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Abstract. We introduce an algebraic method for describing the Hodge filtration of
degenerating hypersurfaces in projective toric varieties. For this purpose, we show several
fundamental properties of logarithmic differential forms on proper equivariant morphisms of
toric varieties.

1. Introduction. There hasbeen a method to describe the Hodge structure of varieties
by their defining equations which originated with Griffiths for the case of hypersurfaces in a
projective space [7]. Subsequently, the theory was extended to the case of hypersurfaces in
simplicial projective toric varieties by Dolgachev [5], Steenbrink [13], Batyrev and Cox [1].
The purpose of this paper is to apply their idea to degenerating families of hypersurfaces in
projective toric varieties.

Let w : P — A be a proper surjective equivariant morphism of toric varieties over an
algebraically closed field k. Here we assume for simplicity that P is nonsingular, A is an
affine space A = Speck[t1, ..., t,;], and the characteristic of k is 0. Let X be a hypersurface
in P. When r is flat and geometrically connected, it gives a trivial fibration of a nonsingular
complete toric variety over the open torus of A, and degenerated fibers appear at the outside of
the open torus. Hence we can consider X — A to be a degenerating family of hypersurfaces
in the complete toric variety. We define a Jacobian ring for the family, and describe the Hodge
filtration of the family by using the Jacobian ring.

Let {Dq, ..., Dy} be the set of all prime divisors invariant under the torus action on
P. The homogeneous coordinate ring of P is defined in [2, §1] as a polynomial ring Sp =
klz1, ..., zs] which has a grading valued in the divisor class group CI (P);

degz; =[D;] € CI(P).

We can assume that 7(D;) = A for 1 < i < r, and that 7(Dj) is contained in the divisor
{t1-- -ty =0} forr +1 < j < s. The hypersurface X is defined by a Cl (P)-homogeneous
polynomial ' € Sp. Then we define the Jacobian ring of X over A by

F oF
Rx/a = Sp e )
r

which is a CI (P)-graded k[?1, ..., ty,]-algebra. For B € CI(P), the degree B part of Rx/4 is
denoted by R';; /A which is a finitely generated k[#1, . . ., f;;]-module.
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The Hodge filtration of the degenerating family is defined by using the sheaf of relative
logarithmic differential forms, so we consider the situation above with log structure [9]. We
define a log structure on P by the divisor £ = > %_ | D;, and define a log structure on A
by the divisor {¢1 - - -, = 0}. Then = is a log smooth morphism, and the log structure of the
general fiber is trivial. The sheaf of relative logarithmic differential p-forms is denoted by
wﬁ /A0 which is a locally free Op-modules. We define a log structure on X by the restriction
of the log structure on P. The next theorem is our main result, where we need not assume that
7 is flat and geometrically connected.

THEOREM 1 (Theorem 4.4). If X is ample and log smooth over an affine open sub-
variety U = Spec Ay of A, then for 0 < p < n — 1, there is a natural isomorphism of
Ay-modules

R[("*P)X*Dl

—p— 1
H" P (Py, wp )y (log X)) 2 Ay ®kiay,..i] Ry s :

where n = dimP — dimA, Py = U x4 Pand D =) ";_, D;.

If m = 0, then P is a nonsingular complete variety, and the log structure on P is trivial.
For an ample smooth hypersurface X in P, the isomorphism in Theorem 1 is

—p— 1 —-p)X—D
H'= P~ (P, 20 (log X)) = RY PP,

which was proved in [1, Theorem 10.6]. Namely, Theorem 1 is a generalization of the result
of Batyrev and Cox.

When 7 is the composite of the blowing up P — A! x P" at a point and the first
projection, then the log smooth family X;; — U is a semistable degeneration of hypersurfaces
in P". This example was studied by Saito in [12], which is the first work in which the Hodge
filtration of degenerating hypersurfaces are described by Jacobian rings.

The key of the proof of Theorem 1 is the following two fundamental properties of the
sheaf of relative logarithmic differential forms on P. The first property is a generalization of
the Bott vanishing theorem:

THEOREM 2 (Corollary 3.8). If L is an ample invertible sheaf on P, then for p > 0
andqg > 1,
HY(P,wp,4 ®0p £) = 0.
The second property is a generalization of the Euler exact sequence:

THEOREM 3 (Theorem 3.11). There is an exact sequence of Op-modules

-
0— wp, —> EOp(—Di) > Op @2 CL(P . E) — 0.
i=1
We prove Theorem 2 and Theorem 3 by using the Poincaré residue map for the sheaf of
relative logarithmic differential forms, that is the idea of Batyrev and Cox [1].
This paper proceeds as follows. In Section 2, we consider invertible sheaves on a toric
variety with a proper equivariant morphism to an affine toric variety, and characterize base
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point freeness and ampleness of the invertible sheaves in terms of the support functions on
the fan. In the case of invertible sheaves on a complete toric variety, this is a well-known fact.
In Section 3, we introduce the logarithmic differential forms on a simplicial toric variety with
an equivariant morphism to an affine toric variety. Under the assumption that the toric variety
is simplicial and satisfies a condition which depends on the characteristic of the base field,
we construct the Poincaré residue map for the sheaf of relative logarithmic differential forms.
Using the Poincaré residue map, we prove the Bott vanishing theorem and the Euler exact
sequence. In Section 4, we consider hypersurfaces in a nonsingular toric variety with a log
smooth proper equivariant morphism to an affine toric variety. We define the Jacobian rings
for hypersurfaces over the affine toric variety, and prove the main result which describes the
cohomology of the sheaf of relative logarithmic differential forms by the Jacobian rings.

2. Invertible sheaves on toric varieties. First we introduce basic notation used in this
paper, and then prove some properties of invertible sheaves on a toric variety with a proper
equivariant morphism to an affine toric variety. We refer to [6] and [11] for terminology and
basic facts in toric geometry.

Let N be a free Z-module of finite rank d. We denote by Ng the R-vector space R @z N,
denote by M the dual Z-module of N, and denote by (, ) : Mg x Ng — R the canonical
bilinear form. Let o be a strongly convex rational polyhedral cone in Ng. The dual cone oV
is defined by

0V ={ueMg|{uv)>0 forany v eo},

and we denote by A, the affine toric variety Spec k[M N o] associated to o over an alge-
braically closed field k. Let X be a finite fan of strongly convex rational polyhedral cones
in Ng. We denote by | X| the support | J, .5 0 of ¥, and denote by Py the toric variety
U(76 5 As associated to X over k. Then the algebraic torus Ty = Speck[M] is contained in
P as an open subvariety, and Ty acts on Px as an extension of the translations of Ty. For
u € M, the corresponding character

x" : Ty — Gp = Speck[Z]

is considered to be a rational function on Py;.

