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ON THE HODGE STRUCTURE OF DEGENERATING HYPERSURFACES
IN TORIC VARIETIES
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Abstract. We introduce an algebraic method for describing the Hodge filtration of
degenerating hypersurfaces in projective toric varieties. For this purpose, we show several
fundamental properties of logarithmic differential forms on proper equivariant morphisms of
toric varieties.

1. Introduction. There has been a method to describe the Hodge structure of varieties
by their defining equations which originated with Griffiths for the case of hypersurfaces in a
projective space [7]. Subsequently, the theory was extended to the case of hypersurfaces in
simplicial projective toric varieties by Dolgachev [5], Steenbrink [13], Batyrev and Cox [1].
The purpose of this paper is to apply their idea to degenerating families of hypersurfaces in
projective toric varieties.

Let π : P → A be a proper surjective equivariant morphism of toric varieties over an
algebraically closed field k. Here we assume for simplicity that P is nonsingular, A is an
affine space A = Spec k[t1, . . . , tm], and the characteristic of k is 0. Let X be a hypersurface
in P. When π is flat and geometrically connected, it gives a trivial fibration of a nonsingular
complete toric variety over the open torus of A, and degenerated fibers appear at the outside of
the open torus. Hence we can consider X → A to be a degenerating family of hypersurfaces
in the complete toric variety. We define a Jacobian ring for the family, and describe the Hodge
filtration of the family by using the Jacobian ring.

Let {D1, . . . ,Ds } be the set of all prime divisors invariant under the torus action on
P. The homogeneous coordinate ring of P is defined in [2, §1] as a polynomial ring SP =
k[z1, . . . , zs ] which has a grading valued in the divisor class group Cl (P);

deg zi = [Di ] ∈ Cl (P) .

We can assume that π(Di) = A for 1 ≤ i ≤ r , and that π(Dj ) is contained in the divisor
{t1 · · · tm = 0} for r + 1 ≤ j ≤ s. The hypersurface X is defined by a Cl (P)-homogeneous
polynomial F ∈ SP. Then we define the Jacobian ring of X over A by

RX/A = SP

/(
∂F

∂z1
, . . . ,

∂F

∂zr

)
,

which is a Cl (P)-graded k[t1, . . . , tm]-algebra. For β ∈ Cl (P), the degree β part of RX/A is

denoted by RβX/A, which is a finitely generated k[t1, . . . , tm]-module.
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The Hodge filtration of the degenerating family is defined by using the sheaf of relative
logarithmic differential forms, so we consider the situation above with log structure [9]. We
define a log structure on P by the divisor E = ∑s

j=r+1Dj , and define a log structure on A
by the divisor {t1 · · · tm = 0}. Then π is a log smooth morphism, and the log structure of the
general fiber is trivial. The sheaf of relative logarithmic differential p-forms is denoted by
ω
p

P/A, which is a locally free OP-modules. We define a log structure on X by the restriction
of the log structure on P. The next theorem is our main result, where we need not assume that
π is flat and geometrically connected.

THEOREM 1 (Theorem 4.4). If X is ample and log smooth over an affine open sub-
variety U = SpecAU of A, then for 0 ≤ p ≤ n − 1, there is a natural isomorphism of
AU -modules

Hn−p−1(PU,ω
p+1
P/A (logX)) � AU ⊗k[t1,...,tm] R[(n−p)X−D]

X/A ,

where n = dim P − dim A, PU = U ×A P and D = ∑r
i=1Di .

If m = 0, then P is a nonsingular complete variety, and the log structure on P is trivial.
For an ample smooth hypersurface X in P, the isomorphism in Theorem 1 is

Hn−p−1(P,Ωp+1
P (logX)) � R

[(n−p)X−D]
X ,

which was proved in [1, Theorem 10.6]. Namely, Theorem 1 is a generalization of the result
of Batyrev and Cox.

When π is the composite of the blowing up P → A1 × Pn at a point and the first
projection, then the log smooth familyXU → U is a semistable degeneration of hypersurfaces
in Pn. This example was studied by Saito in [12], which is the first work in which the Hodge
filtration of degenerating hypersurfaces are described by Jacobian rings.

The key of the proof of Theorem 1 is the following two fundamental properties of the
sheaf of relative logarithmic differential forms on P. The first property is a generalization of
the Bott vanishing theorem:

THEOREM 2 (Corollary 3.8). If L is an ample invertible sheaf on P, then for p ≥ 0
and q ≥ 1,

Hq(P, ωpP/A ⊗OP L) = 0 .

The second property is a generalization of the Euler exact sequence:

THEOREM 3 (Theorem 3.11). There is an exact sequence of OP-modules

0 → ω1
P/A →

r⊕
i=1

OP(−Di) → OP ⊗Z Cl (P � E) → 0 .

We prove Theorem 2 and Theorem 3 by using the Poincaré residue map for the sheaf of
relative logarithmic differential forms, that is the idea of Batyrev and Cox [1].

This paper proceeds as follows. In Section 2, we consider invertible sheaves on a toric
variety with a proper equivariant morphism to an affine toric variety, and characterize base
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point freeness and ampleness of the invertible sheaves in terms of the support functions on
the fan. In the case of invertible sheaves on a complete toric variety, this is a well-known fact.
In Section 3, we introduce the logarithmic differential forms on a simplicial toric variety with
an equivariant morphism to an affine toric variety. Under the assumption that the toric variety
is simplicial and satisfies a condition which depends on the characteristic of the base field,
we construct the Poincaré residue map for the sheaf of relative logarithmic differential forms.
Using the Poincaré residue map, we prove the Bott vanishing theorem and the Euler exact
sequence. In Section 4, we consider hypersurfaces in a nonsingular toric variety with a log
smooth proper equivariant morphism to an affine toric variety. We define the Jacobian rings
for hypersurfaces over the affine toric variety, and prove the main result which describes the
cohomology of the sheaf of relative logarithmic differential forms by the Jacobian rings.

2. Invertible sheaves on toric varieties. First we introduce basic notation used in this
paper, and then prove some properties of invertible sheaves on a toric variety with a proper
equivariant morphism to an affine toric variety. We refer to [6] and [11] for terminology and
basic facts in toric geometry.

Let N be a free Z-module of finite rank d . We denote by NR the R-vector space R ⊗ZN ,
denote by M the dual Z-module of N , and denote by 〈 , 〉 : MR × NR → R the canonical
bilinear form. Let σ be a strongly convex rational polyhedral cone in NR. The dual cone σ∨
is defined by

σ∨ = {u ∈ MR | 〈u, v〉 ≥ 0 for any v ∈ σ } ,
and we denote by Aσ the affine toric variety Spec k[M ∩ σ∨] associated to σ over an alge-
braically closed field k. Let Σ be a finite fan of strongly convex rational polyhedral cones
in NR. We denote by |Σ| the support

⋃
σ∈Σ σ of Σ , and denote by PΣ the toric variety⋃

σ∈Σ Aσ associated to Σ over k. Then the algebraic torus TN = Spec k[M] is contained in
PΣ as an open subvariety, and TN acts on PΣ as an extension of the translations of TN . For
u ∈ M , the corresponding character

χu : TN → Gm = Spec k[Z]
is considered to be a rational function on PΣ .

For each 0 ≤ r ≤ d , we denote by Σ(r) the set of all r-dimensional cones in Σ . For
τ ∈ Σ(r), we denote by Nτ the free Z-module N/(N ∩ τR), where τR is the subspace of NR

generated by τ over R, and we define the set Στ of cones in Nτ,R by

Στ = {[σ ]τ | σ ∈ Σ and σ ⊃ τ } ,
where [σ ]τ is the image of σ by the natural homomorphism

NR → Nτ,R ; v �→ [v]τ .
ThenΣτ is a finite fan of strongly convex rational polyhedral cones inNτ,R, and the associated
toric variety PΣτ can be considered as a TN -invariant closed subvariety of codimension r in
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PΣ . The closed immersion ιτ : PΣτ → PΣ is induced by

ι∗τ : k[M ∩ σ∨] → k[Mτ ∩ [σ ]∨τ ] ; χu �→
{
χuτ if u ∈ M ∩ τ⊥ ∩ σ∨ ,
0 if u /∈ M ∩ τ⊥ ∩ σ∨ ,

for σ ⊃ τ , where χuτ : TNτ → Gm is the character corresponding to u ∈ Mτ = M ∩ τ⊥.
Let B = ∑

ρ∈Σ(1) bρPΣρ be a TN -invariant Weil divisor on PΣ . We define the convex
subset ∆B of MR by

∆B = {u ∈ MR | 〈u, vρ〉 + bρ ≥ 0 for any ρ ∈ Σ(1)} ,
where vρ is the generator of the monoid ρ ∩N . Then there is a natural isomorphism

H 0(PΣ,OPΣ (B)) �
⊕

u∈M∩∆B
k · χu .

