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NON-REGULAR PSEUDO-DIFFERENTIAL OPERATORS
ON THE WEIGHTED TRIEBEL-LIZORKIN SPACES

SHUICHI SATO

(Received March 28, 2005, revised May 14, 2007)

Abstract. We consider certain non-regular pseudo-differential operators and study the
question of their boundedness on the weighted Triebel-Lizorkin and Besov spaces.

1. Introduction. Let Ψ ∈ C∞(Rn) satisfy supp(Ψ ) ⊂ {1/2 ≤ |ξ | ≤ 2}, |Ψ (ξ)| ≥
c > 0 for 3/5 ≤ |ξ | ≤ 5/3 and∑

j∈Z

Ψ (2−j ξ) = 1 for ξ �= 0 ,

where Z denotes the set of all integers and |ξ | = (
∑n
j=1 ξ

2
j )

1/2, ξ = (ξ1, ξ2, . . . , ξn). Define

Φ ∈ C∞
0 (R

n) by Φ(ξ) = 1 − ∑
j≥1 Ψ (2

−j ξ). We note that Φ is supported in {|ξ | ≤ 2}. In
what follows, we also assume that Ψ is radial. We write gt (x) = t−ng(x/t) for t > 0. Define
Dj(f ) = f ∗ (Ψ̂ )2−j for j ≥ 1 and D0(f ) = f ∗ Φ̂ , where ĝ denotes the Fourier transform:

ĝ(ξ) =
∫

Rn
g(x)e−2πi〈x,ξ 〉dx , 〈x, ξ〉 = x1ξ1 + x2ξ2 + · · · + xnξn ;

we also write ĝ = F(g).
Let Ar , 1 ≤ r < ∞, be the weight class of Muckenhoupt on Rn. We recall that Ar ,

1 < r < ∞, is defined to be the class of all weight functions w on Rn satisfying

sup
Q

(
|Q|−1

∫
Q

w(x)dx

)(
|Q|−1

∫
Q

w(x)−1/(r−1)dx

)r−1

< ∞ ,

where the supremum is taken over all cubes Q ⊂ Rn and |Q| denotes the Lebesgue measure
of Q. Also, for a weight function w, we say that w ∈ A1 if there exists a constant C such
that M(w)(x) ≤ Cw(x) for almost every x, where M denotes the Hardy-Littlewood maximal
operator.

Let w ∈ A∞, where A∞ = ⋃
1≤r<∞Ar . The weighted (inhomogeneous) Triebel-

Lizorkin space F s,qp (w), with 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R, is defined to be the space
of all tempered distributions f on Rn satisfying

‖f ‖F s,qp (w) =
∥∥∥∥
( ∞∑
j=0

∣∣∣2sjDj (f )
∣∣∣q

)1/q∥∥∥∥
Lp(w)

< ∞ ,
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where ‖ · ‖Lp(w) denotes the weighted Lp norm: ‖g‖Lp(w) = (
∫ |g(x)|pw(x)dx)1/p. Also,

the weighted (inhomogeneous) Besov space Bs,qp (w), with 0 < p ≤ ∞, 0 < q ≤ ∞ and
s ∈ R, is defined to be the space of all tempered distributions f on Rn satisfying

‖f ‖Bs,qp (w) =
( ∞∑
j=0

∥∥2sjDj (f )
∥∥q
Lp(w)

)1/q

< ∞ .

See [2], [4] and [13] for more details on these spaces.
For a multi-index α = (α1, . . . , αn), let (∂ξ)α denote a differential operator

(∂/∂ξ1)
α1 . . . (∂/∂ξn)

αn

of order |α| = α1 + · · · + αn. For a function F on Rn × Rn and x, ξ, h, η ∈ Rn, we write

(dhF )(x, ξ) = F(x + h, ξ)− F(x, ξ) ,

(δηF )(x, ξ) = F(x, ξ + η)− F(x, ξ) .

We also define (δηdhF )(x, ξ) = (dhδηF )(x, ξ) = (δη(dhF ))(x, ξ).
Let r > 0 and 0 ≤ δ ≤ 1. Suppose that r is not an integer and that

|(∂ξ)α(∂x)βσ (x, ξ)| ≤ C(1 + |ξ |)−|α|+δ|β| for |α| ≤ N , |β| < r ;

|(dy(∂ξ)α(∂x)βσ )(x, ξ)| ≤ C|y|r−[r](1 + |ξ |)−|α|+δr for |α| ≤ N , |β| = [r] ,
where N is an even integer greater than 3n/2 + 1 ([a] denotes the integer such that a − 1 <
[a] ≤ a). Let Tσ be a pseudo-differential operator defined by

Tσ (f )(x) =
∫

Rn
σ (x, ξ)f̂ (ξ)e2πi〈x,ξ 〉dξ , f ∈ S(Rn) ,

where S(Rn) denotes the Schwartz space. Then, Bourdaud [1] proved that Tσ is bounded on
the Sobolev spaces Hs

p(= F
s,2
p ) for 1 < p < ∞, s ∈ ((δ − 1)r, r) and that the range of s is

optimal (see [5] for further developments). Also, the boundedness of Tσ on the Besov spaces
was studied. Related results can be found in [3], [6], [7], [8], [10], [11], [12], [14] and [15]. In
particular, in [10] a weighted Lp, p ≥ 2, norm inequality for Tσ was proved under a minimal
regularity condition for the symbol σ .

In [1], the case where r is an integer was also considered. In this note we confine our-
selves to the case where r is not an integer and generalize results of [1] to the weighted
(inhomogeneous) Triebel-Lizorkin spaces by using the idea of [10]. Moreover, by applying
the results for the Triebel-Lizorkin spaces, we study the boundedness of Tσ on the weighted
(inhomogeneous) Besov spaces. We refer to Sugimoto [12] for relevant results.

