0 — X0 such that Iy, Jo €
N', deg(lp) > 2, deg(Jo) > 2, Supp(lp) N Supp(Jo) = ¥ and ged(ged(lp), ged(Jo)) is not
divisible by char(k).

(2) Renumbering of p1, ..., pr, we assume that

Supp(lp) S {1,...,I} and Supp(Jo) S{l+1,...,r}.

Let U (resp. V) be the submonoid of N generated by p1, ..., p; (resp. pi+1, ..., pr). Then,
U~N,V~ N~ and the natural homomorphism

U xuyp, soppV—> N
is bijective (cf. Convention and terminology 4).
PROOF. (1) Let us consider all relations
{I - p=Ji- Phiea

in N, where I, J,, € N" and Supp(;) N Supp(J,) = @ for all L. Then, the kernel of ¢ is
generated by
X =X Yea.
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Let m be the maximal ideal of k[[N]. Then, it is easy to see that k[N] is reduced,
dimy m/m2 = dimk[[N] + 1 and dimk[[N]/K = dimk[[N] for all minimal primes K of
k[[N]. Let M be the maximal ideal of k[ X1, ..., X, ]. Since p;’s are irreducible, deg(1;) > 2
and deg(J)) > 2. Thus, Ker(¢) C M?. Therefore,

m/m?* = M/(Ker(¢) + M?) = M/M?> .

Then, in the same way as in the proof of Proposition 2.6, there is f € k[ X1, ..., X, ]| with
Ker(¢p) = (f). We set X —xh = fu; forall A € A. If u, is not a unit for any A € A, then
X' — X7» e f. M. Thus, there is A € A such that u;_ is a unit. Hence we get (1).

(2) By using (4) of Proposition 3.3, it is easy to see that U ~ N’ and V ~ N" 7!, Let
1,1',J,J € N" such that

Supp(Z), Supp(I’) €{1,...,1} and Supp(J), Supp(J)C{l+1,...,r}.

It is sufficient to see thatif I - p+J-p=1'"-p+J' -p,then (I -p, J-p) ~ " -p, J - p)
inU Xy.p, sopy V- Weset =T +alo, I’ =T +ad'lp, ] =S+blypand J' =S5 +b'Jy
such that a,a’,b,b’ € Nand T # Iy, T' # Iy, S # Jo and S’ # Jy. Then, by (4) of
Proposition 3.3, we cansee that T + S = T’ + S’ and a + b = a’ + b'. In particular, T = T’
and S = §’. Therefore, since (Iy - p, 0) ~ (0, Jo - p),

(I-p, J-p)=T +alp)-p, (§+bJo)-p)~(T-p, (S+(a+Db)Jo):p)
=" p, (S+@+b)0)-p)~ (T +dl) p, (S+bhy-p)
=(I/~p, J/-p). O

Let us start the proof of Theorem 3.1. This is a consequence of all results in §2 and §3.
Indeed, if x ¢ Sing(X), then our assertion holds by Proposition 3.2. Thus, we may assume
that x € Sing(X).

We assume that Q — P split, so that P >~ Q x N for some N. Then,

k ®r[o) k[ P] = k[N].

Since kK[N] — Oy is smooth, k[N][X7y, ..., Xc] is isomorphic to the ring of the type
kITy, ..., T,01/(Ty---T;). Thus, by Corollary 3.6 and Proposition 3.7, char(k) # 2 and
| = 2. Moreover, if P®P is torsion free, then NP is torsion free. Thus, k[N] is an inte-
gral domain by Lemma 3.8 below. This is a contradiction. Therefore, if P8P is torsion free,
then Q — P does not split.

If 0 — P does not split, then we get our assertion by Proposition 2.6. a

LEMMA 3.8. Let T be a fine sharp monoid such that T®P is torsion free. Then k[T ]
and the completion k([ T] at the origin are integral domains.

PROOF. First of all, it is well known that if o is a finitely generated cone in Q" with
o N (—o) = {0}, then there is an isomorphism ¢ : Q" — Q" such that ¢(0) S QY.
Thus, we can find an injective homomorphism ¥ : T2 — Z" such that Coker(y) is finite
and ¥(T) € N", where n = rk(T®P). Therefore, k[T] — k[N"] = k[X1y,..., X,] and

kITT = KIN"1 = k[ X1, ..., X,]. O
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4. Rigidity of log morphisms. In this section, we consider a uniqueness problem of
a log morphism for a fixed scheme morphism, which is one of main results of this paper.

THEOREM 4.1. Let k be an algebraically closed field and My a fine log structure of
Spec(k). Let X and Y be semistable varieties over k, and My and My fine log structures of X
and Y, respectively. We assume that (X, Mx) and (Y, My) are log smooth and integral over
(Spec(k), My). We set

Supp(My/My) ={y € Y | My x O;,y — My5 is not surjective} .

Let ¢ : X — Y be a morphism over k such that ¢(X") € Supp(My / My) for any irreducible
component X' of X. If (¢, h) : (X, Mx) — (Y, My) and (¢, h') : (X, Mx) — (Y, My) are
morphisms of log schemes over (Spec(k), M), then h = I'.

PROOF. Thisis alocal question. Let us take a fine sharp monoid Q with My = Q xk*.
Let x be a closed point of X and y = f(x). Let us choose étale local neighborhoods U and
V at x and y, respectively, with f(U) < V. Moreover, shrinking U and V enough, by
Corollary 1.4, we may assume that there are good charts

(Q— My, m:P— Mxly,f:0— P)

and

(Q > My, 7' : P = Myly, f : 0 — P
of (X, Mx) — (Spec(k), My) and (Y, My) — (Spec(k), My) at x and y, respectively. Let
7P x O§,x — Mxzand 7' : P x (’);& — My 5 be the natural homomorphisms induced
by 7 and 7. Note that 7 and 7" are isomorphisms. Let # : P’ x Oy ; — P x Og ; and
H': P x (’); 5= P x (’);’ + be homomorphisms of monoids such that the following diagrams
are commutative:

P’x(’);;vi>P><(’);§)E P’><(’)1>,<QL>P><(’);§)E
R R
h W
My’y —_— Mx x My’y —_— Mx %
a/l la Q,J, J{a
P o*

Oyy — Oxx, Oyy — Oxx.

Here « and o’ are the canonical homomorphism. By abuse of notation, « - 7 and o’ - 7/ are
also denoted by « and «’. Then, a(p, u) = a(x(p)) -uand o’ (p’, u') = o' (7' (p")) - u'.
Note the following two claims.

CLamm 4.1.1. H(O,u) = H' (0, u) forallu € (’);v.
PROOF. It is obvious because #(Oy,5) € Oy ;. O

CLAIM 4.1.2. H(f'(q),1) = H'(f'(q), 1) forallq € Q.



DOMINANT RATIONAL MAPS IN LOG SCHEMES 503

PROOF. Since w : P — Mx|y and ©’ : P’ — My|y are good charts at X and y,
respectively, and all homomorphisms are lying over M, thus our claim is clear. O

From now on, we consider the following four cases:

(A) f:Q — Psplitsand f': Q — P’ splits.

(B) f:Q — Pdoesnotsplitand f/: Q — P’ splits.

(C) f:Q — Psplitsand f': Q — P’ does not split.

(D) f:Q — P doesnotsplitand f': Q — P’ does not split.