Let h : |Σ| → R be a Σ-linear support function. We define the TN -invariant Cartier divisor
Dh on PΣ by Dh = − ∑

ρ∈Σ(1) h(vρ)PΣρ .
Let N ′ be another finitely generated free Z-module, and let π∗ : N → N ′ be a homo-

morphism of Z-modules. We denote by π∗R : NR → N ′
R the R-homomorphism induced by

π∗, and denote by π∗ : M ′ → M the dual homomorphism of π∗. Then π∗ induces a homo-
morphism of algebraic tori π0 : TN → TN ′ . If a strongly convex rational polyhedral cone
σ ′ in N ′

R satisfies the condition |Σ| ⊂ π−1
∗R (σ

′), then π∗ induces an equivariant morphism of
toric varieties πΣ,σ ′ : PΣ → Aσ ′ , which is an extension of π0.

REMARK 2.1. The morphism πΣ,σ ′ is proper if and only if |Σ| = π−1
∗R (σ

′).

REMARK 2.2. If πΣ,σ ′ is a proper morphism, then |Σ| is a convex subset in NR. Con-
versely, if |Σ| is a convex subset in NR, then we can find a free Z-module N ′, a surjective
homomorphism π∗ : N → N ′, and a strongly convex rational polyhedral cone σ ′ in N ′

R
satisfying |Σ| = π−1

∗R (σ
′).

THEOREM 2.3. Let PΣ be a toric variety, Aσ ′ an affine toric variety, and π : PΣ →
Aσ ′ a proper equivariant morphism. For a Σ-linear support function h, the following condi-
tions are equivalent:

(1) OPΣ (Dh) is generated by global sections.
(2) OPΣ (Dh) is π-nef.
(3) h is upper convex, i.e., for any v1, v2 ∈ |Σ|,

h(v1 + v2) ≥ h(v1)+ h(v2) .

PROOF. (1) ⇒ (2). Let C be a complete integral curve in a fiber of π . We denote
by C̃ the normalization of C, and denote by ι the morphism from C̃ to PΣ . Since OPΣ (Dh)

is generated by global sections, ι∗OPΣ (Dh) has a non-zero global section, so the intersection
number is

(Dh. C) = deg ι∗OPΣ (Dh) ≥ 0 .

(2) ⇒ (3). The morphism π is defined as π = πΣ,σ ′ by a homomorphism π∗ : N →
N ′. We denote by N ′′ the image of π∗, and define the strongly convex rational polyhedral
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cone σ ′′ in N ′′
R by σ ′′ = σ ′ ∩N ′′

R. Then π is factored to the composite of the proper surjective
morphism πΣ,σ ′′ : PΣ → Aσ ′′ and the finite morphism Aσ ′′ → Aσ ′ . We denote by s the
dimension of the convex subset

|Σ| = π−1
∗R (σ

′) = π−1
∗R (σ

′′) ⊂ NR ,

and define the subset Σ(σ ′′, s − 1) of Σ(s − 1) by

Σ(σ ′′, s − 1) = {τ ∈ Σ(s − 1) | π∗R(τ ) ∩ Int(σ ′′) �= ∅} ,
where Int(σ ′′) denotes the relative interior of σ ′′. For τ ∈ Σ(σ ′′, s − 1), there exist exactly
two cones σ+, σ− ∈ Σ(s) containing τ . Then πΣ,σ ′′ ◦ ιτ : PΣτ → Aσ ′′ gives a P1-bundle
over the closed TN ′′ -orbit TN ′′

σ ′′ = Spec k[M ′′ ∩ σ ′′⊥] in Aσ ′′ , while PΣσ+ and PΣσ− become

the 0-section and the ∞-section of the P1-bundle. Let p ∈ TN ′′
σ ′′ (k) be a k-rational point. We

denote by PΣτ ,p the fiber of πΣ,σ ′′ ◦ ιτ at p. Then PΣτ ,p is a nonsingular rational curve in a
fiber of π . Since ρ− = [σ−]τ is a 1-dimensional cone in Nτ,R, there is a unique generator vρ−
of the monoid ρ− ∩Nτ . For v ∈ σ− � τ , we define the positive real number av by

[v]τ = avvρ− ∈ ρ− ⊂ Nτ,R = NR/τR .

For σ ∈ Σ(s), we choose an element uσ ∈ M which coincides with h on σ as a linear
function. Then we have an equation

(Dh. PΣτ ,p) = 1

av
(〈uσ+, v〉 − h(v))

for any v ∈ σ− � τ . Since OPΣ (Dh) is π-nef, we have

〈uσ+ , v〉 ≥ h(v)(2.1)

for any v ∈ σ−.
Now we prove 〈uσ , v〉 ≥ h(v) for any σ ∈ Σ(s) and v ∈ |Σ|. For σ ∈ Σ(s) and

v ∈ |Σ|, there exists a vector w ∈ Int(σ ) such that

L(w, v) = {(1 − t)w + tv ∈ NR | 0 < t < 1}
has no intersection with

⋃
τ∈Σ(s−2) τ . Then

⋃
τ∈Σ(σ ′′,s−1) τ dividesL(w, v) into finite pieces,

and we define vectors w0, . . . , wl ∈ NR by

L(w, v) ∩
⋃

τ∈Σ(σ ′′,s−1)

τ = {w1, . . . , wl−1}

and

wi = (1 − ti )w + tiv , 0 = t0 < t1 < · · · < tl−1 < tl = 1 .

For 1 ≤ i ≤ l, there exists a unique cone σi ∈ Σ(s) such that wi−1, wi ∈ σi . We note that
w = w0, v = wl and σ = σ1. Since

h(wi) = 〈uσi , wi〉 = 〈uσi+1, wi〉 , 1 ≤ i ≤ l − 1 ,
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we have

〈uσ , v〉 = 〈uσl , v〉 +
l−1∑
i=1

〈uσi − uσi+1, v〉

= h(v) +
l−1∑
i=1

〈
uσi − uσi+1,

1 − ti

ti+1 − ti
wi+1 + ti+1 − 1

ti+1 − ti
, wi

〉

= h(v) +
l−1∑
i=1

1 − ti

ti+1 − ti
(〈uσi , wi+1〉 − h(wi+1)) .

By using (2.1) for σ+ = σi and σ− = σi+1, we have

〈uσi , wi+1〉 ≥ h(wi+1) , 1 ≤ i ≤ l − 1 .

Hence

〈uσ , v〉 ≥ h(v)(2.2)

for any σ ∈ Σ(s) and v ∈ |Σ|.
For v1, v2 ∈ |Σ|, there is a cone σ ∈ Σ(s) such that v1 + v2 ∈ σ . By (2.2),

h(v1 + v2) = 〈uσ , v1 + v2〉 = 〈uσ , v1〉 + 〈uσ , v2〉 ≥ h(v1)+ h(v2) .