Let ω be a non-negative function on [0,∞)× [0,∞) satisfying the following:
(ω.1) there exist constants C, M > 0 such that

ω(s, at) ≤ C(1 + a)Mω(s, t) for all a > 0 ;

(ω.2) there exists a constant C > 0 such that

ω(s′, t) ≤ Cω(s, t) for s/2 ≤ s′ ≤ 2s ;
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(ω.3) 0 < ω(1, 1).
Let 0 ≤ δ ≤ 1. We assume that r(> 0) is not an integer and the function ω satisfies

C(ω) := sup
0≤j≤h,0≤h

ω(2j , 2−h)2−jδ(r−[r])2h(r−[r]) < ∞ ,(1.1)

where j, h ∈ Z. A prime example of ω satisfying (1.1), (ω.1)–(ω.3) is ω(s, t) =
sδ(r−[r])tr−[r] (see also Remark 3 below).

Let σ(x, ξ) be a bounded function on Rn × Rn. For the rest of this note, we assume that
σ ∈ C∞(Rn×Rn) for the sake of simplicity. We write σ (α)(x, ξ)=(∂ξ)ασ (x, ξ), σ(β)(x, ξ) =
(∂x)βσ (x, ξ) and σ (α)(β) (x, ξ) = (∂ξ)α(∂x)βσ (x, ξ). Let L be a non-negative integer. We
consider the following conditions:

|σ (α)(x, ξ)| ≤ Cα(1 + |ξ |)−|α| for |α| ≤ L ;(1.2)

|(dyσ (α)(β) )(x, ξ)| ≤ Cα,β(1 + |ξ |)−|α|+δ|β| ω(1 + |ξ |, |y|) for |α| ≤ L, |β| = [r] .(1.3)

Then we have the following

THEOREM 1. Let 1 < q ≤ 2. Suppose that σ(x, ξ) satisfies (1.2) and (1.3) with
L = [n/q] + 1. Let s ∈ ((δ − 1)r, r), q ≤ p < ∞ and w ∈ Ap/q . Then the operator Tσ is
bounded on F s,qp (w). The operator norm is bounded by a constant which is independent of σ
if the constants Cα , Cα,β in (1.2) and (1.3) are fixed for |α| ≤ [n/q] + 1, |β| = [r].

Let L be a non-negative integer and 0 < a, b ≤ 1. We consider the following conditions:

|σ (α)(x, ξ)| ≤ Cα(1 + |ξ |)−|α| for |α| ≤ L ;(1.4)

|(δησ (α))(x, ξ)| ≤ Cα(1 + |ξ |)−|α|−a |η|a for |η| < |ξ |/2 , |α| = L ;(1.5)

|(dyσ (α)(β) )(x, ξ)| ≤ Cα,β(1 + |ξ |)−|α|+δ|β| ω(1 + |ξ |, |y|)(1.6)

for |α| ≤ L , |β| = [r] ;

|(δηdyσ (α)(β) )(x, ξ)| ≤ Cα,β(1 + |ξ |)−|α|−b+δ|β||η|b ω(1 + |ξ |, |y|)(1.7)

for |η| < |ξ |/2 , |α| = L , |β| = [r] .

Then, Theorem 1 follows from the following

THEOREM 2. Let 1 < q ≤ 2, 0 < a ≤ 1 and [n/q] + a > n/q . Suppose that σ(x, ξ)
satisfies (1.4)–(1.7) with L = [n/q], a = b. Let s ∈ ((δ− 1)r, r), q ≤ p < ∞ andw ∈ Ap/q .
Then Tσ is bounded on F s,qp (w). Moreover, the operator norm is bounded by a constant which
is independent of σ if we fix the constants Cα , Cα,β in (1.4)–(1.7) for |α| ≤ [n/q], |β| = [r].

This is a consequence of a more general result (Theorem 3). Let ρ be a non-negative
function such that ρ−1 ∈ L1(Rn). Let 1 < q ≤ 2. For an appropriate f , define

‖f ‖Aqρ =
(∫

Rn
|f̂ (x)|q ′

ρ(x)q
′/qdx

)1/q ′

,
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where q ′ is the exponent conjugate to q: q ′ = q/(q − 1). We consider the following condi-
tions:

C1 := sup
j≥1

sup
x∈Rn

‖σ(x, 2j ·)Ψ (·)‖Aqρ < ∞ ;(1.8)

sup
x∈Rn

‖(dyσ(β))(x, 2j ·)Ψ (·)‖Aqρ ≤ Cβ2jδ[r]ω(2j , |y|) for |β| = [r] , j ≥ 1 ;(1.9)

C2 := sup
x∈Rn

‖σ(x, ·)Φ(·)‖Aqρ < ∞ ;(1.10)

sup
x∈Rn

‖(dyσ(β))(x, ·)Φ(·)‖Aqρ ≤ Cβω(1, |y|) for |β| = [r] .(1.11)

Then we have the following:

THEOREM 3. Suppose that the conditions (1.8)–(1.11) hold. Let s ∈ ((δ − 1)r, r),
q ≤ p < ∞ and w ∈ Ap/q . We further assume that

sup
t>0

θt ∗ f (x) ≤ CM(f )(x) a.e.(1.12)

for all non-negative bounded functions f , where θ(x) = ρ(x)−1. Then Tσ is bounded on
F
s,q
p (w). The operator norm is bounded by a constant which is independent of σ if the con-

stants C1, C2, Cβ (|β| = [r]) in (1.8)–(1.11) are fixed.

REMARK 1. Let ω(s, t) = sδ(r−[r])tr−[r], r > 0, 0 ≤ δ ≤ 1. By examples similar to
those in [1], we can see the optimality of the range of s in Theorem 2 ((δ − 1)r < s < r).