By Theorem 3.1, if f : Q — P (resp. f' : Q — P’) splits, then X (resp. y) is either a
smooth point or a singular points étale locally isomorphic to

Speck[x1, x2, ..., x1/(x] —x3) (resp. Specklyi, y2, ..., ¥ 1/(3f — ¥3)).

Moreover, if f : Q — P (resp. f' : Q — P’) does not split, then P (resp. P’) is of
semistable type over Q.

For each case, let Uy, - - -, Uy and V1, - - -, Vi be all irreducible components of U and V,
respectively. Here, since Sing(Y) € Supp(My/My) and ¢ (U;) Z Supp(My /M) for each
J, there is a unique i with ¢(U;) € V;. We denote this i by o (j). Note that we have a map
o:{l,....,1} = {1,...,I'}. In the following, we give irreducible elements py,..., p, € P
(resp. p), ..., p,, € P’)foreachcase (A), (B), (C) and (D) such that P (resp. P’) is generated
by f(Q) and py, ..., p, (resp. f'(Q') and p}, ..., p,,). The last claim is the following

CLam 4.1.3. H(p;,1)=H'(p;,1) foralli =1,---,7r.

For this purpose, we fix common notation for all cases. We denote a(p;, 1) by x; and
o' (p;, 1) by y;. Here we set

@.14)  H(ppD=(fg)+1Li-p u) and H'(p;1)=(flg)+1 p, up),
where I;, 1] € N", gi,q; € Q and u;, u; € O)Xm. Then, since a(H (p;, 1)) = ¢*('(p}, 1))
and a(H'(p;, 1)) = ¢* (&' (p}, 1)), we have

4.1.5) ¢* () = Blgr) - x" - ui = Blg)) - xT uj.

Let us begin with Case A.

CASE A. In this case, there are submonoids N and N’ of P and P’, respectively, such
that P = f(Q) x N and P' = f'(Q) x N'. Let pi,..., p, (resp. p),...,p),) be all
irreducible elements of N (resp. N'). By Theorem 3.1,

Supp(My /Mi)) = {y1 = 0} U--- U {y = 0}
around y. Thus, we have
¢ Onlu;, = Blan) - x" - uily, = Blgh) - x" - ully, #0
for all j. In particular, ¢; = qlf =O0foralli =1,...,r . Therefore,
I ) A

xToup =x"u
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for all i. Thus, by (3) of Proposition 3.3, u; = u; and x% = x%. Note that the natural
homomorphism k[N] — O ; is injective. Hence, we get I; - p = I - p.

CASE B. In this case, there is a submonoid N’ of P’ such that P" = f'(Q) x N'.
Let pi,..., p), be all irreducible elements of N’. Moreover, by Proposition 2.6, P is of
semistable type
(ralapla'-'api’aq()abl+1a-'-abr)

over Q. Renumbering Uy, ..., U;, we may assume that U; is defined by x; = 0. By the same
argument as in (Case A), we have

¢*ODlu, = Blan) - x" - uily, = Blg) - x - ujly, #0

for all j. In particular, g; = ¢/ = O and [;(j) = 1/(j) = O for j = 1, ..., /. Further, since
Ou; 5 is a UFD, we can see that [; = I]. Moreover, uily; = u;|Uj for all j. Thus, u; = u;.
Therefore, H(p;, 1) = H'(p;, 1) foralli =1,...,r".

CASE C. There is a submonoid N of P such that P = f(Q) x N. Let py,..., pr be
all irreducible elements of N. Moreover, by Proposition 2.6, P’ is of semistable type

' U Pl Db by -, b))
over Q. Renumbering V1, ..., Vy, we may assume that V; is defined by y; = 0. Note that
Supp(My /My) = Sing(Y) U {yr41 = 0} U+ U {y, = 0}

around y. Therefore, if i # o(j), then ¢*(yi)|y; # 0. Thus, we can see g; = q; = 0 for
i #0(j).

First, we consider the case where 0 (1) = --- = o(I) = 5. Note that s < I’. Then, for
i #5,qi =q] =0. Thus, x/ - u; = Xl u; forall i # s. Therefore, in the same way as in
Case A, we can see

Li-p=1I-p and u; =u;

for all i # 5. On the other hand, we have the relation p| + --- + p;, = f'(qq) + >_;.; b} p}.
Therefore, we have H (p}, 1) = H'(p}, 1).

Hence, we may assume that #(o ({1, ---,1})) > 2. In this case, we can conclude that
qi = q; = 0 for all i. Therefore, in the same way as in Case A, we can see

Ii-p=1I1-p and u;=u;
forall i.

CASE D. By Proposition 2.6, P and P’ are of semistable type

1 p1,..-sPr,yqo,bi+1,...,b:) and (r/,l/,p/l,...,p;,,q{),bg,_H,...,b;,)

over Q. Renumbering Uy, ..., U; and Vi, ..., Vy, we may assume that U; is defined by
x;j = 0and V; is defined by y; = 0. Note that

Supp(My /My) = Sing(¥) U {yr41 = 0} U--- U {y, = 0}
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around y. Therefore, if i # o(j), then ¢*(yi)|y; # 0. Thus, we can see g; = g/ = 0and
I;(j) = I/(j) = 0. Moreover, since (’)Uj,); is a UFD, considering qﬁ*(yi)lUj, we can see that

I,' = Ii/ and u,'|Uj = u?lUj .

Gathering the above observation, we get the following: Foralli = 1,...,r" and j = 1,...,1
with i # o (j),

qi =q; =0,
L(jH)=1()=0,

@.1.6) i) =1L
L=1,

uily; = uilu; -
Let us see that forall i > /',
gi=q/=0, w=u;, L=1I.
Note thatif i > ', theni # o (j) forall j =1,...,1. Thus, we getq; = ¢; =0and I; = I/.

Moreover, u;|y; = uglyj forall j =1,...,1. Hence, u; = u;. Therefore,
4.1.7) H(p;,1)=H'(p;,1) forall i >1.
First, we consider the case where o (1) = --- = o (l) = s. Then, fori # s,

qi:ql{zo’ Il:Il/

Moreover, forall j = 1,...,landi # s, u;|ly; = I/l;|Uj. Therefore, u; = u; for i # s. Thus,
H(p;,1) = H'(p;, 1) forall i # 5. On the other hand, we have the relation p} +--- + p;, =
f'(g}) + > ;= b} p;. Therefore, we have H (pg, 1) = H'(p}, 1).

Hence, we may assume that #(o ({1, - - -, [})) > 2. In this case, we can conclude that

gi=q;=0, L=1I
for all i. Moreover, u;|y; = uj|u; if i # o (j). Since p} +---+ p;, = f'(q)) + X_ip b; P}
Hpy 4+ p, D =H |+ +p),1).
Thus, considering the O ; <-factor, we find
Up---uyp :u/lu;/

Moreover, if we set S; = {1, ..., l}\a‘l(i),then S;US; ={1,...,1}foralli # i’. Further,
if we set v; = u; /u, then

vi-cvp =1 and wily; =1 forall jeS andi=1,....0".
Therefore, using the following Lemma 4.2, we have v; = 1 fori = 1,...,[’. Hence, we can
see H(p;,1) = H'(p;, 1) fori =1,...,1'. O

LEMMA 4.2. Let k be a field, R = k[ X1, ..., X,l/(X1--- X)) and A = {1,...,1}.
Letmj : R — R/X;R be the canonical homomorphism for j € A. Let 81, ..., Sy be subsets
of Awith §; U S;r = A fori # i'. Moreover, let uy, ... ,us be unitsin R. Ifuy---uy = 1
and, foreachi,mj(u;) = 1forall j € S;, thenuy =--- =uy = 1.