(3) ⇒ (1). For σ ∈ Σ(s) and v ∈ |Σ|, there exists w ∈ σ such that v+w is contained
in σ . Because h is upper convex, we have

〈uσ , v〉 = 〈uσ , v +w〉 − 〈uσ ,w〉 = h(v + w)− h(w) ≥ h(v) ,

so χuσ gives a global section of OPΣ (Dh). Since PΣ = ⋃
σ∈Σ(s) Aσ , and χuσ generates

Γ (Aσ ,OPΣ (Dh)) over k[M ∩ σ∨], the invertible sheaf OPΣ (Dh) is generated by global sec-
tions. �

THEOREM 2.4. Let PΣ be a toric variety, Aσ ′ an affine toric variety, and π : PΣ →
Aσ ′ a proper equivariant morphism. For a Σ-linear support function h, the following condi-
tions are equivalent:

(1) OPΣ (Dh) is ample.
(2) OPΣ (Dh) is π-ample.
(3) h is strictly upper convex, i.e., for any v1, v2 ∈ |Σ|,

h(v1 + v2) ≥ h(v1)+ h(v2) ,

and equality holds if and only if there exists a cone σ ∈ Σ such that v1, v2 ∈ σ .

PROOF. The equivalence of (1) and (2) is well-known for any proper morphism to an
affine scheme.

(2) ⇒ (3). In the proof of Theorem 2.3 (2) ⇒ (3), if OPΣ (Dh) is π-ample, then
(Dh. PΣτ ,p) > 0, and hence 〈uσ+ , v〉 > h(v) for any v ∈ σ− � τ . This implies that 〈uσ , v〉 ≥
h(v) for any σ ∈ Σ(s) and v ∈ |Σ|, and equality holds if and only if v ∈ σ .
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For v1, v2 ∈ |Σ|, there is a cone σ ∈ Σ(s) such that v1 + v2 ∈ σ . If

h(v1 + v2) = h(v1)+ h(v2) ,

then

(〈uσ , v1〉 − h(v1))+ (〈uσ , v2〉 − h(v2)) = 0 .

So we have 〈uσ , v1〉 = h(v1) and 〈uσ , v2〉 = h(v2), which means that v1, v2 ∈ σ .
(3) ⇒ (1). Let E be a coherent OPΣ -module. We show that there exists a positive

integer m0 such that E ⊗OPΣ
OPΣ (mDh) is generated by global sections for any integer m ≥

m0. We may assume that E = OPΣ (B) for a TN -invariant Weil divisor B = ∑
ρ∈Σ(1) bρPΣρ ,

because there exists a surjective homomorphism
⊕r

i=1 OPΣ (Bi) → E for some TN -invariant
Weil divisors B1, . . . , Br , by [10, Corollary 1.2].

For σ ∈ Σ(s), we fix vectors uσ,1, . . . , uσ,cσ ∈ M such that χuσ,1, . . . , χuσ,cσ generate
Γ (Aσ ,OPΣ (B)) over k[M ∩ σ∨]. Since h is strictly upper convex, for σ ∈ Σ(s) and ρ ∈
Σ(1), we have 〈uσ , vρ〉 ≥ h(vρ), and if vρ /∈ σ , then 〈uσ , vρ〉 > h(vρ). Also, if vρ ∈ σ , then
〈uσ,i, vρ〉 + bρ ≥ 0. Hence there exists a positive integer m0 such that for any σ ∈ Σ(s), for
any 1 ≤ i ≤ cσ and for any ρ ∈ Σ(1),

m0(〈uσ , vρ〉 − h(vρ)) ≥ −bρ − 〈uσ,i , vρ〉 .
Then we have

〈uσ,i +muσ , vρ〉 ≥ −bρ +mh(vρ)

for any m ≥ m0, and this means that χuσ,i+muσ is a global section of the coherent sheaf
OPΣ (B + mDh). Since χuσ,1+muσ , . . . , χuσ,cσ +muσ generate Γ (Aσ ,OPΣ (B + mDh)) over
k[M ∩ σ∨], the coherent sheaf OPΣ (B +mDh) is generated by global sections. �

3. Log differential forms on toric varieties. We introduce the sheaf of relative log-
arithmic differential forms on a toric variety with an equivariant morphism to an affine toric
variety.

Let P = PΣ be a toric variety, let A = Aσ ′ be an affine toric variety, and let π = πΣ,σ ′ :
P → A be an equivariant morphism, which is given by a homomorphism π∗ : N → N ′ with
|Σ| ⊂ π−1

∗R (σ
′). For τ ∈ Σ , we denote by Pτ the corresponding TN -invariant subvariety PΣτ .

We define the subfanΣπ of Σ by

Σπ = {τ ∈ Σ | τ ⊂ π−1
∗R (0)} .

If τ ∈ Σπ , then πτ = π ◦ ιτ : Pτ → A is an equivariant morphism induced by

Nτ → N ′; [v]τ �→ π∗(v) .

We denote byΣ reg the set of all nonsingular cones inΣ , and denote by j : Preg = PΣ reg → P
the natural open immersion. We define the TN -invariant divisorsD and E on P by

D =
∑

ρ∈Σπ(1)
Pρ, E =

∑
ρ∈Σ(1)�Σπ(1)

Pρ ,(3.1)

which are divisors with normal crossings on Preg.
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Let σ be a cone in Σ reg(c), and let (v1, . . . , vd) be a Z-basis of N with{
σ = R≥0v1 + · · · + R≥0vc ,

v1, . . . , vl ∈ π−1∗ (0) , vl+1, . . . , vc /∈ π−1∗ (0) .
(3.2)

Then we have

Aσ = Spec k[M ∩ σ∨] = Spec k[x1, . . . , xc, x
±1
c+1, . . . , x

±1
d ] ,

Aσ ∩D = Spec k[x1, . . . , xc, x
±1
c+1, . . . , x

±1
d ]/(x1 · · · xl) ,

Aσ ∩ E = Spec k[x1, . . . , xc, x
±1
c+1, . . . , x

±1
d ]/(xl+1 · · · xc) ,

where xi = χui for the dual basis (u1, . . . , ud) of (v1, . . . , vd ). We define a free k[M ∩ σ∨]-
module ω1

Aσ
by

ω1
Aσ = Ω1

Aσ (logE) =
l⊕

j=1

k[M ∩ σ∨]dxj ⊕
d⊕

j=l+1

k[M ∩ σ∨]dxj
xj

,

which is naturally contained in the free k[M ∩ σ∨]-module

Ω1
Aσ (logD ∪ E) =

d⊕
j=1

k[M ∩ σ∨]dxj
xj

.

We denote by ω1
Preg ⊂ Ω1

Preg(logD ∪ E) the sheaves of OPreg -modules defined by k[M ∩σ∨]-
modules ω1

Aσ
⊂ Ω1

Aσ
(logD ∪ E) for σ ∈ Σ reg. Then we have an isomorphism OPreg ⊗ZM �

Ω1
Preg(logD ∪ E) by

k[M ∩ σ∨] ⊗Z M � Ω1
Aσ (logD ∪ E) ; 1 ⊗ uj ↔ dxj

xj
.

We denote by ω1
Preg/A(logD) the cokernel of the homomorphism

π∗
OPreg : OPreg ⊗Z M

′ → OPreg ⊗Z M � Ω1
Preg(logD ∪ E) .

Since the image of π∗
OPreg

is contained in ω1
Preg , we denote by ω1

Preg/A the cokernel of π∗
OPreg

:
OPreg ⊗Z M

′ → ω1
Preg . We define the coherent sheaf ω̃pP/A on P by ω̃pP/A = j∗(

∧p
ω1

Preg/A),
which is a submodule of the free OP-module

ω
p

P/A(logD) = j∗ωpPreg/A(logD) � OP ⊗k

p∧
Mπ,k ,

whereMπ,k denotes the cokernel of π∗
k : k⊗Z M

′ → k⊗Z M . The sheaf ω̃pP/A is the sheaf of
relative logarithmic differential p-forms of Zariski. In the paper [1], it is simply denoted by
Ω
p

P for the case A = Spec k.

REMARK 3.1. The sheaves ω1
Preg/A and ω1

P/A(logD) are interpreted as sheaves of rel-
ative logarithmic differential forms in the sense of log geometry [9]. If we consider Preg with
the log structure NE

Preg defined by the divisor E with normal crossings, and consider A with
the canonical log structure N can

A as a toric variety, then the sheaf ω1
Preg/A is the sheaf of rel-

ative logarithmic differential forms on (Preg,NE
Preg) over (A,N can

A ). If we consider P with
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the canonical log structure N can
P as a toric variety, then the sheaf ω1

P/A(logD) is the sheaf of
relative logarithmic differential forms on (P,N can

P ) over (A,N can
A ).