Indeed, for k ≥ 10, let

σk(x, ξ) =
k∑

j=10

2−jr exp(2πi2jx1) (x = (x1, x2, . . . , xn)) .

Then, σk(x, ξ) uniformly satisfies (1.4)–(1.7) for all L and a = b = 1. We take Ψ in
the definition of F s,qp (w) such that Ψ (ξ) = 1 for 9/10 ≤ |ξ | ≤ 10/9, Ψ (2−mξ) = 0 if
9/10 ≤ 2−j |ξ | ≤ 10/9 and m �= j . Let g ∈ S(Rn) satisfy supp(ĝ) ⊂ {|ξ | ≤ 10−9},
0 < ‖g‖Lp(w) < ∞. Then we can see DhTσk (g)(x) = 2−hr exp(2πi2hx1)g(x), h =
10, 11, . . . , k, and DhTσk (g) = 0 otherwise. Thus, if s ≥ r ,

sup
k≥10

‖Tσk (g)‖F s,qp (w) = sup
k≥10

( k∑
h=10

2h(s−r)q
)1/q

‖g‖Lp(w) = ∞ .

Next, let

σ(x, ξ) =
∑
j≥10

2(δ−1)rj exp(−2πi2j x1)ψ(2−j ξ) ,

where ψ ∈ S(Rn) is supported in {7/8 ≤ |ξ | ≤ 8/7} and ψ(ξ) = 1 for 9/10 ≤ |ξ | ≤ 10/9.
Then σ(x, ξ) satisfies (1.4)–(1.7) for all L and a = b = 1. Put, for m ≥ 10,

fm(x) =
m∑

j=10

j−12j (1−δ)r exp(2πi2jx1)g(x) ,
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where g is as above. Then Tσ (fm)(x) = g(x)
∑m
j=10 j

−1. On the other hand, Dh(fm)(x) =
h−12h(1−δ)r exp(2πi2hx1)g(x) for h = 10, 11, . . . ,m, Dh(fm)(x) = 0 otherwise, where Dh
is defined by Ψ specified above. Thus

‖fm‖F s,qp (w) =
( m∑
h=10

h−q2h(s+(1−δ)r)q
)1/q

‖g‖Lp(w) ,

and hence the sequence {fm} is bounded in F s,qp (w) if s < (δ − 1)r or s = (δ − 1)r and
1 < q ≤ ∞, while {Tσ (fm)} is unbounded there.

REMARK 2. Let

σa(x, ξ) = exp(−2πi〈x, ξ〉 − |x|2)(1 + |ξ |2)−n/a , a > 0 .

Suppose that n/2 is not an integer and put ε0 = n/2 − [n/2] = 1/2. If M is a non-negative
integer and if 0 ≤ M ≤ [n/2] − 1, then we can see that σ4(x, ξ) satisfies (1.4)–(1.7) with
L = M , a = b = 1, ε0 ≤ r < 1, ω(s, t) = sδr tr , δ = (r − ε0)/r . Although 0 ∈ ((δ− 1)r, r),
we can easily see that Tσ4 is not bounded on L2 = F

0,2
2 (the unweighted Lebesgue space).

Also, we can see that σ4(x, ξ) satisfies (1.4)–(1.7) with L = [n/2], a = b, ω(s, t) =
sδr tr , 0 < r < 1, δ = (r − ε0 + a)/r , where ε0 − r ≤ a ≤ ε0 if 0 < r < ε0 and 0 < a ≤ ε0

if ε0 ≤ r < 1. If L+ a < n/2, then 0 ∈ ((δ − 1)r, r); but as we mentioned above, Tσ4 is not
bounded on L2 (see Coifman-Meyer [3, p. 12] and Yabuta [14, Section 6]).

REMARK 3. Let ε = r − [r], β ≥ ε, γ ≥ 0, 0 ≤ δ ≤ 1. For s ≥ 1, t ≥ 0, let

ω0(s, t) =
{
sδεtε if st < 1 ,
sδεtε(st)β−ε if st ≥ 1 ,

and for 0 ≤ s < 1, t ≥ 0, let ω0(s, t) = sγ tε (t < 1), ω0(s, t) = sγ tβ (t ≥ 1). Then, ω0

satisfies (1.1), (ω.1)–(ω.3).

In Section 2, we recall results relevant to the proof of Theorem 3. In Section 3, we prove
Theorem 3 by applying these results. Theorem 2 is proved in Section 4 by using Theorem
3. In Section 5, we state results on the boundedness of Tσ on Bs,qp (w) as applications of the
results for F s,qp (w).

2. Results for the proof of Theorem 3. Take radial functions ψ, ϕ ∈ C∞
0 (R

n) such
that supp(ψ) ⊂ {1/4 < |ξ | < 4}, ψ(ξ) = 1 if 1/2 ≤ |ξ | ≤ 2 and supp(ϕ) ⊂ {|ξ | < 4},
ϕ(ξ) = 1 if |ξ | ≤ 2. Decompose

σ(x, ξ) = σ(x, ξ)Φ(ξ)+
∑
j≥1

σ(x, ξ)Ψ (2−j ξ)

= σ(x, ξ)Φ(ξ)ϕ(ξ)2 +
∑
j≥1

σ(x, ξ)Ψ (2−j ξ)ψ(2−j ξ)2

=
( ∫

Rn
A0(x, k) exp(2πi〈k, ξ〉)dk

)
ϕ(ξ)2
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+
∑
j≥1

( ∫
Rn
Aj (x, k) exp(2πi〈2−j k, ξ〉)dk

)
ψ(2−j ξ)2 ,

where

Aj(x, k) =
∫

Rn
σ (x, 2j ξ)Ψ (ξ) exp(−2πi〈k, ξ〉)dξ , j ≥ 1 ,

A0(x, k) =
∫

Rn
σ (x, ξ)Φ(ξ) exp(−2πi〈k, ξ〉)dξ .