506 I. IWANARI AND A. MORIWAKI

PROOF. If §;, = ¥ for some io, then S; = A forall i # io. Thus, u; = 1 forall i # iy,
since
myp X---xXxm:R—>R/X1Rx---xR/X|R
is injective. Then, u;, = 1. Therefore, we may assume that S; # ¢ for all i.
For a monomial X ‘1“ ... X;", the support with respect to A is given by

Supp, (X} - Xi") ={i € A|a; > 0}.

For a subset S of A, let I's be the set of formal sums of monomials X(fl S X with
Supp 4 (X' -+ X3") = S. Note that Iy = k[X;41, ..., X,]. Then,

KIX1, ..., X, = @FS.

scaA
Moreover, the natural map Qg 4 I's — R is an isomorphism as k-vector spaces. We denote
the image of I's in R by I's. For fs € I's and fg € I's, fs - fs € I'sug if SUS' C A, and
fs-fe=0if SUS = A.
Here we set u; = ZSCA fi.s, where fi s € Is. Then, for all j € S;,
miw)= Y fis=1.
JESCA

Thus, fig = 1and f; s = 0forall S # ¢ with j ¢ S. Therefore, setting

Ai={S§CA|S <S8},

ui=1+Y fis.

SeA;
Since S; US;yy = A (i #1i'),forS € A; and §' € Ay withi # i/, we can easily see (1)
SUS = Aand (2) S # §'. Thus, using the above (1), we obtain

N
u1-~-uS=1+ZZfi,s.

i=1 SeA;

we can write

Moreover, using the above (2), we can find f; s = 0. Thus, we get u; = 1 for all i. O
REMARK 4.3. If we do not assume the condition
“¢(X") & Supp(My /M;) for any irreducible component X’ of X

in Theorem 4.1, then the assertion of the theorem does not hold in general. For example, let
us consider Ai = Spec(k[X]). Let M be a log structure associated with o : N x N — k[X]
given by

Xv if a=0,

0 ifa#0.

Further, let f : N — N x N be a homomorphism defined by f(a) = (a, 0). Then, (A,i, M)
is log smooth and integral over (Spec(k), N x k). Here let us consider a morphism ¢ :

a(a,b) =
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A,l — A,l induced by a homomorphism ¢ : k[X] — k[X] given by ¢¥(X) = 0. Then,
¢(A,1) = Supp(M/N x k*). Moreover, we consider a homomorphism

h:NxN-—- NXxN

defined by A(1,0) = (1,0) and A(0, 1) = (ao, bg) (ap > 0). Then, it is easy to see that the
following diagrams are commutative:

NxN - NxN NxN -5 NxN
al s d L
N — N, kx] - kx).

Thus, (¢, h) : (A,i, M) — (A,i, M) is a log morphism over (Spec(k), N). On the other hand,
we have infinitely many choices of ag and by.

5. Log differential sheaves on a semistable variety.  Here, let us consider a log
differential module on a semistable variety.

PROPOSITION 5.1. Let k be an algebraically closed field and My, a fine log structure
on Spec(k). Let X be a semistable variety over k and My a fine log structure of X. Assume
that (X, Mx) is log smooth and integral over (Spec(k), My). Let v : X — X be the nor-
malization of X and Mg the underlying log structure of v*(Mx), that is, M = v*(Mx)"
(cf. see Convention and terminology 7). Then, (X, M) is log smooth over (Spec(k), k™) and
.Q)l( (log(Mg/k*)) is isomorphic to v* 2} (log(Mx / My)).

PROOF. First of all, there is a fine sharp monoid Q with My = Q x k*. Leta : My —
Ox and o’ : vV*(Myx) — Oy be the canonical homomorphisms. For a closed point x € X,
let (79 : Q — My, mp : P — MX,W’f : Q — P) be a good chart of (X, Mx) —
(Spec(k), My) at v(x). Here we have three cases:

(A) v(x) is a smooth point of X.

(B) v(x)is asingular point of X and f : Q — P splits.

(C) v(x)isasingular point of X and f : Q — P does not split.

CLAIM 5.1.1. (f(, M) — (Spec(k), k*) is log smooth at x.

CASE A. In this case, v(x) = x. Then, by Theorem 3.1, P = f(Q) x N". Let ¢; be
the i-th standard basis of N" and T; = 1 ®e¢; in k ®«[o1k[P]. Then, k[Ty, ..., T 1(z,,...1.) =

Oy is smooth. Therefore, adding indeterminates 7,41, ..., T,, we see that
h:k[Tl’---aTr’Tr+la---’Tn](T1 ,,,,, T;l)_>OX,)E

is étale. Sett; = a(mwp(e;)) fori =1,...,r. Then, 1, ..., t, form a part of local parameters

of Ox x, since h(T;) = t; fori = 1,...,r and h is étale. Moreover, My . is generated by

f,...,t and (9; <~ Thus, we get our assertion.
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CASE B. In this case, by Theorem 3.1, char(k) # 2, P = f(Q) x N and N is a monoid
such that
KIN]=K[Ty..... T,1/(T} = T3).

Moreover, after adding indeterminates 7,41, ..., T;41,

he k[T T Tt Topt a7y /(TF = T5) = Ox 5

is étale. Set #; = a(wp(T})) fori =1,...,r. Changing the sign of 7 p (T»), we may assume
that X at x is the component correspondmg tot; = 5. Note that h(T}) =1; fori = 1,...,r.
Thus, M ; % i is generated by 1, . .., , and (’);1 sand f, ..., t form a part of local parameters

of OX, - This shows the assertion.
CASE C. In this case, by Theorem 3.1, P is of semistable type
@1, p1y-eey Preqos Cltls -« -5 Cr)
over Q. Then, we have
k Qo) k[Pl = k[T, ..., T, 1/(T1--- T7)
via the correspondence 1 ® p; <— T;. After adding indeterminates 7,1, ..., T,+1, we have
KTy, oo T Trts oo Tt Iy o /(T - T1) = Oy 56y

is étale. We denote a(mp (p,)) by t; fori = 1, ,r. Renumbering p1, ..., p,, we may
assume that the component X at x is given by 1] = O Note that h(T;) = t; fori = 1,
Thus, M ; %5 is generated by 7, . .., , and (’);1 and f, ..., t form a part of local parameters
of OX - Hence, we get our assertion.

Next we claim the following:

CLAIM 5.1.2. Fora € My ¢, thereis b € v*(Mx)z with a'(b) = a. Moreover,b @ 1
is uniquely determined in v*(MX)Ep Rz (’)5”.

The existence of b is obvious, so that we consider only a uniqueness of b. We use the
same notation as in Claim 5.1.1 for each case.

CASEA. Seta =u-t{"---1;" (u € (’))X(’)E and ay, ...,a, € N). In order to see the
uniqueness of b, we set b = (f(q),b1,...,b,,v) (g € Q,b1,...,b, € Nandv € (’);j).
Then, o’ (b) = B(q) - v - tfl -2 where B is given by
o=t
Thus,q =0,v=uand (by,...,by) = (ay,...,ay).