For each 0 < r < d, we denote by X (r) the set of all r-dimensional cones in X'. For
T € X (r), we denote by N; the free Z-module N/(N N tg), where tg is the subspace of Ng
generated by t over R, and we define the set X'; of cones in N; g by

Y ={lo]s |oc € ¥ando D 1},
where [o0]; is the image of o by the natural homomorphism
Nr — N:r; v [v]:.

Then X is a finite fan of strongly convex rational polyhedral cones in N; g, and the associated
toric variety Py, can be considered as a T y-invariant closed subvariety of codimension r in
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P5. The closed immersion ¢ : Py, — Py is induced by
x ifueMnttneY,

G kM N0 KM N [o]y1: X" {o ifugMnrine,

foro D 7, where xf : Ty, — G is the character correspondingtou € M, = M N Tt
Let B =} 5(1)bpPx, be a Ty-invariant Weil divisor on Py. We define the convex
subset Ap of Mg by

Ap ={u € Mg | (u,v,)+b, >0 forany p € X(1)},

where v, is the generator of the monoid o N N. Then there is a natural isomorphism

H'(Px, Op..(B)) ~ @ k-x.
ueMNnAp
Leth : |X| — R be a X-linear support function. We define the T y-invariant Cartier divisor
Dy onPyx by D, = — Zpez(l) h(vp)Px,.

Let N’ be another finitely generated free Z-module, and let 7, : N — N’ be a homo-
morphism of Z-modules. We denote by m.g : Ng — Np the R-homomorphism induced by
74, and denote by 7* : M’ — M the dual homomorphism of .. Then 7* induces a homo-
morphism of algebraic tori 7oy : Ty — Tp. If a strongly convex rational polyhedral cone
o’ in Ny, satisfies the condition | X| C JT*_Rl (0”), then * induces an equivariant morphism of
toric varieties wy , : Py — A,/, which is an extension of 7.

REMARK 2.1. The morphism 7y 4 is proper if and only if | ¥| = n;Rl (o).

REMARK 2.2. If wy 4 is a proper morphism, then | ¥| is a convex subset in Ng. Con-
versely, if | X| is a convex subset in Ng, then we can find a free Z-module N’, a surjective
homomorphism 7. : N — N’, and a strongly convex rational polyhedral cone o’ in Np
satisfying | X| = n*_Rl (o).

THEOREM 2.3. Let Py be a toric variety, A, an affine toric variety, and w : Py —
Ay a proper equivariant morphism. For a X -linear support function h, the following condi-
tions are equivalent:
(1) Opy(Dy) is generated by global sections.
(2) Opy(Dy) is w-nef.
(3) h is upper convex, i.e., for any vi, vy € | X,

h(vi +v2) > h(vy) + h(v2).

PrROOF. (1) = (2). Let C be a complete integral curve in a fiber of w. We denote
by C the normalization of C, and denote by ¢ the morphism from C to Px. Since Ops (Dp)
is generated by global sections, t*Op,. (Dy,) has a non-zero global section, so the intersection
number is

(Dy. C) = deg*Opy.(Dy) > 0.

(2) = (3). The morphism 7 is defined as m = w5, by a homomorphism 77y : N —

N’. We denote by N” the image of 7., and define the strongly convex rational polyhedral
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cone 0" in Ng by 0" = o’/ N Ng. Then 7 is factored to the composite of the proper surjective
morphism 7y 5 : Py — Ag» and the finite morphism A,» — A,/. We denote by s the
dimension of the convex subset

|Z| =74 (0) =75 (") C Ng,
and define the subset X (¢”,s — 1) of X (s — 1) by
X', s—1)={t e X —1) | mg(r)NInt(c”) # 7},

where Int(c”’) denotes the relative interior of 6. For t € X(c”,s — 1), there exist exactly
two cones o, 0_ € X (s) containing t. Then nx v 0ty : Py, — Agsr gives a P'-bundle
over the closed T y-orbit Ty~ = Spec k[M" N o” 11in A,~, while P 5,, and Py, become

the O-section and the co-section of the P!-bundle. Let p € T nv, (k) be a k-rational point. We
denote by Py, , the fiber of w5 5 o t; at p. Then Py, _ ,isa %onsingular rational curve in a
fiber of 7. Since p_ = [0_] is a 1-dimensional cone in N; g, there is a unique generator v,,_
of the monoid p— N N;. For v € o_ \ 7, we define the positive real number a, by

[v]; = ayvp_ € p— C N g = NR/tR .

For ¢ € X(s), we choose an element u, € M which coincides with & on ¢ as a linear
function. Then we have an equation

1
(Dp. Pz, p) = a—(<ua+, v) — h(v))
v
for any v € o_ \ 7. Since Op, (Dy,) is m-nef, we have
2. (ug,,v) = h(v)

forany v € o_.

Now we prove (uy,v) > h(v) forany 0 € X (s) and v € |¥|. For o € X(s) and
v € | X, there exists a vector w € Int(o) such that

Lw,v)={(1—-tHw+tveNg|0<t<l}
has no intersection with Urez(s—z) 7. Then UreE(a”,s—l) T divides L(w, v) into finite pieces,
and we define vectors wo, ..., w; € Ng by
Lwon | o=t owa)
teX(o”,s—1)
and
wi=1-tHHw+tiv, O=fH<th<---<ti_1<py=1.

For 1 < i <[, there exists a unique cone o; € X'(s) such that w;_;, w; € o;. We note that

w = wg, v = w; and o = o7. Since

h(wi):(uﬂivwi>=(u0i+lswi>s 1Si5l_17
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we have
-1
(M(Ta U) = (u(fla 'U) + Z(M(Ti - M(Ti+1 ’ U)
i=1
Gl 1—1¢ tirg —1
:h(v)+ <ui—ui ,7lw-1+ﬂr7,w'>
; 7 i tiy1 — 1 " tiy1 — 1 '
=y
=h( ! LW — h(w; .
( )+; =gy (o i) = h(wig)
By using (2.1) for o4 = 0; and o_ = 0,41, we have
(Uoys wit1) = h(wit1), 1=<i=<Il-1.
Hence
(2.2) (ug,v) = h(v)

foranyo € YX(s) andv € | X|.
For vy, vy € | X, there is a cone o € X'(s) such that vi + v2 € 0. By (2.2),

h(v +v2) = (Ug, v1 + v2) = (Ug, V1) + (Us, v2) = h(v1) +A(v2) .