For j ≥ 1, put

A
(2)
j (x, k) =

∫
Rn
((ϕ̂)2−j+12 ∗ σ(·, 2j ξ))(x)Ψ (ξ) exp(−2πi〈k, ξ〉)dξ ,

where ((ϕ̂)2−j+12 ∗ σ(·, 2j ξ))(x) = ∫
(ϕ̂)2−j+12(y)σ (x − y, 2j ξ)dy.

LEMMA 1. Suppose that the conditions (1.8) and (1.9) hold. Put A(1)j (x, k) =
Aj(x, k)− A

(2)
j (x, k), j ≥ 1. Then

sup
x∈Rn

∫
Rn

|A(1)j (x, k)|q
′
ρ(k)q

′/qdk ≤ C2−q ′j [r]2q ′jδ[r]ω(2j , 2−j )q ′
,(2.1)

sup
j≥1

sup
x∈Rn

∫
Rn

|A(2)j (x, k)|q
′
ρ(k)q

′/qdk < ∞ .(2.2)

Furthermore, the Fourier transform of A(2)j (x, k) with respect to the x-variable is supported

in {|ξ | ≤ 2j−10} for all k.

PROOF. First we see that∫
|A(2)j (x, k)|q

′
ρ(k)q

′/qdk ≤ C

∫
|(ϕ̂)2−j+12(y)|‖σ(x + y, 2j ·)Ψ (·)‖q ′

A
q
ρ
dy

≤ C sup
x∈Rn

‖σ(x, 2j ·)Ψ (·)‖q ′
A
q
ρ
.

Therefore by (1.8) we get (2.2). The support condition for the Fourier transform of A(2)j is
easily seen.

Next, we prove (2.1). Put

H(x, y, 2j ξ) = σ(x + y, 2j ξ)−
∑

|β|≤[r]

1

β! y
βσ(β)(x, 2j ξ) ,

where β! = β1! · · ·βn!, β = (β1, . . . , βn), yβ = y
β1
1 · · · yβnn . Since∫

ϕ̂(y)dy = 1 ,
∫
ϕ̂(y)yαdy = 0 if |α| > 0 ,

then we have∫
(ϕ̂)2−j+12(y)σ (x + y, 2j ξ)dy − σ(x, 2j ξ) =

∫
(ϕ̂)2−j+12(y)H(x, y, 2j ξ)dy ,
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and hence∫
|A(1)j (x, k)|q

′
ρ(k)q

′/qdk ≤ C

∫
|(ϕ̂)2−j+12(y)|‖H(x, y, 2j ·)Ψ (·)‖q ′

A
q
ρ
dy .

By Taylor’s formula we see that

‖H(x, y, 2j ·)Ψ (·)‖Aqρ ≤ C
∑

|β|=[r]
|y|[r] sup

0≤t≤1
‖σ(β)(x + ty, 2j ·)Ψ (·)− σ(β)(x, 2j ·)Ψ (·)‖Aqρ .

Thus by (1.9)∫
|A(1)j (x, k)|q

′
ρ(k)q

′/qdk ≤ C

∫
|(ϕ̂)2−j+12(y)||y|q ′[r]2q ′jδ[r] sup

0≤t≤1
ω(2j , t|y|)q ′

dy

≤ C

∫
|ϕ̂(y)||y|q ′[r]2−q ′j [r]2q ′jδ[r] sup

0≤t≤1
ω(2j , 2−j+12t|y|)q ′

dy

≤ C2−q ′j [r]2q ′jδ[r]ω(2j , 2−j )q ′
∫

|ϕ̂(y)||y|q ′[r](1 + |y|)q ′Mdy

≤ C2−q ′j [r]2q ′jδ[r]ω(2j , 2−j )q ′
,

where we have used (ω.1). This proves (2.1), which completes the proof of Lemma 1.

LEMMA 2. Suppose that the conditions (1.8) through (1.11) hold. Let A(1)0 = A0, and

for j ≥ 1 let A(1)j be as in Lemma 1. Define A(1)j,h(x, k) = Dh(A
(1)
j (·, k))(x) for j, h ≥ 0.

Then

sup
x∈Rn

( ∫
|A(1)j,h(x, k)|q

′
ρ(k)q

′/qdk

)1/q ′

≤ Cmin(2−j [r]2jδ[r]ω(2j , 2−j ), 2−h[r]2jδ[r]ω(2j , 2−h)) .

PROOF. Let j ≥ 1 and h ≥ 1. We note that

A
(1)
j,h(x, k) = (Ψ̂ )2−h ∗ Aj(·, k)(x)− (ϕ̂)2−j+12 ∗ (Ψ̂ )2−h ∗ Aj(·, k)(x) .

Since
∫
Ψ̂ (y)yαdy = 0 for all α, we have

(Ψ̂ )2−h ∗ σ(·, 2j ξ)(x) =
∫
(Ψ̂ )2−h(y)H(x, y, 2j ξ)dy ,

whereH is as in the proof of Lemma 1. Thus, as in the proof of Lemma 1, we have∫
|Dh(Aj (·, k))(x)|q ′

ρ(k)q
′/qdk ≤ C2−q ′h[r]2q ′jδ[r]ω(2j , 2−h)q ′

(2.3)

and hence ∫
|(ϕ̂)2−j+12 ∗ (Ψ̂ )2−h ∗ Aj(·, k)(x)|q ′

ρ(k)q
′/qdk

≤ C

∫
|(ϕ̂)2−j+12(y)|

[∫
|(Ψ̂ )2−h ∗Aj(·, k)(x − y)|q ′

ρ(k)q
′/qdk

]
dy

≤ C2−q ′h[r]2q ′jδ[r]ω(2j , 2−h)q ′
.