CASEB. Wecanseta = u - tgz et (e O;x and ap, ...,a, € N). Moreover,
weseth = (f(q),T)" - T)> - T, v) (¢ € Q, b1,....,by € Nand v € O} ). Then,
o' (b) = B(q) - v- tb‘+b2-tb3 .-t Thus,

q=0, v=u, ao=by+by and (b3,...,b;)=(az,...,a;).
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Therefore, for b’ = (f(g’), lel . szz e T,b;, V), if o/ (b) = o/ (b') = a, then
b="b"+0,(To/T1)", 1)

in v*(Mx)$ for some ¢ € Z. Here char(k) # 2 and (T>/T1)* = 1. Hence, b® | =’ ® 1 in
V' (Mx)P @z Oz .z

CASEC. Seta = u 15>t (u € O))";x and az,...,a, € N). Let us see the
uniqueness of b. Let us set b = (f(q) + Zle bipi,v) (q € Q,b1,...,b, € Nandv €
O% ). Then, o' (b) = B(g) - v g Thus, g = 0,0 = u, by = 0 and (b2, ..., b,) =
(612, ~--7ar)-

By Claim 5.1.2, there is a natural homomorphism

y : 2;(log(Mg/k*)) — 2¢(log(v*(Mx)/My)) .

Moreover, we have a natural homomorphism

y' v (R2x(log(Mx /M) — 25 (log(v*(Mx)/My)) .

CLAIM 5.1.3. y and y' are isomorphisms.

CASE A. In this case, y’ is an isomorphism around x. Set t; = h(T;) for j = r +
1,...,n. Then, dlog(ty), ..., dlog(t), dty+1, .. ., dt, form a basis of .Q)l} i(log(MX/kX)).
Moreover, d log(ey), ..., dlog(e;), dt 41, ..., dt, form a basis of .Q)l} i(log(v*(MX)/Mk)).
On the other hand, y(dlog(#;)) = dlog(e;) fori = 1,...,r and ykdtj) = dtj for j =
r+1,...,n. Thus, y is an isomorphism around x.

CASEB. Settj = h(T;)forj=r+1,...,n+ 1. Then,
dlog(t),...,dlog(ty), dt, 41, ...,dtyy1

form a basis of .{2)12 i(log(M;{/kX)). Moreover, y (dlog(t;)) = dlog(f}) fori =2,...,r
and y (dtj) = dt; forj =r—+1,...,n+ 1. Let N be the submonoid of N generated by
Ts, ..., T,. Then, we can see that N&* = N'®P x (Ty /1), (T1/T2)* = 1 and N’ ~ N"~1.
Thus, if we set M = f(Q) x N’ x (’);i, then the natural homomorphism

2} (log(M' /M) — 2} (log(v* (Mx)/My)

is an isomorphism because char(k) # 2. Moreover, M’ is log smooth over My. Therefore,
.Q)l} i(log(v*(MX)/Mk)) is a free (’)Xj-module whose basis is given by

dlog(Ts), ..., dlog(T}), dlog(ty+1), ..., dlog(ty1) .

Thus, y is an isomorphism. On the other hand, we can choose

dlog(Tz), R dlog(Tr), dlog(ty+1),...,dlog(t,+1)
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as a basis of v*.Q)l( (log(Mx /My))z. Thus, y’ is also an isomorphism.
CASEC. Settj =h(T;)forj=r+1,...,n+ 1. Then,

dlog(tp),...,dlog(t.), dt, 41, ..., dty1
form a basis of .Q}( i(log(M;(/kX)). Moreover, y(dlog(t;)) = dlog(p;) fori = 2,...,r

and y(dtj) = dtjfor j =r+1,...,n+1. Let P’ be the submonoid of P generated by f(Q)
and po, ..., pr. Then, since

p1=—(pa+--+p)+ fq)+ Y cipi,
i>l
we have P’®? = P8P Thus, if we set M/ = P’ x (’); £ then the natural homomorphism

2} (log(M'/My) — 2} _(og(v*(Mx)/My)

is an isomorphism. Moreover, since P/ = f(Q) x N =1 we can see M is log smooth over
M. Therefore, 52)1? x(log(v*(Mx)/Mk)) is a free O3 ;-module whose basis is given by

dlog(pz)a L} dlog(pr)’ dlog(tr-i-l)a L} dlog(tn-i-l) .

Thus, y is an isomorphism. On the other hand,

dlog(p2), ..., dlog(py), dlog(try1), ..., dlog(tnt1)
is a basis of v*.Q)l((log(MX/Mk));. Thus, y’ is also an isomorphism. O

6. Geometric preliminaries.

6.1. Relative rational maps. Let k be an algebraically closed field, X and Y proper
algebraic varieties over k, and T a reduced algebraic scheme over k. Let @ : X x4 T --»
Y xi T be arelative rational map over 7. Recall that this means that there is a dense open set
U of X x T such that @ is defined over U, @ : U — Y Xx; T is a morphism over T and for
allt € T, U N (X x {t}) # @. In this subsection, we prove the following proposition.

PROPOSITION 6.1.1. Letk, X, Y, T and @ : U — Y xy T be as above. Then the
following holds.

(1) {t €T | ®|xxyy is dominant} is closed.

(2) {t €T | Dlxxy is separably dominant} is locally closed.

(3) Assume that X is normal. Let Dy and Dy be reduced divisors on X and Y, respec-
tively. For a rational map ¢ : X --+ Y, we denote by Xy the maximal open set over which ¢
is defined. Then,

{t €T | (@|xxqy) "(Dy) C Dx on Xolxun!
is constructible.

(4) Let Z be a subvariety of Y. Then, {t € T | @|xx1}(X) € Z} is closed.

(5) Leth : F — G be a homomorphism of locally free sheaves on X x T such that
h; : Fy — Gy is not zero for every t € T. Then,

{t € T | the image of h; : F;y — G is rank one}
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is closed.

PROOF. (1) Let Z be the closure of @(U) and p : Z — T the projection induced by
Y xx T — T. Since Z is proper over T, it is well known that the function 7 — Z given by
t — dim Z; is upper semicontinuous. Moreover, dim Z; < dimY and the equality holds if
and only if Z; = Y. Thus, we get (1).

(2) By virtue of (1), we may assume that @|x »(;} is dominant forall r € T'. In this case,
we note that it is open. Indeed, this can be easily checked by Lemma 6.1.2 and the following
fact: Let L be a finitely generated field over a field K. Then, by [8, 4.4.2], dimy, §2 i /K >
tr. degg (L) and the equality holds if and only if L is separable over K.

(3) First assume that 7' is normal. We may assume that U is maximal. Then, since
X xi T is normal, by applying Zariski main theorem to each fibre, we see that codim(X x
{t}\U) = 2forallt € T. Thus, (¢|X><{t})_l(Dy) C Dx on Xojy, if and only if
(@|(xxpnu) " (Dy) € Dx. Here we set W = &~ 1(Dy x4 T) \ Dx xx T on U. Let
q : W — T be the projection induced by X x; T — T. Then, t ¢ g(W) if and only if
(¢|(XX{,})QU)’1 (Dy) € Dy, which proves our assertion by Chevalley’s lemma.

Next we consider the general case. Let 7 : T — T be the normalization of 7. Then,

{r € T | (@lxx) " (Dy) S Dx on Xo|y,,}
=n({f € T | (®lyx) ' (Dy) S DxonXo|, - }).
Thus, we get (3).