(3) = (1). Foro € X (s)andv € | X|, there exists w € ¢ such that v + w is contained
in 0. Because & is upper convex, we have

(o, v) = (o, v+ w) — (Uo, w) = (v + w) — h(w) = h(v),

so x"e gives a global section of Op, (D). Since Py = UJEE(S)AU’ and x"o generates
I'(As, Ops (Dp)) over k[M N o V], the invertible sheaf Op,.(Dy,) is generated by global sec-
tions. O

THEOREM 2.4. Let Py be a toric variety, A, an affine toric variety, and w : Py —
Ay a proper equivariant morphism. For a X -linear support function h, the following condi-
tions are equivalent:
(1) Opy(Dy) is ample.
(2) Opy(Dy) is w-ample.
(3) h is strictly upper convex, i.e., for any vy, vz € | X,

h(vi +v2) = h(vi) + h(v2),
and equality holds if and only if there exists a cone o € X such that vy, vy € 0.

PROOF. The equivalence of (1) and (2) is well-known for any proper morphism to an
affine scheme.

(2) = (3). In the proof of Theorem 2.3 (2) = (3), if Op, (D) is w-ample, then
(Dy.Px, p) > 0, and hence (us, , v) > h(v) forany v € o \ 7. This implies that (us, v) >
h(v) forany o € ¥ (s) and v € | ¥|, and equality holds if and only if v € o.
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For vy, vy € | X, there is a cone 0 € X (s) such that vy + vy € 0. If
h(vi +v2) = h(vi) + h(v2),

then
(ug, v1) —h(v1)) + ((ug, v2) — h(v2)) =0.
So we have (uy, v1) = h(vy) and (us, v2) = h(v2), which means that vy, v € o.

(3) = (1). Let &£ be a coherent Op,-module. We show that there exists a positive
integer mg such that £ ®0p,. Ops. (mDy,) is generated by global sections for any integer m >
mo. We may assume that £ = Op. (B) for a T y-invariant Weil divisor B = Zpez(l) byPx,,
because there exists a surjective homomorphism @;_; Op,, (B;) — & for some T y-invariant
Weil divisors By, ..., B, by [10, Corollary 1.2].

For o € X(s), we fix vectors uq,1, ..., Ug,c, € M such that x“=! .. . x"o< generate
I'(As, Op; (B)) over k[M N oV]. Since h is strictly upper convex, for o € X(s) and p €
2 (1), we have (uy, vp) > h(vy), and if v, ¢ o, then (uy, vy) > h(vy). Also, if v, € o, then
(Ug,i, vp) + b, > 0. Hence there exists a positive integer m such that for any o € X (s), for
any 1 <i < ¢4 and for any p € X (1),

mo((ug, vp) —h(vp)) = —bp — (Ui, Vp) .
Then we have
(Ug,i +mug,vp) > —bp +mh(vy)
for any m > myg, and this means that yx“oi™"s is a global section of the coherent sheaf

Opy (B + mDy). Since oMo | yloco Tl generate I'(Ay, Opy (B + mDy)) over
k[M N o], the coherent sheaf Op; (B + mDy) is generated by global sections. O

3. Log differential forms on toric varieties. We introduce the sheaf of relative log-
arithmic differential forms on a toric variety with an equivariant morphism to an affine toric
variety.

Let P = Py be a toric variety, let A = A, be an affine toric variety, andlet w = 7y 5 :
P — A be an equivariant morphism, which is given by a homomorphism 7, : N — N’ with
| X C JT*_RI (¢/). For T € X, we denote by P; the corresponding Ty -invariant subvariety Py, .
We define the subfan X, of X' by

Sr={teX|tCny )},
Ifr € X, then r; = 7 oty : P — A is an equivariant morphism induced by
N; — N/; [v]: = 7 (v).

We denote by X" the set of all nonsingular cones in ¥, and denote by j : P8 = Pyreg — P
the natural open immersion. We define the T'y-invariant divisors D and E on P by

3.1) D= Y P, E= Y P,
pez(l) pe ()~ Ea(1)

which are divisors with normal crossings on P,
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Let o be a cone in X"™8(c), and let (v1, ..., vg) be a Z-basis of N with
o =R-ov1 + - -+ R>0v.,
(3.2) { = P .
Vi, ...,y €my (0), v, ..., v €y (0).
Then we have
As = Speck[M No¥] = Specklxi, ... xe, x . ....x7'],
Ag 0D = Speck[x1, ... . xe, x . x7 /(e xp),
Ao NE = Specklxy, ..., xe. x o x7 /(g xe) s
where x; = x " for the dual basis (41, ..., uq) of (v, ..., vq). We define a free k[M N o V]-

module a)}la by

1 d
d .
w0y, =2} (ogE) = kM NoVldx; & @ kM ﬁov]%,
j=1 j=1+1 J

which is naturally contained in the free k[M N oV ]-module
d dx;
2} (logDUE) = @k[M NoV]—L .
o = xj

We denote by a)},,eg C Qll,,eg (log D U E) the sheaves of Opree-modules defined by k[M No V]-
modules a))‘a C QAJ (log D U E) foro € X™&. Then we have an isomorphism Opres @z M ~
2}z (log D U E) by
v 1 dx;
kIMNo ' ]®@zM >~ 82, (logDUE); 1®u; < —.
o -xj
We denote by a)},,eg /A (log D) the cokernel of the homomorphism
7'[(*9preg 1 Opree @z M — Opree @7 M =~ .Qllmg(logD UE).