(2.4)
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Also, by using Lemma 1, we get

∫
|A(1)j,h(x, k)|q

′
ρ(k)q

′/qdk ≤ C2−q ′j [r]2q ′jδ[r]ω(2j , 2−j )q ′
for h ≥ 0, j ≥ 1 .(2.5)

Combining (2.3)–(2.5), we obtain the conclusion of Lemma 2 for j ≥ 1. The proof for the
case j = 0 can be done similarly by using (1.10) and (1.11). �

We can prove the following result by applying Hölder’s inequality.

LEMMA 3. Let a > 1, 1 ≤ r < ∞, and let {xk}∞k=0 be a sequence of complex numbers
such that

∑∞
k=0 |xk|r < ∞. Then

∞∑
j=0

∣∣∣∣a−j
j∑
k=0

akxk

∣∣∣∣
r

≤ (a/(a − 1))r
∞∑
k=0

|xk|r .

The following lemma generalizes a result stated in [1].

LEMMA 4. For j = 0, 1, 2, . . . , let fj be a tempered distribution whose Fourier trans-
form is supported in {|ξ | < c2j } for some constant c > 0 (note that fj is a function by the
support condition). We assume that fj = 0 for all but a finite number of values of j . Let
s > 0, 1 < p < ∞, 1 < q < ∞ and w ∈ Ap. Then we have

∥∥∥∥
∞∑
j=0

fj

∥∥∥∥
F
s,q
p (w)

≤ C

∥∥∥∥
( ∞∑
j=0

2qjs |fj |q
)1/q∥∥∥∥

Lp(w)

.

PROOF. There exists a positive integer N such that

∞∑
j=0

fj =
∞∑
j=0

j+N∑
l=0

Dl(fj ) =
∞∑
l=0

∞∑
j=max(l−N,0)

Dl(fj ) =
∞∑
l=0

Dl

( ∞∑
j=max(l−N,0)

fj

)
.(2.6)

Now, by Hölder’s inequality we have, for appropriate functions gl ,

∣∣∣∣
∞∑
l=0

∫
Dl

( ∞∑
j=max(l−N,0)

fj

)
gldx

∣∣∣∣ =
∣∣∣∣

∞∑
j=0

∫
fj

( j+N∑
l=0

Dl(gl )
)
dx

∣∣∣∣

≤
( ∫ ( ∑

j≥0

2qjs |fj (x)|q
)p/q

w(x)dx

)1/p

I 1/p′
,

(2.7)

where

I =
∫ ( ∑

j≥0

∣∣∣∣2−js
( j+N∑
l=0

Dl(gl )
)∣∣∣∣
q ′)p′/q ′

w(x)−p′/pdx.
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By Lemma 3 with a = 2s and r = q ′, we have

∑
j≥0

∣∣∣∣2−js
( j+N∑
l=0

Dl(gl )
)∣∣∣∣
q ′

=
∑
j≥0

∣∣∣∣2−js
( j+N∑
l=0

2slDl(2
−slgl )

)∣∣∣∣
q ′

≤ C

∞∑
l=0

2−q ′sl|Dl(gl )|q ′
.

Therefore

I ≤ C

∫ ( ∞∑
l=0

2−q ′sl|Dl(gl )|q ′
)p′/q ′

w(x)−p′/pdx

≤ C

∫ ( ∞∑
l=0

2−q ′sl|gl |q ′
)p′/q ′

w(x)−p′/pdx ,

where the last inequality follows from a well-known vector valued inequality, sincew−p′/p ∈
Ap′ (see [9]). By a duality argument using this estimate in (2.7), we have

∫ ( ∞∑
l=0

2qsl
∣∣∣∣Dl

( ∞∑
j=max(l−N,0)

fj

)∣∣∣∣
q)p/q

w(x)dx

≤ C

∫ ( ∑
j≥0

2qjs|fj (x)|q
)p/q

w(x)dx .

From this and (2.6) we can easily get the conclusion. �

3. Proof of Theorem 3. Put, for j ≥ 1,

Ej(f )(x, k) =
∫

Rn
exp

(
2πi〈2−j k, ξ〉

)
ψ(2−j ξ)2f̂ (ξ) exp(2πi〈x, ξ〉)dξ

= (τ−kF−1(ψ))2−j ∗∆j(f )(x) ,
where τkf (x) = f (x − k) and

∆j(f )(x) =
∫

Rn
ψ(2−j ξ)f̂ (ξ) exp(2πi〈x, ξ〉)dξ .

Also put E0(f )(x, k) = (τ−kF−1(ϕ)) ∗∆0(f )(x), where

∆0(f )(x) =
∫

Rn
ϕ(ξ)f̂ (ξ) exp(2πi〈x, ξ〉)dξ .

Then we can see that

Tσ (f )(x) =
∑
j≥0

∫
Aj(x, k)Ej (f )(x, k)dk , f ∈ S(Rn) .
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Decompose Aj(x, k) = A
(1)
j (x, k) + A

(2)
j (x, k) for j ≥ 0, where A(1)j and A(2)j are as in

Lemmas 1 and 2 (A(2)0 ≡ 0). Put

Bi(f )(x) =
∑
j≥0

∫
A
(i)
j (x, k)Ej (f )(x, k)dk , i = 1, 2 .

Then Tσ (f ) = B1(f )+ B2(f ). We note the following. For a positive integer N , let

S
(i)
N (f )(x) =

N∑
j=0

∫
A
(i)
j (x, k)Ej (f )(x, k)dk , i = 1, 2 .