(4) Let W be the Zariski closure of @ ~1(Z xj T). Then, D |xx((X) € Z if and only
if X x {t} = W;. Since W is proper over T, it is well known that the function 71 — Z given
by ¢ = dim W, is upper semicontinuous. Moreover, dim W, < dim X and the equality holds
if and only if W; = X. Thus, we obtain (4).

(5) Let K be the function field of X. Let us consider homomorphisms F ®; K —
G ®k K. Since h; # 0 forall t € T, we have (5) by Lemma 6.1.2. a

LEMMA 6.1.2. Let K[X1,...,X,] be the r-variable polynomial ring over a field
K and k an algebraically closed subfield of K. Let I be an ideal of k[X1, ..., X,] and
A(X1, ..., X,) ann x m-matrix whose entries are elements of

K[X1,.... X/ 1/IK[X1,..., X,].
Then the function given by
KoV s (ty,....,t;) = 1kA(ty,..., 1) € Z
is lower semi-continuous, where

V() ={(x1,....x) €k’ | f(x1,...,x,) =0forall fel}.

PROOF. Clearly, we may assume that / = {0}. Considering minors of the matrix
A(Xq, ..., X,),itis sufficient to see the following claim:
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CLAM 6.1.2.1. For fi1,..., fi € K[X1, ..., X;], the set
{(-xlv-'-sx}’)Ekr|fl(-xls'-'v-xr):“':ﬁ('xlv-~-1x}’)zo}

is closed.

Replacing K by a field generated by coefficients of fi, ..., f; over k, we may assume
that K is finitely generated over k. Since k is algebraically closed, K is separated over k.
Thus, there are 71, ..., Ty of K such that 71, ..., Ty are algebraically independent over k
and K is a finite separable extension over k(T1, ..., Ty). By taking the Galois closure of
K over k(T1, ..., Ty), we may assume that K is a Galois extension over k(71, ..., Ty). For
f=Y,aX" € K[X1,...,X,] and 0 € Gal(K/k(Ty, ..., Ty)), we denote Y, o(as) X’
by f“. Here, we set

Fi = I1 i

oeGal(K /k(Ty,....Ty))
fori =1,...,1. Then, Fy, ..., F; € k(Ty, ..., T)[Xy, ..., X,] and, for (x1,...,x,) € k",
Fi(xl,---,xr)=0<:>fi(xl,---axr)=0
fori = 1,...,1. Indeed, if F;(x1,...,x;) = 0, then fl."(xl,...,x,) = 0 for some o €
Gal(K /k(Ty, ..., Ty)), which implies that
0=0""(f (1o, x)) = filx1, .., %)

By the above observation, we may assume that K = k(71, ..., Ty). By multiplying some
¢(Ty, ..., T,) € k[T, ..., Ts] to f;, we may further assume that

fioooo freklT, .. Tl Xy, .. X0 ]
We set

fi=) T’ (ciseklXi....X/])
J

fori =1,...,1. Then, for (x{,...,x,) € k",
fixt, ..., x,) =0<=cijx1,...,x)=0 forall J.
Thus,

{(x1,...,x,) €k | fi(x1,...,x,) =0 forall i}
={(x1,....x,) €k |cijx1,...,x,) =0 foralli, J}.

Therefore, we get the claim. |

6.2. Geometric trick for finiteness. Let k be an algebraically closed field. Let X be a
proper normal variety over k and Y a proper algebraic variety over k. Let E be a vector bundle
on X and H a line bundle on Y. We assume that there is a dense open set Y of ¥ such that
HO(Y, H) @ Oy — H is surjective over Yg. Let ¢ : X --» Y be a dominant rational map
over k. Let Xy be the maximal open set of X over which ¢ is defined. We also assume that
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there is a non-trivial homomorphism 6 : ¢*(H) — E|x,. Then, since codim(X \ Xy) > 2,
we have a sequence of homomorphisms

H(Y,H) - H°(Xy4, ¢*(H)) - H(Xy, E) = H'(X, E) .
We denote the composition of the above homomorphisms by
B(#.6): H'(Y,H) — H'(X,E).
Then we have the following.

LEMMA 6.2.1. Let L be the image of

,0 id
HO(Y, H) @ Ox L9080

Then the rank of L is one and the rational map

¢ X --» P(H(Y, H))

HY(X,E)®; Ox — E.

induced by HO(Y, H) ®; Ox — L is the composition of rational maps
)
x -2y 2 pOy. 1Y),
namely, ¢' = @|u| - ¢.
PROOF. Considering the following commutative diagram

(¢,0)®id
HO(Y, H) @ Ox, 22225 HOX, E) @ Ox,

l !

¢*(H) BN Elx, ,

we can see that 6 gives rise to an isomorphism

¢ (H)lx,ng-1(vp — Llxyng—1(v) -

Moreover, the rational map Xy --» P(H(Y, H)) given by HOY, H) ®x (’)X¢ — ¢*(H) is
@\ - ¢. Thus, the rational map ¢’ : X --» P(H°(Y, H)) induced by H°(Y, H) ® Ox — L
is nothing more than the composition of rational maps

¢ biH)| 0
X--»Y-->P(H"(Y,H)). O

From now on, we assume that H is very big, that is, the morphism Yy — P(HO(Y, H))
induced by H O(Y , H) @ Oy, — Hly, is a birational morphism onto its image. Let C be a
subset of Raty (X, Y) (the set of all rational maps of X into Y over k). We assume that for all
peC,

(1) ¢ is a dominant rational map, and

(2) we can attach a non-trivial homomorphism 6 : ¢*(H) — E|x s 10 ¢, where X is
the maximal Zariski open set of X over which ¢ is defined.

As before, we have a homomorphism

B(¢.0s) : H(Y,H) - H'(X, E).
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We denote the class of 8(¢, 6y) in PHomi (H(Y, H), HY(X, E))Y) by y (¢, 04). By abuse
of notation, we often use y (¢) instead of y (¢, 65) .

LEMMA 6.2.2. Let ¢,V be rational maps in C and let 0y : ¢*(H) — Elx, and
Oy = Y (H) — Elxw be non-trivial homomorphisms. Then y (¢, 0ys) = v (¥, 0y ) implies
¢=1y.

PROOF. By our assumption, there is a € k* with af(¢) = B(¥). Hence we have the
following commutative diagram:

,04)Rpid
HOY, H) @ Ox 229 pox Ey@w Oy —> E

.0 id
HOY, H) @, Oy 2L pox Bygy Oy —> E.

Let Ly (resp. Ly ) be the image of HO(Y, H) ® Ox — E in terms of B(p,0p) (resp.
B, 0y )). Then, the above diagram gives rise to a commutative diagram

HO®Y, H)®; Ox —> Ly

| I

HOY, H) ® Ox —> Ly .

Let¢' : X --» P(HO(Y, H)) and ¥ : X --» P(HO(Y, H)) be the rational maps induced
by HO(Y, H) ®; Ox — Lg and HO(Y, H) ®; Ox — Ly, respectively. Then, by the above
diagram, we can see ¢’ = v'. Hence we get our lemma by Lemma 6.2.1. a

Next we show the following.