Sections of the sheaf ω̃pP/A are described explicitly as follows (cf. [3, Proposition 4.3]).
For u ∈ M and σ ∈ Σ , we define the subset σπ,u=0(1) of Σπ(1) by

σπ,u=0(1) = {ρ ∈ Σπ(1) | 〈u, vρ〉 = 0 and ρ ⊂ σ } ,
and the k-subspace Hσ,u of Mπ,k by

Hσ,u = {w ∈ Mπ,k | 〈w, 1 ⊗ vρ〉 = 0 for any ρ ∈ σπ,u=0(1)} .
LEMMA 3.2. For σ ∈ Σ , there is a natural isomorphism

Γ (Aσ , ω̃
p

P/A) �
⊕

u∈M∩σ∨

p∧
Hσ,u · χu .

PROOF. The isomorphism is induced from the natural isomorphism

Γ (Aσ , ω
p

P/A(logD)) � Γ (Aσ ,OP)⊗k

p∧
Mπ,k �

⊕
u∈M∩σ∨

p∧
Mπ,k · χu .

First we assume that σ ∈ Σ reg. We use a Z-basis (v1, . . . , vd) of N satisfying (3.2) and
the dual basis (u1, . . . , ud) of M . There exists a k-basis (w1, . . . , wn) of Mπ,k such that for
1 ≤ i ≤ l, the vectorwi is the image of 1⊗ ui by the natural homomorphism k⊗ZM → Mπ,k ,
and Γ (Aσ , ω1

Preg/A) corresponds to the k[M ∩ σ∨]-submodule Hσ ⊂ ⊕
u∈M∩σ∨ Mπ,k · χu

generated by

w1χ
u1, . . . , wlχ

ul , wl+1χ
0, . . . , wnχ

0 .

For a subset I = {i1, . . . , ip} ⊂ {1, . . . , n} with i1 < · · · < ip, we set uI = ∑
i∈I∩{1,...,l} ui

in M , and define

wI = wi1 ∧ · · · ∧ wip(3.3)

in
∧p Mπ,k . Then (wI ; |I | = p) is a k-basis of

∧p Mπ,k , and (wIχuI ; |I | = p) is a
k[M ∩ σ∨]-basis of

∧p
Hσ . For u ∈ M ∩ σ∨, we define the subset Ju of {1, . . . , l} by

Ju = {j ∈ {1, . . . , l} | 〈u, vj 〉 = 0} .
Then (wI ; |I | = p, I ∩ Ju = ∅) is a k-basis of

∧p
Hσ,u. If

ω =
∑

u∈M∩σ∨

∑
|I |=p

au,IwIχ
u ∈

⊕
u∈M∩σ∨

p∧
Mπ,k · χu , au,I ∈ k ,

is contained in
∧p

Hσ , then ω = ∑
I=|p|(

∑
u∈M∩σ∨ bI,uχu)wIχuI for some bI,u ∈ k, so we

have

au,I =
{
bI,u−uI if u− uI ∈ σ∨ ,
0 if u− uI /∈ σ∨ .
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If u − uI ∈ σ∨, then I ∩ Ju = ∅, and hence
∑

|I |=p au,IwI ∈ ∧p
Hσ,u. Conversely, if

I ∩ Ju = ∅, then we have u− uI ∈ σ∨, and hence

wIχ
u = χu−uI (wIχuI ) ∈

p∧
Hσ .

So
∧p

Hσ coincides with
⊕

u∈M∩σ∨
∧p

Hσ,u · χu for σ ∈ Σ reg.
If σ ∈ Σ is not a nonsingular cone, then we have

Γ (Aσ , ω̃
p

P/A) = Γ (Aσ ∩ Preg, ω
p

Preg/A) =
⋂
τ∈σ reg

Γ (Aτ , ω
p

Preg/A) ,

where σ reg denotes the set of all nonsingular faces of σ . Since σ∨ = ⋂
τ∈σ reg τ∨, and∧p

Hσ,u = ⋂
τ∈σ reg

∧p
Hτ,u for u ∈ σ∨, the isomorphism in Lemma 3.2 is proved for

any σ ∈ Σ . �

Next we define the Poincaré residue map for the sheaf ω̃pP/A. For this purpose, we need
some assumptions for the fan Σ . For σ ∈ Σ , we define the positive integer m(σ) by

m(σ) = ord

(
N ∩ σR

/∑
ρ∈σ(1)

Zvρ

)
,

and set m(Σ) = ∏
σ∈Σ m(σ). We assume that the fan Σ is simplicial, and m(Σ) is prime to

the characteristic of k.
We denote by Nπ,k the kernel of π∗k : k ⊗Z N → k ⊗Z N

′. For τ ∈ Σπ(r), we denote
by v1, . . . , vr the primitive generators of τ in Nπ,k;

{v1, . . . , vr } = {1 ⊗ vρ ∈ Nπ,k | ρ ∈ Σπ(1) and ρ ⊂ τ } .
Then we define the k-homomorphism φτ by

φτ :
r∧
Mπ,k → k; η1 ∧ · · · ∧ ηr �→ det (〈ηi, vj 〉)1≤i≤r,1≤j≤r ,

where ηi ∈ Mπ,k , and 〈 , 〉 : Mπ,k × Nπ,k → k denotes the natural bilinear form. We remark
that φτ depends on the ordering of v1, . . . , vr . We fix the ordering for each τ ∈ Σπ(r). For
σ ∈ Σ and τ ∈ Σπ(r) with τ ⊂ σ , we define the homomorphism Φσ,τ by

Φσ,τ :
r∧
Mπ,k ⊗k

⊕
u∈M∩σ∨

p−r∧
Hσ,u · χu →

⊕
u∈M∩σ∨∩τ⊥

p−r∧
Hσ,u · χuτ ;

η⊗
∑

u∈M∩σ∨
wuχ

u �→
∑

u∈M∩σ∨∩τ⊥
φτ (η)wuχ

u
τ ,

where η ∈ ∧r
Mπ,k and wu ∈ ∧p−r

Hσ,u. Sincem(Σ) is prime to the characteristic of k, for
u ∈ M ∩ σ∨ ∩ τ⊥ � Mτ ∩ [σ ]∨τ , there is a natural identification

Hσ,u � {w ∈ (Mτ )πτ ,k | 〈w, 1 ⊗ vρ〉 = 0 for any ρ ∈ ([σ ]τ )πτ ,u=0(1)} ,
so Φσ,τ gives a homomorphism

Γ (Aσ , ωrP/A(logD) ⊗OP ω̃
p−r
P/A ) → Γ (Aσ ∩ Pτ , ω̃

p−r
Pτ /A

) .



HODGE STRUCTURE OF DEGENERATING HYPERSURFACES 351

We denote by

Φτ : ωrP/A(logD)⊗OP ω̃
p−r
P/A → ιτ∗ω̃p−r

Pτ /A

the homomorphism of sheaves defined by Φσ,τ for σ ∈ Σ , and define the homomorphism Φ

by

Φ =
⊕

τ∈Σπ(r)
Φτ : ωrP/A(logD)⊗OP ω̃

p−r
P/A →

⊕
τ∈Σπ(r)

ιτ∗ω̃p−r
Pτ /A

.

LEMMA 3.3. The kernel of the natural homomorphism

ωrP/A(logD)⊗OP ω̃
p−r
P/A → ω

p

P/A(logD) ; η⊗ w �→ η ∧w
is contained in the kernel of Φ.