. . % . . . 1 1 * .
Since the image of jTOPreg is contained in Wpreg> WE denote by Wpres /4 the cokernel of T[opreg :

Opres @z M' — a)},reg. We define the coherent sheaf d)ﬁ/A on P by J)g/A = (AP a)},,eg/A),
which is a submodule of the free Op-module

p
wﬁ/A (log D) = j*wﬁreg/A(log D) >~ Op ® /\ Mz i,

where M ; denotes the cokernel of Jr,:‘ 1 k®z M' — k ®z M. The sheaf J)P{’/A is the sheaf of
relative logarithmic differential p-forms of Zariski. In the paper [1], it is simply denoted by
.QI[,’ for the case A = Speck.

REMARK 3.1. The sheaves a)}l,,.eg /A and a)}l, /A (log D) are interpreted as sheaves of rel-
ative logarithmic differential forms in the sense of log geometry [9]. If we consider P™¢ with
the log structure N I‘,E,-eg defined by the divisor E with normal crossings, and consider A with
the canonical log structure NX*‘“ as a toric variety, then the sheaf a)}mg /A is the sheaf of rel-

ative logarithmic differential forms on (P&, A/ I’f;eg) over (A, N3*). If we consider P with
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the canonical log structure NVp*" as a toric variety, then the sheaf a)}, /A (log D) is the sheaf of
relative logarithmic differential forms on (P, Np*") over (A, N{*™).

Sections of the sheaf d)l’; /4 Are described explicitly as follows (cf. [3, Proposition 4.3]).
Foru € M and 0 € X, we define the subset oy ,—o(1) of X (1) by

oru=0(1) ={p € Xz (1) | (u,vp) =0 and p Co},
and the k-subspace Hy , of M i by
Hyy={weMyi|{w,1®v,) =0 forany p € or ,=o(1)}.

LEMMA 3.2. Foro € X, there is a natural isomorphism

P
TAy, o) = @ /\Hw X"

ueMnoVv

PROOF. The isomorphism is induced from the natural isomorphism

P P
IAq, 0p4(0g D) =~ A, Op) &k N\ Mai >~ @ N\ Mes-x".

ueMnoV
First we assume that 0 € X™. We use a Z-basis (vy, ..., vg) of N satisfying (3.2) and
the dual basis (uy, ..., us) of M. There exists a k-basis (wq, ..., w,) of My such that for

1 <i <1, the vector w; is the image of 1® u; by the natural homomorphism k®zM — My i,
and I'(A,, a)}l,,eg/A) corresponds to the k\[M N o ¥]-submodule H, C EBueMmgv My - x"
generated by

0 0
wix" o wr M Wi e WX
Forasubset I = {i1,...,ip} C{l,...,n}withiy <--- <ijp, wesetur = ;oo Ui
in M, and define
(3.3) wy = wj, A---Aw,-p

in A\” My k. Then (wy; |I| = p) is a k-basis of AP My, and (w;x"!; |I| = p)is a
k[M N oV]-basis of A? Hy. Foru € M N oY, we define the subset J, of {1, ..., [} by

Then (wy; |I| = p, I NJ, =0) is ak-basis of AP Hy . If

P
w = Z Zau’IwIXME @ /\Mn,k'Xuv ay,1 €k,

ueMnoV |Il=p ueMnoV

is contained in /\” Hy, thenw = 3=, | (3, cpnov brux)wrx*! for some by, € k, so we
have
bry—u, ifu—ureocV,
ay,1 = .
“ 0 if u—uy¢oV.
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Ifu —u; € oV, then I N J, = @, and hence Z|1|=p ay.jw; € NP Hy . Conversely, if
INJ, =0,then we have u — u; € ¢V, and hence
p
wrx" = x"""(wrx") € )\ Ho .
So A" Hy coincides with @, pynov /A’ Hou - x* foro € X8,
If o € ¥ is not a nonsingular cone, then we have

F(Ag, @) = T(Ag NP by ) = [ T(Ar, 0hes )

TECTE
where 0" denotes the set of all nonsingular faces of o. Since 0¥ = [),c e 7", and
N Hosw = (Nregree /\P Hru for u € oV, the isomorphism in Lemma 3.2 is proved for
anyo € X. O

Next we define the Poincaré residue map for the sheaf d)ﬁ /A" For this purpose, we need
some assumptions for the fan X'. For o € X', we define the positive integer m (o) by

m(o) = ord (N ﬂaR/Z va> ,

pea(l)
and set m(X) = ]_[aez m(o). We assume that the fan X' is simplicial, and m (%) is prime to
the characteristic of k.
We denote by Ny the kernel of 7, : k @2 N — k ®z N'. For t € X, (r), we denote
by v1, ..., v, the primitive generators of T in Ny x;
{vi,...,v}={1®vy €Ny | pe Xyp(l) and p C 7}.

Then we define the k-homomorphism ¢ by

.
¢ [\ Mok — ki mi A=+ Ay > det (i v i<izr1<j<r

where n; € Mz k,and (, ) : Mz X Ny — k denotes the natural bilinear form. We remark
that ¢, depends on the ordering of vy, ..., v.. We fix the ordering for each t € X (r). For
o € Y and t € X5 (r) with T C o, we define the homomorphism @, ; by

r p—r p—r
®a,r : /\Mn,k Rk @ /\ Ha,u . Xu - @ /\ Ha,u . X? 5

ueMnoV ueMnoVnrt

u u

ne® Z Wy X > Z ¢ (Mwu Xy »
ueMnoV ueMnoVnrt

where n € A" My and w, € AP~ H,,,. Since m(X) is prime to the characteristic of k, for
ueMnoVNet~Mn [o]7, there is a natural identification

Hou > {w € (Mo)z k| (w, 1 ®vp) =0 forany p € ([0]0)r, ,u=0(1)},
s0 @, r gives a homomorphism

I'(Aq, wp)a(log D) ®0, @) — T'(Ag NP @p ).