Then we can easily see that |S(i)N (f )(x)| ≤ C for some C > 0 independent of x and N . Also,

we can see that S(i)N (f )(x) → Bi(f )(x) as N → ∞ for all x.
We estimate Bi(f ), i = 1, 2, separately under the hypotheses of Theorem 3. We

begin with the estimation of B2(f ). First, observing that the Fourier transform of∫
A
(2)
j (x, k)Ej (f )(x, k)dk, j ≥ 1, is supported in an annulus of the form {c12j < |ξ | <

c22j } with c1, c2 > 0, by a vector valued inequality (see [9], [2]) we have, for s ∈ R,

‖B2(f )‖pF s,qp (w)
≤ C

∫ ( ∞∑
j=1

2qjs
∣∣∣∣
∫
A
(2)
j (x, k)Ej (f )(x, k)dk

∣∣∣∣
q)p/q

w(x)dx .

By Hölder’s inequality and Lemma 1 (2.2), the right hand side is bounded by, up to a constant
factor, ∫ ( ∑

j≥1

∫
ρ(k)−12qjs|Ej(f )(x, k)|qdk

)p/q
w(x)dx .

Let g be a non-negative function on Rn. Then, a direct computation yields∫ ∑
j≥1

∫
ρ(k)−12qjs

∣∣Ej(f )(x, k)∣∣q dkg(x)dx

≤ C
∑
j≥1

∫ ( ∫
ρ(k)−1

∫
2jn|F−1(ψ)(2j (x − y)+ k)|g(x)dxdk

)
2qjs |∆j(f )(y)|qdy

≤ C
∑
j≥1

∫ ( ∫
ρ(k)−1M(g)(y − 2−j k)dk

)
2qjs

∣∣∆j(f )(y)∣∣q dy

≤ C
∑
j≥1

∫
MM(g)(y)2qjs

∣∣∆j(f )(y)∣∣q dy ,

where the last inequality follows from (1.12). Put

I =
∫ ( ∑

j≥1

2qjs |∆j(f )(y)|q
)p/q

w(y)dy .
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Now we assume that p > q . Then by Hölder’s inequality
∑
j≥1

∫
MM(g)(y)2qjs

∣∣∆j(f )(y)∣∣qdy

≤ C

(∫
MM(g)(p/q)

′
(y)w(y)−q(p/q)′/p dy

)1/(p/q)′

Iq/p

≤ C‖g‖
L(p/q)

′
(w−q(p/q)′/p)I

q/p ,

if g ∈ L(p/q)′(w−q(p/q)′/p) and w ∈ Ap/q . Therefore by the converse of Hölder’s inequality
we have ∫ ( ∑

j≥1

∫
ρ(k)−12qjs

∣∣Ej(f )(x, k)∣∣q dk
)p/q

w(x)dx ≤ CI .(3.1)

The case p = q , w ∈ A1 can be treated similarly and we also have this inequality. Thus

‖B2(f )‖p
F
s,q
p (w)

≤ C

∫ ( ∑
j≥1

2qjs
∣∣∆j(f )(y)∣∣q

)p/q
w(y)dy .(3.2)

Next, we estimate B1(f ). For positive integers N , M , put

UN,M(f )(x) =
N∑
j=0

M∑
h=0

∫
A
(1)
j,h(x, k)Ej (f )(x, k)dk ,

where A(1)j,h is as in Lemma 2. We estimate UN,M(f ) on F s,qp (w). The estimate will be

uniform in N and M . Put Ã(1)j,h = A
(1)
j,h if 0 ≤ h ≤ M and Ã(1)j,h = 0 if h > M; also

Ẽj (f ) = Ej(f ) if 0 ≤ j ≤ N and Ẽj (f ) = 0 if j > N . Then

UN,M(f )(x) =
∑
j≥0

∑
h≥0

∫
Ã
(1)
j,h(x, k)Ẽj (f )(x, k)dk = G1(x)+G2(x)+G3(x) ,

where

G1(x) =
∞∑
j=10

j−10∑
h=0

∫
Ã
(1)
j,h(x, k)Ẽj (f )(x, k)dk ,

G2(x) =
∞∑
j=10

∞∑
h=j−9

∫
Ã
(1)
j,h(x, k)Ẽj (f )(x, k)dk =

∞∑
h=1

h+9∑
j=10

∫
Ã
(1)
j,h(x, k)Ẽj (f )(x, k)dk ,

G3(x) =
∞∑
h=0

9∑
j=0

∫
Ã
(1)
j,h(x, k)Ẽj (f )(x, k)dk.

We estimate G1, G2 and G3 separately.
Observing that the Fourier transform of

∫ ∑
0≤h≤j−10 Ã

(1)
j,h(x, k)Ẽj (f )(x, k)dk, j ≥ 10,

is supported in an annulus of the form {c12j < |ξ | < c22j }, c1, c2 > 0, via Hölder’s inequality



334 S. SATO

we have

‖G1‖p
F
s,q
p (w)

≤ C

∫ ( ∞∑
j=10

2qjs
∣∣∣∣
∫ j−10∑

h=0

Ã
(1)
j,h(x, k)Ẽj (f )(x, k)dk

∣∣∣∣
q)p/q

w(x)dx

≤ C

∫ ( ∞∑
j=10

(∫ ∣∣∣∣
j−10∑
h=0

Ã
(1)
j,h(x, k)

∣∣∣∣
q ′

ρ(k)q
′/qdk

)q/q ′

Fj (s, q, x)

)p/q
w(x)dx ,

where

Fj (s, q, x) =
∫
ρ(k)−12qjs |Ẽj (f )(x, k)|qdk .

We note that ∑
0≤h≤j−10

Ã
(1)
j,h(x, k) = g(j,M) ∗ A(1)j (·, k)(x) , j ≥ 10

for some g(j,M) ∈ S(Rn) such that ‖g(j,M)‖L1 ≤ c, where c is a constant independent of j
and M . Therefore by Lemma 1 (2.1) we have

∫ ∣∣∣∣
j−10∑
h=0

Ã
(1)
j,h(x, k)

∣∣∣∣
q ′

ρ(k)q
′/qdk ≤ C2−q ′j [r]2q ′jδ[r]ω(2j , 2−j )q ′

.