PROOF. Let σ be a cone in Σ , u an element in M ∩ σ∨, and (w1, . . . , wn) a k-basis
of Mπ,k such that (w1, . . . , ws) is a k-basis of Hσ,u. For I ⊂ {1, . . . , n} with |I | = r , and
J ⊂ {1, . . . , s} with |J | = p − r , vectors wI ∈ ∧r

Mπ,k and wJ ∈ ∧p−r
Hσ,u are defined

by the same way as (3.3). If

w =
∑
|I |=r

∑
|J |=p−r

aI,JwI ⊗wJ , aI,J ∈ k ,

is contained in the kernel of the natural homomorphism

r∧
Mπ,k ⊗k

p−r∧
Hσ,u →

p∧
Mπ,k ,

then for L ⊂ {1, . . . , n} with |L| = p, we have∑
I∪J=L

sgn (I, J )aI,J = 0 ,(3.4)

where sgn (I, J ) is defined by wI ∧ wJ = sgn (I, J )wL. For τ ∈ Σπ(r) with τ ⊂ σ ,
we have to prove Φσ,τ (wχu) = 0. It is clear for the case u /∈ τ⊥. Hence we assume that
u ∈ τ⊥. Let I ⊂ {1, . . . , n} be a subset satisfying |I | = r and φτ (wI ) �= 0. Then we have
I ∩ {1, . . . , s} = ∅, because 〈wi, 1 ⊗ v〉 = 0 for 1 ≤ i ≤ s and v ∈ N ∩ τR. By (3.4), we
have aI,J = 0 for any J ⊂ {1, . . . , s}, and hence

Φσ,τ (wχ
u) =

∑
|J |=p−r

∑
|I |=r

aI,J φτ (wI )wJχ
u
τ = 0 . �

We denote by Wrω
p

P/A(logD) the image of the natural homomorphism

ωrP/A(logD)⊗OP ω̃
p−r
P/A → ω

p

P/A(logD) ; η ⊗ w �→ η ∧ w .
By Lemma 3.3, the homomorphism Φ induces a homomorphism

Res : Wrω
p

P/A(logD) →
⊕

τ∈Σπ(r)
ιτ∗ω̃p−r

Pτ /A
,

which is called the Poincaré residue map. The Poincaré residue map has the following funda-
mental property similar to the case of Ωp

P by [4, II. §3] or [3, §15.7].
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THEOREM 3.4. Let A be an affine toric variety, P = PΣ a simplicial toric variety
such that m(Σ) is prime to the characteristic of k, and π : P → A an equivariant morphism.
Then there is an exact sequence of OP-modules

0 −→ Wr−1ω
p

P/A(logD) −→ Wrω
p

P/A(logD)
Res−→

⊕
τ∈Σπ(r)

ιτ∗ω̃p−r
Pτ /A

−→ 0 .

PROOF. We check this on the affine coordinate Aσ for σ ∈ Σ . First we prove that the
Poincaré residue map is surjective. Let τ ⊂ σ be a cone in Σπ(r), and let v1, . . . , vc ∈ N be
satisfying

{v1, . . . , vc} = {vρ | ρ ∈ Σ(1) and ρ ⊂ σ } ,
{v1, . . . , vl} = {vρ | ρ ∈ Σπ(1) and ρ ⊂ σ } ,
{v1, . . . , vr } = {vρ | ρ ∈ Σπ(1) and ρ ⊂ τ } .

Since m(σ) is prime to the characteristic of k, the vectors 1 ⊗ v1, . . . , 1 ⊗ vl are linearly
independent in Nπ,k . Then there exists a k-basis (w1, . . . , wn) of Mπ,k such that

〈wi, 1 ⊗ vj 〉 =
{

1 , i = j ,

0 , i �= j

for 1 ≤ i ≤ n and 1 ≤ j ≤ l. For a subset I ⊂ {1, . . . , l} with |I | = r , we set τI =∑
i∈I R≥0vi ∈ Σπ(r). Then we have

φτI (η) =
{

1 , I = {1 , . . . , r} ,
0 , I �= {1 , . . . , r} ,

where η = w1 ∧ · · · ∧ wr . For u ∈ M ∩ σ ∩ τ⊥ and w ∈ ∧p−r Hσ,u, we have wχuτ =
Res(η ∧wχu), because Φσ,τ (η⊗wχu) = wχuτ and Φσ,τ ′(η⊗wχu) = 0 for τ ′ �= τ . Hence,
for any element

ω =
∑
τ

ωτ ∈
⊕

τ∈σπ (r)
Γ (Aσ , ιτ∗ω̃p−r

Pτ /A
) , ωτ ∈ Γ (Aσ , ιτ∗ω̃p−r

Pτ /A
) ,

there exists ω̃τ ∈ Γ (Aσ ,Wrω
p

P/A(logD)) such that Res(ω̃τ ) = ωτ . Since Res(
∑
τ ω̃τ ) =∑

τ Res(ω̃τ ) = ω, the Poincaré residue map is surjective.
Next we show that Wr−1ω

p

P/A(logD) is contained in the kernel of the Poincaré residue
map. For u ∈ M ∩ σ∨, we set

Ju = {j ∈ {1, . . . , l} | 〈u, vj 〉 = 0} .
Then (wJ ; |J | = q, J ∩ Ju = ∅) is a k-basis of

∧q
Hσ,u. For L ⊂ {1, . . . , n} with

|L| = r − 1, and for J ⊂ {1, . . . , n} with |J | = p − r + 1 and J ∩ Ju = ∅, we have

Res(wL ∧ wJχu) =
{
Φ(wL ∧wj1 ⊗ wJ�{j1}χu) , L ∩ J = ∅ ,
0 , L ∩ J �= ∅ ,

where j1 is the smallest integer in J . For I ⊂ {1, . . . , l} with |I | = r , if u ∈ τ⊥
I , then

φτI (wL ∧ wj1) = 0, so we have Res(wL ∧ wJχu) = 0.
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Finally, we assume that∑
|I |=r

∑
|J |=p−r

aI,JwI ⊗ wJχ
u , aI,J ∈ k ,

is contained in the kernel of Φ. For L ⊂ {1, . . . , l} with |L| = r , if L ⊂ Ju, then u ∈ τ⊥
L , and

hence

aL,J = φτL

( ∑
|I |=r

aI,JwI

)
= 0 .

We have∑
|I |=r

∑
|J |=p−r

aI,JwI ∧wJ =
∑
I�Ju

∑
|J |=p−r

aI,JwI ∧ wJ

=
∑
I�Ju

sgn(I � {i}, i)
∑

|J |=p−r
aI,JwI�{i} ∧ wi ∧wJ ,

where we take i ∈ I � Ju for each I � Ju. Since (J ∪ {i}) ∩ Ju = ∅, this is contained in
Γ (Aσ ,Wr−1ω

p

P/A(logD)). �

PROPOSITION 3.5. If π : P → A is proper, then for any ample invertible sheaf L on
P, the global Poincaré residue map

H 0(P,Wrω
p

P/A(logD)⊗OP L) Res−→
⊕

τ∈Σπ(r)
H 0(Pτ , ω̃

p−r
Pτ /A

⊗OPτ
ι∗τL)

is surjective.

PROOF. There is a Σ-linear support function h such that L � OP(Dh). We define the
subset Σπ,u=h(1) of Σπ(1) by

Σπ,u=h(1) = {ρ ∈ Σπ(1) | 〈u, vρ〉 = h(vρ)} ,
and define the k-subspaceHu,h of Mπ,k by

Hu,h = {w ∈ Mπ,k | 〈w, 1 ⊗ vρ〉 = 0 for any ρ ∈ Σπ,u=h(1)} .
By Lemma 3.2, there is a natural isomorphism

H 0(P, ω̃p−r
P/A ⊗OP OP(Dh)) �

⊕
u∈M∩∆h

p−r∧
Hu,h · χu ,

where

∆h = ∆Dh = {u ∈ MR | 〈u, v〉 ≥ h(v) for any v ∈ |Σ|} .
Let τ be a cone inΣπ(r). We choose an element uτ ∈ M which coincides with h on τ as

a linear function. ThenΣ-linear support function h−uτ induces aΣτ -linear support function
hτ : |Στ | → R, and there is a natural isomorphism ι∗τOP(Dh−uτ ) � OPτ (Dhτ ). Since π is
proper, we have

Mτ ∩∆hτ = M ∩ τ⊥ ∩∆h−uτ .
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Since m(Σ) is prime to the characteristic of k, for u ∈ M ∩ τ⊥ ∩ ∆h−uτ , there is a natural
identification

Hu,h−uτ � {w ∈ (Mτ )πτ ,k | 〈w, 1 ⊗ vρ〉 = 0 for any ρ ∈ (Στ )πτ ,u=hτ (1)} .
We denote by Tuτ the isomorphism

Tuτ : OP(Dh) → OP(Dh−uτ ) ; χu �→ χu−uτ .