HODGE STRUCTURE OF DEGENERATING HYPERSURFACES 351

We denote by
@ : wp 4 (10g D) ®0, @pjy — Les@p_g
the homomorphism of sheaves defined by @, ; for 0 € X, and define the homomorphism @
by
b= P @ :wpylogD)®o,dp, > P tedp )y
TEZA(r) T€XR(r)
LEMMA 3.3. The kernel of the natural homomorphism
wp,4(log D) ®0, éﬁ/_Ar — wS/A(log D); nQwr>nAw
is contained in the kernel of ®.
PROOF. Leto be aconein X, u an elementin M NoV, and (wq, ..., wy,) a k-basis
of My k such that (wq, ..., wy) is a k-basis of Hy . For I C {1,...,n} with |I| = r, and

Jc{l,....,s}with|J| = p—r, vectors w; € \ My andwy € A’"" H,,, are defined
by the same way as (3.3). If

w = Z Z argwr @wy, arj €k,
[=r|J|=p—r

is contained in the kernel of the natural homomorphism

r p=r P
/\ Mn,k (g3 /\ Ha,u g /\ MJ'[,k s

then for L C {1, ...,n} with |L| = p, we have
(3.4) > sen(l. Nary =0,
1UJ=L
where sgn (1, J) is defined by w; A wy = sgn(l, J)wy. Fort € X, (r) witht C o,
we have to prove @, ;(wx") = 0. It is clear for the case u ¢ t+. Hence we assume that

uett Letl C{l,...,n)} be asubset satisfying |/| = r and ¢ (w;) # 0. Then we have
IN{l,...,s} =@, because (w;j, Il @v) =0forl <i <sandv € N Ntg. By (3.4), we
have a; ; = 0forany J C {1, ..., s}, and hence
o (wx )= Y Y arspcwpwsxt =0. O
[JI=p—r|l|=r

We denote by W, a)g /A (log D) the image of the natural homomorphism

r

wp,4(log D) ®0, d)g/_A — a)g/A(log D); nQwinAw.
By Lemma 3.3, the homomorphism @ induces a homomorphism
Res : W,wg/A(log D) — @ Lr*d)g;/;,
TeX(r)

which is called the Poincaré residue map. The Poincaré residue map has the following funda-
mental property similar to the case of SZI[,’ by [4, II. §3] or [3, §15.7].
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THEOREM 3.4. Let A be an affine toric variety, P = Px a simplicial toric variety
such that m(X) is prime to the characteristic of k, and = : P — A an equivariant morphism.
Then there is an exact sequence of Op-modules

0 —> Wr_10p 4 (log D) —> W,wp 4 (log D) — D trx@p, g — 0.

TeX(r)

PROOF. We check this on the affine coordinate A, for o € X'. First we prove that the
Poincaré residue map is surjective. Let T C o be a cone in X' (r), and let vy, ..., v, € N be
satisfying

{vi,.... v} ={vp [ p € (1) and p C o},

{vi,...,u}={v, | p € 2z (1) and p C o},
fvr,...,v ) ={v, | pe Xr(1l) and p C 7}.

Since m (o) is prime to the characteristic of k, the vectors 1 ® vy, ..., 1 ® v; are linearly
independent in N ;. Then there exists a k-basis (wy, ..., w,) of Mk such that

1, i=j,
(wi,1®vj)={0 i;ﬁj’
forl <i <nmnand1 < j < [. Forasubset I C {I,...,[} with |I| = r, we set 7} =
Y icr R=0v; € X (r). Then we have

| =,
¢>r,(77)—{0, I#{1,....r},

where n = wy A --- Awy. Foru € MNo Nttandw € A’ Hy,, we have wy! =
Res(n A wx™), because @y - (n @ wx") = wx¥ and @, (n @ wx™) = 0 for v’ # t. Hence,
for any element

w = Za)r IS @ I'As, lr*d);:;/’;‘) , wr €'(Ag, lr*d);:;/’;‘) s
T T€05(r)

there exists w; € I'(Ay, W,wﬁ/A(log D)) such that Res(&;) = w,. Since Res(}_, &7) =

> . Res(w;) = w, the Poincaré residue map is surjective.

Next we show that Wr,lwﬁ /A (log D) is contained in the kernel of the Poincaré residue
map. Foru € M NoVY, we set

JMZ{JE{l,,l}|(M,Uj>=O}
Then (wy; |J| = g, J NJ, = 0) is a k-basis of A? H,,,. For L C {1,...,n} with
|[L|=r—1,andforJ C {1,...,n}with |[J|=p —r 4+ 1and J N J, = @, we have

P(wr Awjy @wyjnx"), LNJ =0,

uy __
Res(wL/\wJX)—{O’ LNJ #0,

where j; is the smallest integer in J. For I C {1,...,l} with |I| = r, ifu € rll, then
¢, (wp Awjy) =0, s0 we have Res(wy A wyx") =0.
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Finally, we assume that

Z Z argwrQwyx", arjek,

[|=r|J|=p—r
is contained in the kernel of @. For L C {1, ...,l} with |L| =r,if L C J,,thenu € té‘, and
hence
ar,g = ¢rL( Z aI,le) =0.
[|=r
We have
S Y =Y Y aswaw
[|=r|J|=p—r 1¢4, Ui=p=r
=Y sen(I N {i)i) Y arnjwiop AwiAwy,
1Z I=p—r

where we take i € I ~ J, for each [ g Jy. Since (J U {i}) N J, = @, this is contained in
I'Ag, Wr,lw;/A(logD)). O
PROPOSITION 3.5. Ifm : P — A is proper, then for any ample invertible sheaf L on

P, the global Poincaré residue map

Res o p—
HO(P, W, o, (log D) ®0, L) = P H'®:.0p 1 ®0p, UiL)

Te€X,(r)
is surjective.

PROOF. There is a X-linear support function & such that £ >~ Op(Dy). We define the
subset X ,—; (1) of X7 (1) by

Zru=n(1) ={p € Xz (1) | (u,vp) = h(vp)},
and define the k-subspace H), j of My ; by
Hyp= {we My [ {(w,1® Up> =0 forany p € Eﬂ,u:h(l)} .

By Lemma 3.2, there is a natural isomorphism

p—r
HO(P,dp,4 ®0, Op(Di) =~ B /\ Hun - x",
ueMnAy
where
Ap=Ap, ={u € Mg | (u,v) > h(v) forany v € |X]}.