Thus for any s ∈ R

‖G1‖pF s,qp (w)
≤ CC(ω)p

∫ ( ∑
j≥10

2qjr(δ−1)Fj (s, q, x)

)p/q
w(x)dx

≤ CC(ω)p
∫ ( ∑

j≥10

2qjs2qjr(δ−1)|∆j(f )(y)|q
)p/q

w(y)dy ,

(3.3)

where the second inequality can be proved as above (see (3.1)).
Next we estimateG2. Since the Fourier transform of

∫ ∑h+9
j=10 Ã

(1)
j,h(x, k)Ẽj (f )(x, k)dk,

h ≥ 1, is supported in {|ξ | < c2h}, by Lemma 4 we have, for 0 < s < r ,

‖G2‖p
F
s,q
p (w)

≤ C

∫ ( ∞∑
h=1

2qhs
∣∣∣∣
∫ h+9∑

j=10

Ã
(1)
j,h(x, k)Ẽj (f )(x, k)dk

∣∣∣∣
q)p/q

w(x)dx .

By Hölder’s inequality, the right hand side is bounded by, up to a constant factor,
∫ ( ∞∑

h=1

2h(s−r)
h+9∑
j=10

2(r−s)j
∣∣∣∣
∫
(2−rj2hrÃ(1)j,h(x, k))(2

sj Ẽj (f )(x, k))dk

∣∣∣∣
q)p/q

w(x)dx .

By Hölder’s inequality and Lemma 2, the inner integral is bounded by( ∫
|2−rj2hr Ã(1)j,h(x, k)|q

′
ρ(k)q

′/qdk

)1/q ′( ∫ ∣∣∣2sj Ẽj (f )(x, k)
∣∣∣q ρ(k)−1dk

)1/q

≤ C2−(r−δ[r])j2h(r−[r])ω(2j , 2−h)
( ∫

|2sj Ẽj (f )(x, k)|qρ(k)−1dk

)1/q

.
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Therefore, ‖G2‖p
F
s,q
p (w)

is bounded by

CC(ω)p
∫ ( ∞∑

h=1

2h(s−r)
h+9∑
j=10

2(r−s)j
∫

|2−(1−δ)rj2sj Ẽj (f )(x, k)|qρ(k)−1dk

)p/q
w(x)dx

≤ CC(ω)p
∫ ( ∞∑

j=10

∫
|2−(1−δ)rj2sj Ẽj (f )(x, k)|qρ(k)−1dk

)p/q
w(x)dx .

Thus, we have (see (3.1))

‖G2‖p
F
s,q
p (w)

≤ CC(ω)p
∫ ( ∑

j≥10

2−q(1−δ)rj2qjs |∆j(f )(y)|q
)p/q

w(y)dy .(3.4)

Finally, in the same way as in the case of G2, if 0 < s < r , we have

‖G3‖pF s,qp (w)
≤ C

∫ ( ∞∑
h=0

2qhs
∣∣∣∣
∫ 9∑

j=0

Ã
(1)
j,h(x, k)Ẽj (f )(x, k) dk

∣∣∣∣
q)p/q

w(x)dx

≤ CηC(ω)
p

∫ ( 9∑
j=0

2−ηj2qjs |∆j(f )(y)|q
)p/q

w(y)dy

(3.5)

for any η ≥ 0.
By (3.3) through (3.5) we have

∥∥UN,M(f )∥∥pF s,qp (w)
≤ C

∫ ( ∞∑
j=0

2qjs |∆j(f )(y)|q
)p/q

w(y)dy ,(3.6)

where the constant C is independent of N and M . Fix j and put

TM(f )(x) =
M∑
h=0

∫
A
(1)
j,h(x, k)Ej(f )(x, k)dk .

Then we can see that |TM(f )(x)| ≤ C for some C > 0 independent of x and M and that
TM(f )(x) → ∫

A
(1)
j (x, k)Ej (f )(x, k)dk as M → ∞ for all x. Therefore, letting M → ∞

then N → ∞ in (3.6), we have

‖B1(f )‖p
F
s,q
p (w)

≤ C

∫ ( ∞∑
j=0

2qjs|∆j(f )(y)|q
)p/q

w(y)dy .(3.7)

By the estimates (3.2) and (3.7), we can get the conclusion of Theorem 3, since
∫ ( ∞∑

j=0

2qjs |∆j(f )(y)|q
)p/q

w(y)dy ≤ C‖f ‖p
F
s,q
p (w)

for s ∈ R, 0 < q < ∞, 0 < p < ∞ and w ∈ A∞ (see, e.g., [2]).
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4. Proof of Theorem 2. Under the hypotheses of Theorem 2 we prove the validity of
the conditions (1.8) through (1.11) with ρ(k) = (1+|k|q)s , s = [n/q]+d , where d is chosen
so that a > d and [n/q] + d > n/q .

Let j ≥ 1. Then, integration by parts gives

Aj(x, k) = (2πikm)−[n/q]
∫

Rn
[(∂/∂ξm)[n/q](σ (x, 2j ξ)Ψ (ξ))] exp(−2πi〈k, ξ〉)dξ .