Then the homomorphism

Φτ ◦ Tuτ : Γ (P, ωrP/A(logD)⊗ ω̃
p−r
P/A ⊗ OP(Dh)) → Γ (Pτ , ω̃

p−r
Pτ /A

⊗ OPτ (Dhτ ))

is given by

r∧
Mπ,k ⊗k

⊕
u∈M∩∆h

p−r∧
Hu,h · χu →

⊕
u∈M∩∆h−uτ ∩τ⊥

p−r∧
Hu,h−uτ · χuτ ;

η⊗ wχu �→
{
φτ (η)wχ

u−uτ
τ , u− uτ ∈ τ⊥ ,

0 , u− uτ /∈ τ⊥ ,

where we remark thatHu,h = Hu−uτ ,h−uτ . Since h is strictly upper convex, for u ∈ M∩τ⊥ ∩
∆h−uτ , there exists a cone σ ∈ Σ such that σ(1) ⊃ Σπ,u+uτ=h(1).

Using this cone σ , we give a k-basis (w1, . . . , wn) of Mπ,τ in the same way as the proof
of Theorem 3.4, and we set η = w1 ∧ · · · ∧ wr in

∧r
Mπ,k . Then for w ∈ ∧p−r

Hu,h−uτ ,
we have wχu = Φτ ◦ Tuτ (η⊗wχu+uτ ). If τ ′ ∈ Σπ(r) \ {τ } is contained in σ , then φτ (η) =
0. If τ ′ ∈ Σπ(r) \ {τ } is not contained in σ , then u + uτ − uτ ′ /∈ τ ′⊥. Hence we have
Φτ ′ ◦ Tuτ ′ (η⊗wχu+uτ ) = 0 for any τ ′ ∈ Σπ(r) \ {τ }. Since the global Poincaré residue map
is induced by Φ = ⊕

τ∈Σπ(r) Φτ , for any element

ω =
∑

τ∈Σπ(r)
ωτ ∈

⊕
τ∈Σπ(r)

H 0(Pτ , ω̃
p−r
Pτ /A

⊗OPτ
ι∗τOP(Dh))

there exist ω̃τ ∈ H 0(P,Wrω
p

P/A(logD) ⊗OP OP(Dh)) such that Res (ω̃τ ) = ωτ . Since
Res (

∑
τ∈Σπ(r) ω̃τ ) = ∑

τ∈Σπ(r) Res (ω̃τ ) = ω, the global Poincaré residue map is surjec-
tive. �

We prove a vanishing theorem of Bott type for the cohomology of the sheaf of relative
logarithmic differential forms, that is reduced to the following vanishing theorem for invertible
sheaves on toric varieties. The idea is the same as that in [1, Theorem 7.2].

THEOREM 3.6 ([6, p. 74, Corollary]). Let PΣ be a toric variety, and L an invertible
sheaf on PΣ . If the support |Σ| is convex, and L is generated by global sections, then for
q ≥ 1,

Hq(PΣ,L) = 0 .

THEOREM 3.7. Let A be an affine toric variety, P a simplicial toric variety such that
m(Σ) is prime to the characteristic of k, and π : P → A a proper equivariant morphism. Let
L be an invertible sheaf on P.
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(1) If L is generated by global sections, then for p ≥ r ≥ 0 and q ≥ p − r + 1,

Hq(P,Wrω
p

P/A(logD)⊗OP L) = 0 .

(2) If L is ample, then for p ≥ r ≥ 0 and q ≥ 1,

Hq(P,Wrω
p

P/A(logD)⊗OP L) = 0 .

PROOF. We prove this theorem by induction on p−r . If p−r = 0, thenWpω
p

P/A(logD)

is isomorphic to the free OP-module OP ⊗k

∧p
Mπ,k . By Theorem 3.6, we have

Hq(Wpω
p

P/A(logD)⊗ L) =
p∧
Mπ,k ⊗Hq(L) = 0

for q ≥ 1.
For an integer l ≥ 1, we assume that Theorem 3.7 is true for the case p−r = l−1. Then

we prove Theorem 3.7 for the case p − r = l. By Theorem 3.4, there is an exact sequence

Hq−1(Wr+1ω
p

P/A(logD)⊗ L) →
⊕

τ∈Σπ(r+1)

H q−1(ω̃
p−r−1
Pτ /A

⊗ι∗τL)

→Hq(Wrω
p

P/A(logD)⊗L)→Hq(Wr+1ω
p

P/A(logD)⊗L) .
Since p− (r + 1) = l− 1, we haveHq(Wr+1ω

p

P/A(logD)⊗L) = 0 for q ≥ p− (r + 1)+ 1.

Since ω̃p−r−1
Pτ /A

= W0ω
p−r−1
Pτ /A

(logDτ ) and (p− r − 1)− 0 = l− 1, we haveHq−1(ω̃
p−r−1
Pτ /A

⊗
ι∗τL) = 0 for q − 1 ≥ (p − r − 1) − 0 + 1, where Dτ denotes the invariant divisor on Pτ
defined similarly as we defined D on P. Hence we have Hq(Wrω

p

P/A(logD) ⊗ L) = 0 for
q ≥ p − r + 1.

Next we consider the case where L is ample. Since p − (r + 1) = l − 1, we have
Hq(Wr+1ω

p

P/A(logD) ⊗ L) = 0 for q ≥ 1. Since ω̃p−r−1
Pτ /A

= W0ω
p−r−1
Pτ /A

(logDτ ) and (p −
r − 1) − 0 = l − 1, we have Hq−1(ω̃

p−r−1
Pτ /A

⊗ ι∗τL) = 0 for q − 1 ≥ 1. Hence we have

Hq(Wrω
p

P/A(logD)⊗ L) = 0 for q ≥ 2. By Proposition 3.5, the homomorphism

H 0(Wr+1ω
p

P/A(logD) ⊗ L) →
⊕

τ∈Σπ(r+1)

H 0(ω̃
p−r−1
Pτ /A

⊗ ι∗τL)

is surjective. Hence we also have H 1(Wrω
p

P/A(logD) ⊗ L) = 0 for by the exact se-
quence. �

COROLLARY 3.8. (1) If L is generated by global sections, then for q ≥ p + 1,

Hq(P, ω̃pP/A ⊗OP L) = 0 .

(2) If L is ample, then for q ≥ 1,

Hq(P, ω̃pP/A ⊗OP L) = 0 .

PROOF. By the definition, W0ω
p

P/A(logD) is equal to ω̃pP/A. The corollary is the case
r = 0 of Theorem 3.7. �
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In the rest of this section, we prove the Euler exact sequence for the sheaf of relative
logarithmic differential forms. Here we introduce the notion of log smoothness.

DEFINITION 3.9. If the rank of the locally free OPreg -module ω1
Preg/A is equal to

dim P − dim A, then we call that π is log smooth.

REMARK 3.10. The following conditions are equivalent:
(1) π is log smooth in the sense of Definition 3.9.
(2) π ◦ j : (Preg,NE

Preg) → (A,N can
A ) is log smooth in the sense of [9].

(3) π : (P,N can
P ) → (A,N can

A ) is log smooth in the sense of [9].
(4) The cokernel of π∗ : N → N ′ is finite, whose order is prime to the characteristic

of k.
(5) π∗ : M ′ → M is injective and the order of the torsion part of the cokernel of π∗ is

prime to the characteristic of k.

We denote by N̂π the free Z-module generated by Σπ(1), and by Pπ the kernel of the
homomorphism

ψ : N̂π → N ;
∑

ρ∈Σπ(1)
bρρ �→

∑
ρ∈Σπ (1)

bρvρ .