Let t be a cone in X, (r). We choose an element u; € M which coincides with /2 on 7 as
a linear function. Then X'-linear support function 4 — u, induces a X -linear support function
he 12| — R, and there is a natural isomorphism ¢} Op(Dj—,,) == Op,(Dy,). Since 7 is
proper, we have

M.NA, =MNThN ALy, .
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Since m (X)) is prime to the characteristic of k, foru € M N N Ap—y,, there is a natural
identification
Hyp—u, = {w € M)z, k | (w,1®vy) =0 forany p € (X¥t)r, u=h.(D}.
We denote by 7,,, the isomorphism
Ty, : Op(Dy) = Op(Dp—y,);  x" = x"7".
Then the homomorphism

®; 0Ty, : I'(P, wp 4 (log D) ® @ ® Op(Dy)) - I'(Pr,@p_/\ ® Op, (Dy,))

is given by
r p—r p—r
/\ My i Qk @ /\ Hyp- Xu - @ /\ Hu,h—uT : X? 5
ueMnA, ueMNAp_y, Nt
dMwys ", u—ur €Tt
wy" —
newx {O, u—u; ¢ vt

where we remark that H, , = Hy—u, h—u,. Since h is strictly upper convex, foru € M N in
Ap—y,, there exists acone o € X' such that o (1) D Xy y4u,=n(1).

Using this cone o, we give a k-basis (wy, ..., w,) of M; ; in the same way as the proof
of Theorem 3.4, and we set n = wy A -+ A w, in \" My k. Then for w € A" Hyph—u,,
we have wx" = @; o T,, (n @ wx"“T¥7). If ' € X (r) \ {r} is contained in o, then ¢, (n) =
0. If t/ € X;(r) \ {t} is not contained in o, then u + u; — uy ¢ 7+, Hence we have
D0l ,(n® wy“ ) =0 forany T’ € X, (r)\ {r}. Since the global Poincaré residue map
is induced by @ = P, . 5, (r) Pz, for any element

o= Y ore P H'P.dp ), 0, Op(Dy)
T€X,(r) TE€EXL(r)
there exist @; € HO(P, Wrwﬁ/A (log D) ®o, Op(Dy)) such that Res (;) = w,. Since
Res (Zrez‘n(r) w7) = Zrez,, ) Res (@;) = w, the global Poincaré residue map is surjec-
tive. O

We prove a vanishing theorem of Bott type for the cohomology of the sheaf of relative
logarithmic differential forms, that is reduced to the following vanishing theorem for invertible
sheaves on toric varieties. The idea is the same as that in [1, Theorem 7.2].

THEOREM 3.6 ([6, p. 74, Corollary]). Let Py be a toric variety, and L an invertible
sheaf on Pyx. If the support | X| is convex, and L is generated by global sections, then for
q=1,

HY(Px,L)=0.
THEOREM 3.7. Let A be an affine toric variety, P a simplicial toric variety such that

m(X) is prime to the characteristic of k, and w : P — A a proper equivariant morphism. Let
L be an invertible sheaf on P.
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(1) If L is generated by global sections, then for p >r >0andqg > p —r + 1,
HY(P, W,wp 4(log D) ®0, £) =0.

(2) If Lisample, then for p >r > 0andq > 1,
HY (P, W,wh /4(log D) ®p, £) =0.

PROOF. We prove this theorem by induction on p—r. If p—r = 0, then W), wﬁ/A (log D)
is isomorphic to the free Op-module Op ®x /\’J M . By Theorem 3.6, we have

P
HI(Wpop,,(log D) ® L) = [\ Mzt ® HY(L) =0

forg > 1.
For an integer / > 1, we assume that Theorem 3.7 is true for the case p —r = [ — 1. Then
we prove Theorem 3.7 for the case p — r = [. By Theorem 3.4, there is an exact sequence

HI (Wy0p i Gog D) £) — @ HI\@h /' @iL)
teXy(r+1)
N Hq(W,w;’/A (log D)@L)—>Hq(w,+1w,'?/A(1og D)®L).

Since p— (r +1) =1 — 1, we have H‘f(W,Hwﬁ/A(log D)®L)=0forg>p—(r+1)+1.
Since 5)5:/2;1 = Wowrlf:/gl(log D;)and (p—r —1)—0=1—1, we have H"’l(cbl.’?:/gl ®
L)y =0forg —1> (p—r —1)—0+ 1, where D, denotes the invariant divisor on P
defined similarly as we defined D on P. Hence we have H q(Wrwﬁ /A (log D) ® L) = 0 for
g>p—r+1

Next we consider the case where £ is ample. Since p — (r + 1) = [ — 1, we have
HY(W, 1005, (log D) ® £) = 0 forg > 1. Since @/~ = Wowh /" (log Dy) and (p —
r—1)—0=1-—1, we have H‘f’l(c?),l@’:/gl ® ¥L) = 0forq — 1 > 1. Hence we have
Hq(W,w’{’/A (log D) ® £) = 0 for g > 2. By Proposition 3.5, the homomorphism

H' W wp,logD)@ L) > @ H@h ) @il
teX, (r+1)

is surjective. Hence we also have H 1(Wrw,lf/A(log D) ® £) = 0 for by the exact se-
quence. O

COROLLARY 3.8. (1) If L is generated by global sections, then forq > p + 1,
H4(P, c?)P/A ®op £) =0.

(2) If L is ample, then for g > 1,
HI(P, ”;?/A ®op L) =0.

PROOF. By the definition, Wowp, 4 (log D) is equal to &y, ,. The corollary is the case
r = 0 of Theorem 3.7. |
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In the rest of this section, we prove the Euler exact sequence for the sheaf of relative
logarithmic differential forms. Here we introduce the notion of log smoothness.

DEFINITION 3.9. If the rank of the locally free Oprez-module a)},reg /A is equal to
dim P — dim A, then we call that v is log smooth.

REMARK 3.10. The following conditions are equivalent:

(1) m islog smooth in the sense of Definition 3.9.

(2) moj: (P Nk — (A, N5™) is log smooth in the sense of [9].

(3) 7 (P, NG — (A, NJ*") is log smooth in the sense of [9].

(4) The cokernel of 7, : N — N’ is finite, whose order is prime to the characteristic
of k.

(5) 7*: M’ — M is injective and the order of the torsion part of the cokernel of 7* is
prime to the characteristic of k.

We denote by Ny the free Z-module generated by X (1), and by P the kernel of the
homomorphism

1//:]\7;,—>N; Z byp — Z byv, .
peZL (1) pE€Z (1)
We identify the group of T-invariant Weil divisors on P . E with the dual Z-module M, of
Ny by the pairing

(X arn ¥ tw)= ¥ ab
peX (1) peX (1) peX (1)
Then the divisor class group CI (P \ E) is naturally isomorphic to the cokernel of the dual

homomorphism ¢* : M — M. Since the image of ¥ is contained in N, the homomorphism
¥* induces a morphism of Op-modules

I/f(*gp : a)},/A(logD) ~ Op Qx My 1—Op Qz My ~ @ Op.
peXz (1)
THEOREM 3.11. LetA be an affine toric variety, P a simplicial toric variety such that
m(X) is prime to the characteristic of k, and & : P — A a log smooth proper equivariant
morphism. Then there is an exact sequence of Op-modules

0— ‘7’;’/14 = @ Op(—P)) L 0p®zClL(P~E) — 0,
peX (1)
where W* is induced by the morphism w(*gp.