PROPOSITION 6.2.3. Let T be a connected proper normal variety over k, and let
D X xpT-->Yx; T

be a relative rational map over T (cf. Convention and terminology 8). Let f : X <y T — T
and g : Y xx T — T be the projections to the second factor, respectively, and let p :
X xy T — Xandq : Y xx T — Y be the projections to the first factor, respectively.
Assume that there exist a dense open subset Ty of T and a non-trivial homomorphism © :
D*(q*(H)) — p*(E)|y such that, for allt € Ty, P|xxiy € C and the class of B(P;, O;) in
PHomi(HO(Y, H), H)(X, E))Y) is y (D, ©;), where U is the maximal open set over which
@ is defined. Then there is ¢ € C such that ® = ¢ x idr.

PROOF. Since X x T is normal, we may assume that codim((X x; 7)\ U) > 2. Here
we have a homomorphism

HOY. H) ® Or = g.(q*(H)) = (flo)«(@*(@*(H))) > (flo)(p*(E)).



DOMINANT RATIONAL MAPS IN LOG SCHEMES 515

We claim that the natural homomorphism f,(p*(E)) — (flu)«(p*(E)) is an isomorphism.
Indeed, if W is an open set of T, then

(flo)«(P*(E)W) = HO(U N (X xx W), p*(E)) .

Note that codim((X x; W) \ U N (X xx W)) > 2. Thus, HO(U N (X xx W), p*(E)) =
HOX x; W, p*(E)). Hence we get a homomorphism

B:HY, H)® Or - H'(X,E)® Or .

Here, T is proper and irreducible. Hence there is fp € Homy (H Oy, H), H%(X, E)) such
that 8 = Bo ® id. This means that 8(®;, ®;) = Bp. Thus, by Lemma 6.2.2, there is ¢ € C
such that @, = ¢ for all ¢+ € Ty. Therefore, we get our proposition. O

Finally, let us see the following proposition.
PROPOSITION 6.2.4. There exist a closed subset T of
P (Homy(H(Y, H), H'(X, E))")

and a relative rational map @ : X xx T --» Y xx T over T such that if we consider
y : C— P Homi(H(Y, H), H(X, E))V), then y (C) € T and ®|xx(y(4)} = ¢

PROOF. We set P = P(Homy(HO(Y, H), H°(X, E))V). Then, there is the canonical
homomorphism
Homy (HO(Y, H), H*(X, E))¥ @ Op — Op(1),
which gives rise to a universal homomorphism
B:HO(Y, H) @ Op(=1) — H(X, E) ® Op,
that is, for all € P, the class of
B - HO(Y, H) @ (Op(=1) @ k(1)) — H(X, E)

in P coincides with 7, where «(¢) is the residue field of Op at r. Here we consider the
composition of homomorphisms

id
h: HOY, H) @ Op(—1) & Ox "5 HOX. E) @, Op @ Ox — E & Op

on X xj P. Then, by (5) of Proposition 6.1.1, if 77 is the set of all # € P such that the image
of h; is of rank 1, then 77 is closed. Let L be the image of

hir, : HO(Y, H) @ Or, (=1) ® Ox — E & Or; .
Then we have the surjective homomorphism

H(Y, H) ® Oxx,1, — L ®0x, 1, Oxxiri (1)
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Let U; be the maximal Zariski open set of X x; 77 such that L is invertible over U;. Here,
note that forall r € T7, U; N (X xi {t©1}) # @. Thus, we get a relative rational map

D1 : X x; Ty --» P(HY(Y, H)) x; T}

over T (cf. Convention and terminology 8). Let Y} be the closure of the image of ¢y (Y).
By (4) of Proposition 6.1.1, the set

T={teT|(@):(X)C Y1}

is closed. Hence we obtain a relative rational map

Dy X %, T --» Y1 xx T,
which gives rise to a relative rational map

DX xpy T--+Y % T.
By our construction, this rational map has the following properties: For all t € T, let ; :
HOY, H) - H°(X, E) be the homomorphism modulo £ corresponding to ¢ € P, and let
L; be the image of

HY, H)® Ox > HYX,E)® Ox —> E ..

Here, the rank of L; is one. Thus, we have a rational map ¢; : X --» P(HO(Y, H)) induced
by H O(Y ,H) ® Ox — L;. Then, ¢;(X) C Y| and the following diagram is commutative:

D|x {1}
X—Y

N S

Y.
Therefore, by Lemma 6.2.1, @ : X x; T --+» Y X T is our desired relative rational map. O

7. Finiteness theorem over the trivial log structure. Letk be an algebraically closed
field and let X and Y be proper normal algebraic varieties over k. Let Dy and Dy be reduced
Weil divisors on X and Y, respectively. Let My and My be fine log structures of X and Y,
respectively, such that

Mx = jx.(Ox\p,) NOx and My C jy,(Oy p,) N Oy,
where jy and jy are natural inclusion maps X \ Dx < X and Y \ Dy — Y, respectively.
Then, for a rational map ¢ : X --» Y, ¢ extends to (X, Mx) — (¥, My) if ¢ Y(Dy) C
Dyx. Throughout this section we assume that (X, Mx) and (Y, My) are log smooth over
(Spec(k), k).

Note that if X is smooth over k, then the log smoothness of (X, Mx) over (Spec(k), k)
guarantees that My = jX*(O)X(\DX) N Ox for Dx = Supp(Mx/Oyx) (cf. Theorem 3.1). In
this case, if we assume further that Y is smooth and of general type over k, then the finiteness
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theorem (cf. Theorem 7.1) for such (X, Mx) and (Y, (’))’f) follows from the finiteness theorem
in [2].

Suppose that (Y, My) is of log general type over (Spec(k),k™), namely,
det Q}(log(My/kX)) is big. Then there is a positive integer m such that det .Q},(log(My/
k*))®™ is very big. Here we set

H = det 2} (log(My /k*)®™ and E = Sym™(A™" 2} (log(Mx/k*))) .
Then, if ¢ : (X, Mx) --» (Y, My) is a rational map, we have a natural homomorphism
65 ¢"(H) > Elx,

where X is the maximal open set over which ¢ is defined. Moreover, if ¢ is separably dom-
inant, then 6 is non-trivial. Let SDRat((X, Mx), (Y, My)) be the set of separably dominant
rational maps (X, Mx) --» (Y, My) over (Spec(k), k).

THEOREM 7.1. SDRat((X, My), (Y, My)) is finite.
PrROOF. First we need the following lemma.

LEMMA 7.2. Let T be a smooth proper curve over k and @ : X xx T --» Y x; T
a relative rational map over T (cf. Convention and terminology 8). If there is a non-empty
open set To of T such that for allt € Ty, @, is separably dominant and bel (Dy) € Dy, then
there is a rational map ¢ : X --» Y with ® = ¢ x idr.

PROOF. First of all, by Proposition 6.1.1, forallt € T, @|x (s} : X --» Y is dominant.
Let us take a effective divisor D on X such that

®|3) (DY) € Dx UD

forall t € T \ Tp. By using de-Jong’s alteration [1], we see that there are a smooth proper
variety X’ and a separable and generically finite morphism 1 : X’ — X such that ' (Dy U
D) is a normal crossing divisor on X’. Let Dy = w Y (DxUD)and My = jX’*(O)X(’\DX,) N
Oy, where jy : X'\ Dx, — X' is the natural inclusion map. Then, (X', M) is log smooth
over (Spec(k), k™). We set @' = @ - (u x idy). Then, forallt € T, <D’|;(1X{t}(Dy) C Dyr.
Moreover, for all t € Ty, @’| X x{r} 18 separably dominant. Thus, in order to prove our lemma,
we may assume that forall t € T, Cb|}1x{t}(Dy) C Dy.