Let ψ be as in Section 2. Then by applying the Hausdorff-Young inequality we have, for
l ≥ 0, ∫

|k|≈|km|,2l≤|k|≤2l+1

|Aj(x, k)|q ′
(1 + |k|q)sq ′/qdk

≤ C2q
′sl

∫
|k|≈|km|

|ψ(2−l k)Aj(x, k)|q ′
dk

≤ C2q
′dl

( ∫
Rn

|((ψ̂)2−l ∗ F(x, ·))(ξ)|qdξ
)q ′/q

,

(4.1)

where F(x, ξ) = (∂/∂ξm)
[n/q](σ (x, 2j ξ)Ψ (ξ)). Then, by (1.4) and (1.5) with L = [n/q] we

have, for all x, ξ, η ∈ Rn,

|F(x, ξ)| ≤ C and |F(x, ξ + η)− F(x, ξ)| ≤ C|η|a .(4.2)

By (4.2) we see that

|((ψ̂)2−l ∗ F(x, ·))(ξ)| =
∣∣∣∣
∫

[F(x, ξ + η)− F(x, ξ)](ψ̂)2−l (η)dη

∣∣∣∣
≤

∣∣∣∣
∫

|η|<|ξ |/2
[F(x, ξ + η)− F(x, ξ)](ψ̂)2−l (η)dη

∣∣∣∣
+

∣∣∣∣
∫

|η|≥|ξ |/2
[F(x, ξ + η)− F(x, ξ)](ψ̂)2−l (η)dη

∣∣∣∣
≤ Cχ0(ξ)

∫
|η|a|(ψ̂)2−l (η)|dη+ Cmin(2−al, (2l|ξ |)−2n)

≤ C2−al(1 + |ξ |)−2n ,

where χ0 is the characteristic function of the ball {|ξ | ≤ 5}. Using this in (4.1), we have∫
|k|≈|km|,|k|≥1

|Aj(x, k)|q ′
(1 + |k|q)sq ′/qdk ≤

∑
l≥0

C2q
′dl2−q ′al ≤ C .(4.3)

It is easier to get the estimate∫
|k|≤1

|Aj(x, k)|q ′
(1 + |k|q)sq ′/qdk ≤ C .

Using this and (4.3) for m = 1, . . . , n, we see that the condition (1.8) holds.
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Next we show that the condition (1.9) holds. Let |β| = [r]. Put

A(x, y, k, j, β) =
∫

Rn
[σ(β)(x + y, 2j ξ)− σ(β)(x, 2j ξ)]Ψ (ξ) exp(−2πi〈k, ξ〉)dξ .

Then, by integration by parts

A(x, y, k, j, β) = (2πikm)−[n/q]
∫

Rn
G(x, y, ξ) exp(−2πi〈k, ξ〉)dξ ,

whereG(x, y, ξ) = (∂/∂ξm)
[n/q][(σ(β)(x+y, 2j ξ)−σ(β)(x, 2j ξ))Ψ (ξ)]. By the Hausdorff-

Young inequality we have, as above, for l ≥ 0∫

|k|≈|km|,2l≤|k|≤2l+1

|A(x, y, k, j, β)|q ′
(1 + |k|q)sq ′/qdk

≤ C2q
′dl

( ∫
Rn

|((ψ̂)2−l ∗G(x, y, ·))(ξ)|qdξ
)q ′/q

.

(4.4)

By (1.6), (1.7) with L = [n/q] and a = b, we have, for all x, y, ξ, η ∈ Rn,

|G(x, y, ξ)| ≤ C2jδ[r]ω(2j , |y|) and

|G(x, y, ξ + η)−G(x, y, ξ)| ≤ C|η|a2jδ[r]ω(2j , |y|) .(4.5)

Using (4.5) and arguing as in the proof for (1.8) above, we can see that

|(ψ̂2−l ∗G(x, y, ·))(ξ)| ≤ C2−al2jδ[r]ω(2j , |y|)(1 + |ξ |)−2n .

Using this in (4.4) and summing up in l ≥ 0, we have∫
|k|≈|km|,|k|≥1

|A(x, y, k, j, β)|q ′
(1 + |k|q)sq ′/qdk ≤ C2q

′jδ[r]ω(2j , |y|)q ′
.(4.6)

We also have∫
|k|≤1

|A(x, y, k, j, β)|q ′
(1 + |k|q)sq ′/qdk ≤ C2q

′jδ[r]ω(2j , |y|)q ′
.

Using this and (4.6) for m = 1, . . . , n, we can get (1.9).
The validity of the conditions (1.10) and (1.11) can be proved similarly. Since ρ(x) =

(1 + |x|q)s satisfies (1.12), now Theorem 2 follows from Theorem 3.

5. Boundedness on the weighted Besov spaces. As applications of Theorems 1–3,
we have the following:

THEOREM 4. Let 1 < t ≤ 2. Suppose that σ(x, ξ) satisfies (1.2) and (1.3) with
L = [n/t] + 1. Then

‖Tσ (f )‖Bs,qp (w) ≤ C‖f ‖Bs,qp (w) , f ∈ S(Rn) ,

where t ≤ p < ∞, s ∈ ((δ − 1)r, r), 0 < q ≤ ∞ and w ∈ Ap/t .
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THEOREM 5. Let 1 < t ≤ 2, 0 < a ≤ 1 and [n/t] + a > n/t . Suppose that σ(x, ξ)
satisfies (1.4)–(1.7) with L = [n/t], a = b. Let t ≤ p < ∞, s ∈ ((δ − 1)r, r), 0 < q ≤ ∞
and w ∈ Ap/t . Then, we have

‖Tσ (f )‖Bs,qp (w) ≤ C‖f ‖Bs,qp (w) , f ∈ S(Rn) .

THEOREM 6. Let 1 < t ≤ 2. Suppose that (1.8)–(1.11) hold with t in place of q . We
further assume (1.12). Then

‖Tσ (f )‖Bs,qp (w) ≤ C‖f ‖Bs,qp (w) , f ∈ S(Rn) ,

where t ≤ p < ∞, s ∈ ((δ − 1)r, r), 0 < q ≤ ∞ and w ∈ Ap/t .
Also, we have remarks similar to those in Theorems 1–3 for the dependence of the

bounds on σ . We can derive Theorems 4–6 from Theorems 1–3, respectively, by applying
interpolation arguments (see [2, Theorem 3.5]).
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