PROOF. We denote by N, the kernel of 7, : N — N’. Since 7 is proper and m(X) is
prime to the characteristic of &, the cokernel of ¢ : N; — Ny is finite, whose order is prime
to the characteristic of k. So we have an exact sequence of k-vector spaces

0—> k®y Py — k®z Ny 25 k®y Ny — 0.
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Since 7 is log smooth, we have M x >~ Homy (k ®z Ny, k). Hence there is an exact sequence

of k-vector spaces

i -
0 — My —> k®z My — k ®z Homz (Py,Z) —> 0,

which induces an exact sequence of Op-modules

v .
0 —> wh(log D) —% Op ®7 Mz —> Op ®7 CL(P\ E) —> 0.

The exactness of the sequence in Theorem 3.11 is proved by the commutative diagram

0 0
‘7’;’/14 @ Op(=Py)
PEXL (1)

l l

v .
0 —> wp,(log D) 2 Op@z My —> Op@zCL(P~ E) —> 0

| |
@ lp*OPp = @ lp*OPp

peX (1) peXy (1)
0 0 bl

where the exactness of the left vertical sequence is proved in Theorem 3.4.

|

4. Hypersurfaces in toric varieties. Let A = Spec A be an affine toric variety with
a torus invariant point 0, P = Py a nonsingular toric variety, and 7 : P — A a log smooth
proper equivariant morphism. Then we remark that dim P = dim | ¥'|, and a)Il, 4 = w},,eg A=

J)}, /A is a locally free Op-module of rank n = dim P — dimA.

Since dim P = dim | ¥'|, the homogeneous coordinate ring of P is defined in [2, §1] as a

Cl (P)-graded polynomial ring
Sp=klzp; pe 2= P Sp
BeCl(P)
with
degz, = [P,] € C1(P).

For a Ty-invariant divisor B = ) pex(l) b,P,, there is a natural isomorphism

CRY s = HO®,0pBY; [T o e
peX(l)
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By the A-module structure on H(P, Op(B)) = H(A, 7,Op(B)), the homogeneous coordi-
nate ring Sp has an A-algebra structure.

Let X be a hypersurface in P. Then there is a Ty-invariant divisor B = }_ (1, 0pP)
such that

[X]=[B]Cl(P).

Since the hypersurface X is defined by a global section of Op(B), using the isomorphism
(4.1), it is defined by a Cl (P)-homogeneous polynomial F. If F’ is a Cl (P)-homogeneous
polynomial defined by using another Ty -invariant divisor B’ with [X] = [B’], then there is a
non-zero constant a € k* such that F’ = a F. We define the Jacobian ring Ry /4 of X over A
by

oF
Rx/a = SP/ 3. PE 2D,
Zp
which is a Cl (P)-graded A-algebra uniquely determined by X.

REMARK 4.1. If A = Speck, then P is a complete toric variety, and X (1) = X'(1).
In this case, our definition of Jacobian ring is same as [1, Definition 10.3].

We denote by Zx,p C Op the ideal defining X in P, and define the coherent Ox-module
aﬂ; /A by
-1
W} 4 = Coker(Zxp/ Ty p ® w4 Ix — whulxs [f1® 0 > (@dfIx Aw),
where d : Op — a)}l, /A is the differential operator given by
d: @ k-x"— @ Hou- x5 x" > [1Qulx".
ueMnoV ueMnoVv

DEFINITION 4.2. Let U be an open subset of A. If jé‘“%(/A is a locally free Oy~
module of rank n — 1, then we call that X is log smooth over U, where jy : Xy — X denotes
the open immersion U x4 X — X.

We define the coherent Op-module a)ﬁ /A (log X) by
a)ﬁ/A(logX) = Ker(a)g/A(X) — a)g;/A ® O0p(X)|x) .

If X is ample in P, then by the vanishing theorem (Corollary 3.8), we can calculate the coho-
mology of the sheaf wﬁ /A (log X), using the following resolution.

LEMMA 4.3. If X is log smooth over U, then for 0 < p < n — 2, the following
sequence is exact on Py = U ®4 P;
1 1 2
0 —>a)£7;1 (logX) — a)g;; (X)) —> a)ﬁ/t‘ 2X)|x — ---

n—1
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PROOF. By the short exact sequence
0— Zx/p/Ty/p ® 0y 4 — w;',jlhx - ng/}, —0
on Py, we have a short exact sequence
0 — w,®0p((i — p)X)Ix = Wplhy (i — p+ DX)Ix
— iy ®Op((i = p+ DX)|x > 0

for p+1 <i <n — 1. By the definition of wﬁ;;l (log X), we have a short exact sequence

1 1 1
0— wpy (log X) — wpy (X) = k), ® Op(X)|x — 0.

By connecting these short exact sequences, we have the long exact sequence. a

The following is the main theorem in this paper, which describes the cohomology of the
sheaf of relative logarithmic differential forms by using the Jacobian ring.

THEOREM 4.4. If X is ample and log smooth over an affine open subvariety U =
Spec Ay of A = Spec A, and the class [X] € C1 (P \ E) is not divisible by the characteristic
of k, then for 0 < p < n — 1, there is a natural isomorphism of Ay-modules

— J— 1 -~ B
H" 71 (Py, wpil (log X)) = Ay @4 RY), VY1)

We prove some lemmas for the proof of Theorem 4.4. Let F be a Cl (P)-homogeneous
polynomial which define the hypersurface X. Since F € S},X] ~ HO(P,Op(X)) and
0F /32, € S5 TN ~ HO(P, Op(X — P,)) for p € Z; (1), we denote by F : Op — Op(X)
and 0F [0z, : Op(P,) — Op(X) the multiplication by the global sections.

LEMMA 4.5. The following diagram is commutative;

Op@zCIP~EY —X .  0p

ol Ik

D orwy) ——— Opx),
pesa (1) (0F/0zp) pexy(1)

where the map y™ is the dual of y defined in Theorem 3.11.