Let f : X xx T — T and g : Y xx T — T be the projections to the second factor,
respectively, and let p : X xx T — X andg : Y x;x T — Y be the projections to the
first factor, respectively. Let U be the maximal open set over which @ is defined. Then we
have a rational map (X xj; T, p*(Mx)) --+ (Y xx T, q*(My)) and (X x4 T, p*(Mx)) and
(Y x¢ T, g*(My)) are log smooth over (T, (9;). Thus, there is a non-trivial homomorphism

O :®*(q"(H)) — p*(E)lu .

Therefore, we get our lemma by Proposition 6.2.3. a
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Let us go back to the proof of Theorem 7.1. If ¢ € SDRat((X, M), (Y, My)), then we
have the non-trivial homomorphism

O : ¢"(H) — E|x, .
Thus, by Proposition 6.2.4, there is a closed subset T of
P (Homy (H°(Y, H), H'(X, E))Y)
and a relative rational map @ : X x; T --» Y Xy T over T such that if we consider
y : SDRat((X, Mx), (Y, My)) — P(Homi(H°(Y, H), H*(X, E))Y),

then

y(SDRat((X, Mx), (Y, My))) € T
and @|xx(y(¢)) = ¢. Note that y is injective by Lemma 6.2.2. Let T; be the setof allt € T
such that @ | x (s} is separably dominant and @ |§1X{t} (Dy) < Dx. Then, by Proposition 6.1.1,
T, is constructible. Let T, be the Zariski closure of 77. If dim 7> = 0, then we have done, so
that we assume that dim 7> > 0. Then there is a proper smooth curve C and 7w : C — T3 such
that the generic point of C goes to 77 via w. Moreover, we have arational map ¥ : X x;C --»
Y x C induced by X x4 T» --» Y x T>. By our construction, there is an open set Cy of C
such that for all # € Cop, ¥|xx,c, is separably dominant and l,I/|)_(1X{t}(Dy) C Dy. Thus, by
Lemma 7.2, there is arational map ¢ : X --» Y with ¥ = ¢ xid. We choose x1, x3 € C with
w(x1) # w(xp) and w(x1), w(x2) € T1. Then we have ¢, ¢p» € SDRat((X, My), (Y, My))
with y(¢1) = m(x1) and y (¢2) = w(x2). Since y is injective, ¢; # ¢». On the other hand,
we have

Y = Vxxpln} = Plxspin)) = @i
for each i. This is a contradiction. O

8. The proof of the finiteness theorem. In this section, let us consider the proof of
the finiteness theorem in general.

THEOREM 8.1. Let k be an algebraically closed field and My a fine log structure of
Spec(k). Let X and Y be proper semistable varieties over k, and let My and My be fine
log structures of X and Y, respectively. Assume that (X, Mx) and (Y, My) are integral and
smooth over (Spec(k), My). If (Y, My) is of log general type over (Spec(k), My), then the set
of all separably dominant rational maps (X, Mx) --» (Y, My) over (Spec(k), My) defined
in codimension one is finite (see Convention and terminology 8).

PROOF. First we prove the following lemma.

LEMMA 8.2. LetY be a semistable variety over k and H a line bundle on Y. Let Y’ be
an irreducible component of the normalization of Y and i : Y' — Y the natural morphism.
If H is big, then u*(H) is big.
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PROOF. Let m be a positive integer m such that H®" is very big. Let V be the image
of HO(Y, H®) — HO(Y', n*(H®™)). Then, we have the following diagram:
g diag

Y =Y - - — = P(H'(Y, H®"))

~ =~
~N ~
BN
N P(V)
\\ A
~ |
|

P(HO(Y', f*(H®™))).

Let Y1 and Y; be the image of Y’ --» P(V) and Y’ --» P(HO(Y’, w*(H®™))) respectively.
Then,

k(Y") = k(Y1) € k(Y2) Ck(Y").
Thus, Y’ --» Y> is birational. O

Let us go back to the proof of Theorem 8.1. Let X1, ..., X, and Y7, ..., Y beirreducible
components of the normalizations of X and Y, respectively. Moreover, let f; : X; — X and
gj : Yj — Y be the canonical morphisms. We set My, = f;*(Mx)" and My, = g;‘(My)”
(cf. Convention and terminology 7). Then, by Proposition 5.1, (X;, My,) and (Y}, Myj) are
integral and log smooth over (Spec(k), k*). Further, by Proposition 5.1 again, we see that

2y, (log(Mx,)) = f*(2x (log(Mx /My)))
and

@} (log(My,)) = g} (2} (log(My /M)

Thus, by the above lemma, (Y, My;) is of log general type over (Spec(k), k™) for every ;.
We denote the set of all separably dominant rational maps (X, Mx) --+ (Y, My) defined in
codimension one over (Spec(k), My) by

SDRat((X, Mx), (Y, My)) .

Moreover, the set of all separably dominant rational maps (X;, My,) --» (¥}, Myj) over
(Spec(k), k*) is denoted by

SDRat((X;, Mx,), (Y}, My))).
Then, we have a natural map

W : SDRat((X, My), (Y. My)) — | [ []SDRat(X:. Mx,). (Yo, My, )

oeS(r,s)i=1

as follows. Here S(r, s) is the set of all maps from {1,...,r} to {1,...,s}. Let (¢,h) €
SDRat((X, M), (Y, My)). Then, for each i, there is a unique o (i) such that the Zariski
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closure of ¢ (X;) is Y5(;). Then we have (¢|x;, hi) : (Xi, Mx;) = (Yo@), My,;,) (cf. Con-
vention and terminology 7). By Theorem 7.1,

SDRat((X;, My,), (Y}, My,))

is finite for every i, j. Therefore, it is sufficient to see that ¥ is injective. Let us pick
(¢, h), (¢, h') € SDRat((X, Mx), (Y, My)) with ¥(¢) = ¥ (¢'). Then, clearly, ¢ = ¢".
Thus, by Theorem 4.1, we have h = /', O

Appendix. In this appendix, we recall several results, which are well-known for re-
searchers of log geometry. It is however difficult to find literatures, so that for the reader’s
convenience, we prove them here. Actually, we consider two propositions concerning the
existence of a good chart of a smooth log morphism (cf. [10]).

PROPOSITION A.l. Let (¢, h) : (X, Mx) — (Y, My) be a morphism of log schemes
with fine log structures. Let x € X and y = ¢ (x). Assume the following:

(1) The homomorphism Iy My,; — A;Ix,g induced by hy : My 5 — My 5 is injective
and the torsion part of Coker(h$’ : M{‘g,% - M ;C’?’) ) is a finite group of order invertible in
Ox.z. » )

(2) There is a splitting homomorphism sy : My 5 — My 5 of the natural homomor-
phism py : My 5 — My_;, thatis, py - sy = idM”.

Then there is a splitting homomorphism s Mx,; — My z of the natural homomor-
phism px : My i — I\;Ix,; such that py - sy = idMX,; and the following diagram is commuta-
tive:

- . -
My_; —A> MXJ;

b

he
MY'; - Mx x.