We identify the group of T-invariant Weil divisors on P � E with the dual Z-module M̂π of
N̂π by the pairing 〈 ∑

ρ∈Σπ(1)
aρPρ,

∑
ρ∈Σπ (1)

bρρ

〉
=

∑
ρ∈Σπ(1)

aρbρ .

Then the divisor class group Cl (P � E) is naturally isomorphic to the cokernel of the dual
homomorphismψ∗ : M → M̂π . Since the image ofψ is contained inNπ , the homomorphism
ψ∗ induces a morphism of OP-modules

ψ∗
OP

: ω1
P/A(logD) � OP ⊗k Mπ,k→OP ⊗Z M̂π �

⊕
ρ∈Σπ (1)

OP .

THEOREM 3.11. Let A be an affine toric variety, P a simplicial toric variety such that
m(Σ) is prime to the characteristic of k, and π : P → A a log smooth proper equivariant
morphism. Then there is an exact sequence of OP-modules

0 −→ ω̃1
P/A

Ψ ∗−→
⊕

ρ∈Σπ(1)
OP(−Pρ)

γ−→ OP ⊗Z Cl (P � E) −→ 0 ,

where Ψ ∗ is induced by the morphism ψ∗
OP

.

PROOF. We denote by Nπ the kernel of π∗ : N → N ′. Since π is proper and m(Σ) is
prime to the characteristic of k, the cokernel of ψ : N̂π → Nπ is finite, whose order is prime
to the characteristic of k. So we have an exact sequence of k-vector spaces

0 −→ k ⊗Z Pπ −→ k ⊗Z N̂π
ψk−→ k ⊗Z Nπ −→ 0 .
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Since π is log smooth, we haveMπ,k � Homk(k ⊗Z Nπ, k). Hence there is an exact sequence
of k-vector spaces

0 −→ Mπ,k

ψ∗
k−→ k ⊗Z M̂π −→ k ⊗Z HomZ (Pπ ,Z) −→ 0 ,

which induces an exact sequence of OP-modules

0 −→ ω1
P/A(logD)

ψ∗
OP−→ OP ⊗Z M̂π −→ OP ⊗Z Cl (P � E) −→ 0 .

The exactness of the sequence in Theorem 3.11 is proved by the commutative diagram

0 0� �
ω̃1

P/A

⊕
ρ∈Σπ(1)

OP(−Pρ)

� �
0 −→ ω1

P/A(logD)
ψ∗
OP−→ OP ⊗Z M̂π −→ OP ⊗Z Cl (P � E) −→ 0

Res

� �⊕
ρ∈Σπ(1)

ιρ∗OPρ =
⊕

ρ∈Σπ(1)
ιρ∗OPρ� �

0 0 ,

where the exactness of the left vertical sequence is proved in Theorem 3.4. �

4. Hypersurfaces in toric varieties. Let A = SpecA be an affine toric variety with
a torus invariant point 0, P = PΣ a nonsingular toric variety, and π : P → A a log smooth
proper equivariant morphism. Then we remark that dim P = dim |Σ|, and ω1

P/A = ω1
Preg/A =

ω̃1
P/A is a locally free OP-module of rank n = dim P − dim A.

Since dim P = dim |Σ|, the homogeneous coordinate ring of P is defined in [2, §1] as a
Cl (P)-graded polynomial ring

SP = k[zρ; ρ ∈ Σ(1)] =
⊕

β∈Cl (P)

S
β

P

with

deg zρ = [Pρ] ∈ Cl (P) .

For a TN -invariant divisor B = ∑
ρ∈Σ(1) bρPρ , there is a natural isomorphism

S
[B]
P � H 0(P,OP(B)) ;

∏
ρ∈Σ(1)

z
〈u,vρ〉+bρ
ρ ↔ χu .(4.1)
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By the A-module structure on H 0(P,OP(B)) = H 0(A, π∗OP(B)), the homogeneous coordi-
nate ring SP has an A-algebra structure.

Let X be a hypersurface in P. Then there is a TN -invariant divisor B = ∑
ρ∈Σ(1) bρPρ

such that
[X] = [B] ∈ Cl (P) .

Since the hypersurface X is defined by a global section of OP(B), using the isomorphism
(4.1), it is defined by a Cl (P)-homogeneous polynomial F . If F ′ is a Cl (P)-homogeneous
polynomial defined by using another TN -invariant divisor B ′ with [X] = [B ′], then there is a
non-zero constant a ∈ k× such that F ′ = aF . We define the Jacobian ring RX/A of X over A
by

RX/A = SP

/(
∂F

∂zρ
; ρ ∈ Σπ(1)

)
,

which is a Cl (P)-graded A-algebra uniquely determined by X.

REMARK 4.1. If A = Spec k, then P is a complete toric variety, and Σπ(1) = Σ(1).
In this case, our definition of Jacobian ring is same as [1, Definition 10.3].

We denote by IX/P ⊂ OP the ideal definingX in P, and define the coherent OX-module
ω
p

X/A by

ω
p

X/A = Coker(IX/P/I2
X/P ⊗ ω

p−1
P/A |X → ω

p

P/A|X; [f ] ⊗ ω �→ (df |X ∧ ω)) ,
where d : OP → ω1

P/A is the differential operator given by

d :
⊕

u∈M∩σ∨
k · χu →

⊕
u∈M∩σ∨

Hσ,u · χu; χu �→ [1 ⊗ u]χu .

DEFINITION 4.2. Let U be an open subset of A. If j∗
Uω

1
X/A is a locally free OXU-

module of rank n− 1, then we call thatX is log smooth overU , where jU : XU → X denotes
the open immersion U ×A X → X.

We define the coherent OP-module ωpP/A(logX) by

ω
p

P/A(logX) = Ker (ωpP/A(X) → ω
p

X/A ⊗ OP(X)|X) .
If X is ample in P, then by the vanishing theorem (Corollary 3.8), we can calculate the coho-
mology of the sheaf ωpP/A(logX), using the following resolution.

LEMMA 4.3. If X is log smooth over U , then for 0 ≤ p ≤ n − 2, the following
sequence is exact on PU = U ⊗A P;

0 →ω
p+1
P/A (logX) → ω

p+1
P/A (X) → ω

p+2
P/A (2X)|X → · · ·

· · · → ωn−1
P/A ((n− p − 1)X)|X → ωnP/A((n− p)X)|X → 0 .
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PROOF. By the short exact sequence

0 → IX/P/I2
X/P ⊗ ωiX/A → ωi+1

P/A|X → ωi+1
X/A → 0

on PU , we have a short exact sequence

0 → ωiX/A⊗OP((i − p)X)|X → ωi+1
P/A((i − p + 1)X)|X

→ ωi+1
X/A ⊗ OP((i − p + 1)X)|X → 0

for p + 1 ≤ i ≤ n− 1. By the definition of ωp+1
P/A (logX), we have a short exact sequence

0 → ω
p+1
P/A (logX) → ω

p+1
P/A (X) → ω

p+1
X/A ⊗ OP(X)|X → 0 .

By connecting these short exact sequences, we have the long exact sequence. �

The following is the main theorem in this paper, which describes the cohomology of the
sheaf of relative logarithmic differential forms by using the Jacobian ring.

THEOREM 4.4. If X is ample and log smooth over an affine open subvariety U =
SpecAU of A = SpecA, and the class [X] ∈ Cl (P � E) is not divisible by the characteristic
of k, then for 0 ≤ p ≤ n− 1, there is a natural isomorphism of AU -modules

Hn−p−1(PU ,ω
p+1
P/A (logX)) � AU ⊗A R

[(n−p)X−D]
X/A .

We prove some lemmas for the proof of Theorem 4.4. Let F be a Cl (P)-homogeneous
polynomial which define the hypersurface X. Since F ∈ S

[X]
P � H 0(P,OP(X)) and

∂F/∂zρ ∈ S[X−Pρ ]
P � H 0(P,OP(X − Pρ)) for ρ ∈ Σπ(1), we denote by F : OP → OP(X)

and ∂F/∂zρ : OP(Pρ) → OP(X) the multiplication by the global sections.