PROOF. We denote by F = )", a.z° the CI (P)-homogeneous polynomial defining X,
where z¢ is the monomial ]_[pez(l) z¢r of degree [X] € C1(P). Letgp : Cl(P~ E) — Zbea
homomorphism. Then the image of 1 ® ¢ by the map (0F /9z,)pex, (1) o ¥ ™ is

> go([PpszsTF: > w([Pp])Zaeepzf=Zae¢<[ > epPpDze.

peZL (1) P pezZq(l) peZ(1)
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Since [Zpel}(l) e,P,]1 = [X] € CI(P \ E), this is equal to

Y ap(XDz° = (XDF,

which is the image of 1 ® ¢ by the map F o [X]. m|

LEMMA 4.6. The following diagram is commutative;

(0F/0zp) pexy (1)

@ wpja(Pp) wpa (X)
peXx (1)
| |
w;’/iél s > a);l’/A(X)|Xa

where the map W is the dual of the map W* defined in Theorem 3.11, and § is defined by the
restriction

w;’,/—Al N w';&; ~ wp 4 (X)]x.

PROOF. We check this on a local affine coordinate A, foro € X. There is a T-invariant
divisor B = Zpez(l) b,P, such that [B] = [X] € C1(P), and b, = O for p ,CZ o. Let w be
ak[M N oV]-basis of I'(A,, a);l,/A), and x"» a k[M N o"]-basis of I'(A5, Op(—P,)). The
image of wy ™" € I'(A, wp, 4 (Py)) by the map § o ¥ is

w —
— > aulu )X Ix

f ueMnoVv

where f = Y, cynov aux™ is the local equation of X. On the other hand, the image of
wy " € I'(A, wp 4 (Pp)) by the map 0 F/dz, is

%Zau((u, Vo) +bp)x" T = %(Zau@h vo) X" + bpr_u”> ,

whose restriction to X is (6 o ¥)(wyx ~“») € I'(Ay, w;l,/A(X)lx). O

PROOF OF THEOREM 4.4. In the case p = n — 1, we have

Ay ®4 R'XX/;D' ~ Ay @4 S5 PV~ HO(Py, w)p 4 (X)) ~ HO(Py, 4 (log X)) .
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We assume that 0 < p < n — 2. By Lemma 4.5 and Lemma 4.6, we have a commutative
diagram
0 0

l l

HO(Py, 0y 4 ((n — p = 1)X)) @ CL(P N E)* — H(Py, )y, ((n — p — 1)X))

l l

D HPy, (= p—DX+Py) —  HPy,wp,((n— p)X))

peXL(1)
HO(Py, w4 (0 = p — X)) = HOPy, @)y 4 (1 = p)X)lx)
0 0 b
where the exactness of the left vertical sequence is shown by Theorem 3.11. By Lemma 4.3
and the vanishing theorem (Corollary 3.8), the cohomology group H"~7~! (a)g;;ll (log X)) ap-

pears in the cokernel of the map «3. Since the cokernel of the map a2 is Ay ®4 R[(;' PX= D],

we have to show that the map «; is surjective. Since [X] € Cl (P \ E) is not divisible by the
characteristic of k, the k-linear map

[X]:k®zCl(PNE)" > k; a®y — y([X]Da
is surjective. Hence
a1 = 1@ [X]: H(wp4((n — p = 1DX) @ CL(P \ E)* > H (@} 4 (n — p — X))
is surjective. O

Using Theorem 4.4, we have a description for the cohomology of relative logarithmic
differential forms on X.

COROLLARY 4.7. (1) ForO<p<(m—3)/2,
X-D
Au @4 RV = B (X 0 )
and for p = (n — 2)/2, there is an exact sequence
2 2+1)X-D
H"(Py, o3) = Ay @4 RV
(2) IfA = A™ is an affine space, and Op(—E) is generated by global sections, then
forn/2 < p<n-—1,

— H"?(Xy, a);//%;l) — 0.

—p)X—-D —p—
AU ®A R[X(v};Ap) ]:Hn p l(XU,(,();./A),

and for p = (n — 1)/2, there is an exact sequence

0= Ay @4 R}%ﬂ)/z)x DI, go=DP2(x,. (n 1)/2)_) HOHD/2(py, 1(;1/;1)/2).
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PROOF. By the short exact sequence

0— wﬁ/til — a)ﬁ;‘l(logX) — “)5(/,4 — 0,

we have an exact sequence
Hn—[)—l(P P+1) N Hn—p—l(P P+1(1 X))
U, “)P/A anP/A 0og

oy — 1
— H""P l(XU,a))’}/A)—>H” ”(PU,wPI?;;).

By Corollary 3.8 (1) for L = Op, we have HY(P, wﬁ/t‘l) = 0 forg > p+ 2. Hence
H1(Py, w,’f/t‘l) = 0 for g > p + 2. This induces the statements in (1). When A is an affine
space, by the next proposition for L = Op, we have H(P, wﬁ?j) = 0 for g < p. Hence
H1(Py, wﬁ/t‘l) = 0 for g < p. This induces the statements in (2). O

PROPOSITION 4.8. LetA =A™ be an affine space, P a nonsingular toric variety, and
7w : P — A alog smooth proper equivariant morphism. Let L be an invertible sheaf on P. If
Homo, (L, Op(—E)) is generated by global sections, then for0 < q < p — 1,

HY(P, 0}, ®0, L) =0.

PROOF. We set 7 = Homo, (L, w;i/j(’(—E)). By the duality theorem [8, III. Theo-
rem 11.1] for the morphism 7, there is an isomorphism

XUt (F w25 = Extly, o ) (R, 241).

Since 71!.{2:1” ~ Op(=D — E) and 2} >~ Oy, we have
Ext'g;i (F, 0p 4 (—E)) = Ext), (0 BRF . Oy).
There is a spectral sequence

Elz’] = EXti(QA (R_jﬂ*]:s OA) = EthDt](OA)(Rn*]:’ OA) .

By Corollary 3.8, we have E’2] =0for—j >n— p+ 1. Hence
Hi(P, wﬁ/A ®L) ~ Ext‘ép(]—", a);',/A(—E)) >~ EthD;?OA)(RJT*]:, 04)=0
forn—g>n—p+1. O
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