PROOF. First of all, note that Coker((’)}x(’)E — ¢*(My)z) = My’y. Moreover,

- SV
S; tMyy; — My5 — ¢"(My)x

gives rise to a splitting homomorphism of ¢*(My)z — MY';.
Let us consider the following commutative diagram with exact rows:

0 — OF

X, x > ¢*(MY)§p > MI%% > 0

| |

N gp 18P
MX,)Z MX,)Z

0 — O}

X, x 0,
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which gives rise to

Hom(MY';, MY;)  —— Hom(MF;, MY)) BN Ext'(MP¢, O% o)

l [ b

_ _ _ F) _
Hom(Mlg,f’y,Mgg&) — Hom(MIg,f’y,M)gf;) BN Extl(MI%f’).,,O;j)

I [ |

_ _ _ F) _
Hom(M%f},qs*(My)%") — Hom(MIg,f’y,M%%) BN Extl(MI%f’).,,O;x).

By using the diagram

M Ig/?ﬁ — M )gfl,)x :
it follows that y; (id Mi?.;) = 1% and y»(id Mlg%) = 18P Note that the exact sequence
0— O0F; = ¢*(M)T - M -0
splits by s"iP. Thus,
)\(51(idM§r})) =& (idMir})) = 52()’2(idM§f’y)) = 53(id1(4§%) =0.
On the other hand, by our assumption, we have that
Ext'(Mx /My, Ox:)=0.

Thus, we obtain that A is injective. Therefore, 81 (id Mipf) = 0. Hence, we have a splitting

: . Ay gp gp Yo
homomorphism s : MX’)E — MX’)E of MX’)E — Mx ;.

Here we claim that s(MX,);) C My ;. Indeed, let us choose a € MX,);. Then there is
b € My 5 with py(b) = a. Since py(s(a)) = a, there is ¢ € Oy ; such that s(a) = b+ c in
MS ;. Here b, ¢ € My z, which implies s(a) € My x.

Therefore, we get a diagram

, A -
MYJ —> Mx;

hy
MYJ —> Mx ;.

It should be noted that the above diagram is not necessarily commutative. By our assumption,
for alla € My 3, there is a unique u € O)X(,x such that s(hy(a)) + u = hy(sy(a)). We denote
this u by w(a). Thus, we have a homomorphism 8P : 1\711%?y — (9;’ - Here we consider an
exact sequence

0— M}%,py - M?(I,)X —> 1\713?’;/1\715% -0,
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which gives rise to
Hom(MZ' ¢, O% o) — Hom(My;, O 1) — Ext! (MP/ M5, OF ©) = {0} .

Thus, there is v € Hom(M)g(Pi, (9; &) with v - ¥ = ugP. Here we set sy = s + v. Then it
holds that

se(hy(a)) = s(hx(@)) + v(he(a)) = s(hi (@) + p(a) = hy(sy(@)) .
Thus, we get our desired s . O

PROPOSITION A.2. Let (¢,h) : (X, Mx) — (Y, My) be a smooth morphism of log
schemes with fine log structures. Fix x € X and y = ¢(x). Assume that there are (a) étale
neighborhoods U and V of x and y, respectively, (b) chartswp : P — Mx|y andmg : Q —
My|y, and (c) a homomorphism f : Q — P with the following properties:

() W)V, ] )

(2) The induced homomorphisms P — My z and Q — My 5 are bijective.

(3) The following diagram is commutative:

o L. p

an l’”’

h
Myly — Mxly .

Then the canonical morphism g : X — Y Xspec(z[o]) Spec(Z[P]) is smooth around x in the
classical sense.

PROOF. We consider the natural homomorphism
o : Coker(Q% — P®) @z Ox5z — Ry ,y.; (log(Mx/My)) .
First we note the following.
CLAIM A.2.1. « isinjective and gives rise to a direct summand of

2xy.:(log(Mx /My)).

In the same way as in [5, (3.13)], we can construct a chart 7p : P — My z and an
injective homomorphism f": Q — P’ with the following properties:
(i) The torsion part of Coker(Q% — P’®P) is a finite group of order invertible in
OX’;.
(i) The following diagram is commutative:
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(iii) The natural homomorphism
o : Coker(Q% — P'®*) ®z Ox; — Qk/y,i(log(Mx/MY))

is an isomorphism. Moreover, there are 71, ...,# € P’ such that a subgroup generated by
t1,...,t, in Coker(Q% — P’®P) is a free group of rank r and its index in Coker(Q% —
P8Py is invertible in Oy 3. In particular,

dlog(rtp (1)), ..., dlog(mp: (1))

form a free basis of ‘Q)l(/Y,)E (log(Mx /My)).
Considering the commutative diagram

Q;MyﬁyéQ

oal b

—> MX’; <~ P,

we have a surjective homomorphism A : P’ — P with - f' = f. Thus, we obtain the natural
surjective homomorphism

B : Coker(Q% — P'®P) @7 Ox ; — Coker(Q® — P&)®z Oy ;.

Hence we have the following commutative diagram:

Coker(Q% — P'**) ®7 Ox 5 — Qk/y,i(log(MX/MY))
o

Coker(Q% — P&) ®z Ox ;.
In order to see the claim, it is sufficient to see that y = B - o L aisan automorphism on
Coker(Q®P — P&)®z Ox i, because (B ~oz’_l) ~(a-y~1) = id. Here we set wp/ (t;) = piu;
(pi € P,u; € (’); 2 fori =1,..., r. Letus consider the natural surjective homomorphism
0 : 2%y ;(log(Mx/My)) ®z Kk (¥) —
Coker(My; — M) ®z (%) = Coker(Q% — P*) @7 k(%)

given by dlog(a) — a ® 1 as in [5, (3.13)]. This is nothing more than (8 - 0/71) ® Kk (x).
Indeed, we see that

(B - )(dlogp (1)) = Bti) = pi,
0(dlog(mp (1)) = ti = pi mod O ;.

On the other hand, we have the natural map
@ ® k(%) : Coker(Q% — PP) @7 k(X) — 2y z(log(Mx/My)) ®z K (%)

given by a ® 1 — dlog(a), which is a section of 6. Therefore, y ® «(x) = id. Thus, by
Nakayama’s lemma, y is surjective, so that y is an isomorphism by [7, Theorem 2.4].
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Set X’ =Y X spec(z[o]) Spec(Z[P]). Let ¢ : X' — Spec(Z[P]) be the canonical
morphism and Mp the canonical log structure on Spec(Z[P]). Set My, = y*(Mp). Let o
the origin of Spec(Z[P]) and x’ = (y,0) € X'. Then, My 3 = O)X(/,x/ x P. Here, .Q)l(,/yj,
is generated by {d(1 ® x)}xez(P);- Thus, there is a natural surjective homomorphism

Coker(Q® — P®) ®z Ox' ¢ — R4,y o (log(My//My)) .
Therefore, we have a surjective homomorphism
Coker(Q% — P®) ®z Ox x — ¢*(2y1,y v (0g(Mx:/My))).

Thus, by the claim,

9" (Ryy o (log(Mx1/My))) = 2y y  (log(Mx /My))

is injective and g¢* (2} (log(Mx//My))) is a direct summand of

YLE
‘Q)l(/Y,i(log(MX/MY)) .
Therefore, by [5, Proposition (3.12)], g is a smooth log morphism. Moreover, note that
g*(Mx) = Mx. Thus, g is smooth in the classical sense. O
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