LEMMA 4.5. The following diagram is commutative;
OP ⊗Z Cl (P � E)∗ [X]−−−−−−→ OP

γ ∗
� �F⊕

ρ∈Σπ (1)
OP(Pρ) −−−−−−→

(∂F/∂zρ )ρ∈Σπ (1)
OP(X) ,

where the map γ ∗ is the dual of γ defined in Theorem 3.11.

PROOF. We denote by F = ∑
e aez

e the Cl (P)-homogeneous polynomial defining X,
where ze is the monomial

∏
ρ∈Σ(1) zeρ of degree [X] ∈ Cl (P). Let ϕ : Cl (P � E) → Z be a

homomorphism. Then the image of 1 ⊗ ϕ by the map (∂F/∂zρ)ρ∈Σπ(1) ◦ γ ∗ is∑
ρ∈Σπ(1)

ϕ([Pρ])zρ ∂F
∂zρ

=
∑

ρ∈Σπ(1)
ϕ([Pρ])

∑
e

aeeρz
e =

∑
e

aeϕ

([ ∑
ρ∈Σπ(1)

eρPρ

])
ze .
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Since [∑ρ∈Σπ(1) eρPρ ] = [X] ∈ Cl (P � E), this is equal to

∑
e

aeϕ([X])ze = ϕ([X])F ,

which is the image of 1 ⊗ ϕ by the map F ◦ [X]. �

LEMMA 4.6. The following diagram is commutative;

⊕
ρ∈Σπ (1)

ωnP/A(Pρ)
(∂F/∂zρ)ρ∈Σπ (1)−−−−−−→ ωnP/A(X)

Ψ

� �
ωn−1

P/A −−−−−−→
δ

ωnP/A(X)|X,

where the map Ψ is the dual of the map Ψ ∗ defined in Theorem 3.11, and δ is defined by the
restriction

ωn−1
P/A → ωn−1

X/A � ωnP/A(X)|X.
PROOF. We check this on a local affine coordinate Aσ for σ ∈ Σ . There is a T-invariant

divisor B = ∑
ρ∈Σ(1) bρPρ such that [B] = [X] ∈ Cl (P), and bρ = 0 for ρ � σ . Let w be

a k[M ∩ σ∨]-basis of Γ (Aσ , ωnP/A), and χuρ a k[M ∩ σ∨]-basis of Γ (Aσ ,OP(−Pρ)). The

image of wχ−uρ ∈ Γ (A, ωnP/A(Pρ)) by the map δ ◦ Ψ is

w

f

∑
u∈M∩σ∨

au〈u, vρ〉χu−uρ |X ,

where f = ∑
u∈M∩σ∨ auχu is the local equation of X. On the other hand, the image of

wχ−uρ ∈ Γ (A, ωnP/A(Pρ)) by the map ∂F/∂zρ is

w

f

∑
u

au(〈u, vρ〉 + bρ)χ
u−uρ = w

f

( ∑
u

au〈u, vρ〉χu−uρ + bρfχ
−uρ

)
,

whose restriction to X is (δ ◦ Ψ )(wχ−uρ ) ∈ Γ (Aσ , ωnP/A(X)|X). �

PROOF OF THEOREM 4.4. In the case p = n− 1, we have

AU ⊗A R
[X−D]
X/A � AU ⊗A S

[X−D]
P � H 0(PU,ωnP/A(X)) � H 0(PU,ωnP/A(logX)) .
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We assume that 0 ≤ p ≤ n − 2. By Lemma 4.5 and Lemma 4.6, we have a commutative
diagram

0 0� �
H 0(PU ,ωnP/A((n− p − 1)X))⊗ Cl (P � E)∗ α1−−→ H 0(PU ,ωnP/A((n− p − 1)X))� �⊕
ρ∈Σπ(1)

H 0(PU ,ωnP/A((n− p − 1)X + Pρ))
α2−−→ H 0(PU ,ωnP/A((n− p)X))

� �
H 0(PU ,ω

n−1
P/A ((n− p − 1)X))

α3−−→ H 0(PU ,ωnP/A((n− p)X)|X)� �
0 0 ,

where the exactness of the left vertical sequence is shown by Theorem 3.11. By Lemma 4.3
and the vanishing theorem (Corollary 3.8), the cohomology groupHn−p−1(ω

p+1
P/A (logX)) ap-

pears in the cokernel of the map α3. Since the cokernel of the map α2 is AU ⊗A R
[(n−p)X−D]
X/A ,

we have to show that the map α1 is surjective. Since [X] ∈ Cl (P � E) is not divisible by the
characteristic of k, the k-linear map

[X] : k ⊗Z Cl (P � E)∗ → k; a ⊗ γ �→ γ ([X])a
is surjective. Hence

α1 = 1 ⊗ [X] : H 0(ωnP/A((n− p − 1)X))⊗ Cl (P � E)∗→H 0(ωnP/A((n− p − 1)X))

is surjective. �

Using Theorem 4.4, we have a description for the cohomology of relative logarithmic
differential forms on X.

COROLLARY 4.7. (1) For 0 ≤ p ≤ (n− 3)/2,

AU ⊗A R
[(n−p)X−D]
X/A � Hn−p−1(XU ,ω

p

X/A) ,

and for p = (n− 2)/2, there is an exact sequence

Hn/2(PU ,ω
n/2
P/A) → AU ⊗A R

[(n/2+1)X−D]
X/A → Hn/2(XU ,ω

n/2−1
X/A ) → 0 .

(2) If A = Am is an affine space, and OP(−E) is generated by global sections, then
for n/2 ≤ p ≤ n− 1,

AU ⊗A R
[(n−p)X−D]
X/A � Hn−p−1(XU ,ω

p

X/A) ,

and for p = (n− 1)/2, there is an exact sequence

0 → AU ⊗A R
[((n+1)/2)X−D]
X/A → H(n−1)/2(XU ,ω

(n−1)/2
X/A ) → H(n+1)/2(PU ,ω

(n+1)/2
P/A ) .
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PROOF. By the short exact sequence

0 → ω
p+1
P/A → ω

p+1
P/A (logX) → ω

p

X/A → 0 ,

we have an exact sequence

Hn−p−1(PU ,ω
p+1
P/A ) → Hn−p−1(PU ,ω

p+1
P/A (logX))

→ Hn−p−1(XU ,ω
p

X/A) → Hn−p(PU ,ωp+1
P/A ) .

By Corollary 3.8 (1) for L = OP, we have Hq(P, ωp+1
P/A ) = 0 for q ≥ p + 2. Hence

Hq(PU ,ω
p+1
P/A ) = 0 for q ≥ p + 2. This induces the statements in (1). When A is an affine

space, by the next proposition for L = OP, we have Hq(P, ωp+1
P/A ) = 0 for q ≤ p. Hence

Hq(PU ,ω
p+1
P/A ) = 0 for q ≤ p. This induces the statements in (2). �

PROPOSITION 4.8. Let A = Am be an affine space, P a nonsingular toric variety, and
π : P → A a log smooth proper equivariant morphism. Let L be an invertible sheaf on P. If
HomOP(L,OP(−E)) is generated by global sections, then for 0 ≤ q ≤ p − 1,

Hq(P, ωpP/A ⊗OP L) = 0 .

PROOF. We set F = HomOP(L, ωn−pP/A (−E)). By the duality theorem [8, III. Theo-
rem 11.1] for the morphism π , there is an isomorphism

Extn+i
Db(OP)

(F , π !Ωm
A ) � Exti

Db(OA)
(Rπ∗F ,Ωm

A ) .

Since π !Ωm
A � OP(−D − E) and Ωm

A � OA, we have

Extn+iOP
(F , ωnP/A(−E)) � Exti

Db(OA)
(Rπ∗F ,OA) .

There is a spectral sequence

E
i,j

2 = ExtiOA
(R−j π∗F ,OA) ⇒ Exti+j

Db(OA)
(Rπ∗F ,OA) .

By Corollary 3.8, we have Ei,j2 = 0 for −j ≥ n− p + 1. Hence

Hq(P, ωpP/A ⊗ L) � ExtqOP
(F , ωnP/A(−E)) � Extq−n

Db(OA)
(Rπ∗F ,OA) = 0

for n− q ≥ n− p + 1. �
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