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NON-REGULAR PSEUDO-DIFFERENTIAL OPERATORS
ON THE WEIGHTED TRIEBEL-LIZORKIN SPACES

SHUICHI SATO

(Received March 28, 2005, revised May 14, 2007)

Abstract. We consider certain non-regular pseudo-differential operators and study the
question of their boundedness on the weighted Triebel-Lizorkin and Besov spaces.

1. Introduction. Let ¥ € C*(R") satisfy supp(¥) C {1/2 < |&] < 2}, ¥ (&)| >
c>0for3/5<|& <5/3and

sz—/g) =1 for £ #0,

JjEZ
where Z denotes the set of all integers and |&| = (Z?zl 512)1/2, E=(&,&,...,&,). Define
@ cClP(R")by @) =1— ijl W (277&). We note that @ is supported in {|£] < 2}. In
what follows, we also assume that ¥ is radial. We write g;(x) =t " g(x/t) for ¢ > 0. Define
Di(f)=fx* ('f/)z—j for j > 1and Do(f) = f * ?, where ¢ denotes the Fourier transform:

§(8) =/R g)e S Gy | (x, E) = x181 + X282 + - + Xnbn s

we also write g = F(g).
Let A, 1 < r < oo, be the weight class of Muckenhoupt on R". We recall that A,,
1 < r < 00, is defined to be the class of all weight functions w on R” satisfying

r—1
sup (|Q|1/ w(x)dx) (|Q|1/ w(x)1/<r1>dx> < 00,
0 0 0

where the supremum is taken over all cubes Q C R" and |Q| denotes the Lebesgue measure
of Q. Also, for a weight function w, we say that w € Aj if there exists a constant C such
that M(w)(x) < Cw(x) for almost every x, where M denotes the Hardy-Littlewood maximal
operator.

Let w € A, Where Aow = (Jj<, .o Ar. The weighted (inhomogeneous) Triebel-
Lizorkin space F;’q(w), with0 < p < o_o, 0 < g <ooands € R, is defined to be the space
of all tempered distributions f on R" satisfying

o0
A1 7 oy = H (Z
j=0
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< 00,
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where | - ||r ) denotes the weighted L? norm: || gllprw) = (f lg(xX)[Pw(x)dx)V/P. Also,
the weighted (inhomogeneous) Besov space B‘;,’q(w), with 0 < p < 00,0 < g < oo and
s € R, is defined to be the space of all tempered distributions f on R" satisfying

00 ' 1/q
||f||B;‘;‘1(w) = ( ||2SJDj(f)H‘£p(w)> < 00.
j=0

See [2], [4] and [13] for more details on these spaces.
For a multi-index o = (o1, ..., o), let (0€)* denote a differential operator

(0/0&1)% ... (3/0&)™"
of order |o| = o] + - - - 4+ «p,. For a function F on R" x R" and x, &, h, n € R", we write
(dnF)(x,8) = F(x +h,§) — F(x,§),
G F)(x, &) = F(x,§ +n) — F(x,§).
We also define (8,d), F)(x, £) = (dn8; F)(x, &) = (8,(dn F))(x, &).
Letr > 0and 0 < § < 1. Suppose that r is not an integer and that
108)* (9x)Po (x, &) < CA + gV for ja| < N, |8 <r;
|(dy(08)* (0x)P o) (x, &) < Clyl" "1 + |EDTH for |al < N, Bl =1r],

where N is an even integer greater than 3n/2 4 1 ([a] denotes the integer such thata — 1 <
[a] < a). Let T, be a pseudo-differential operator defined by

T, (f)(x) = /R o Hf@dE, f e SR,

where S(R") denotes the Schwartz space. Then, Bourdaud [1] proved that T, is bounded on
the Sobolev spaces H;(: F;’z) forl < p < 00,5 € ((6 — 1)r, r) and that the range of s is
optimal (see [5] for further developments). Also, the boundedness of T, on the Besov spaces
was studied. Related results can be found in [3], [6], [7], [8], [10], [11], [12], [14] and [15]. In
particular, in [10] a weighted L?, p > 2, norm inequality for 7, was proved under a minimal
regularity condition for the symbol o.

In [1], the case where r is an integer was also considered. In this note we confine our-
selves to the case where r is not an integer and generalize results of [1] to the weighted
(inhomogeneous) Triebel-Lizorkin spaces by using the idea of [10]. Moreover, by applying
the results for the Triebel-Lizorkin spaces, we study the boundedness of T, on the weighted
(inhomogeneous) Besov spaces. We refer to Sugimoto [12] for relevant results.

Let w be a non-negative function on [0, 0o) x [0, co) satisfying the following:

(w.1) there exist constants C, M > 0 such that

w(s,at) < CA+a)Mw(s,t) forall a >0;
(w.2) there exists a constant C > 0 such that

w(s' 1) < Cw(s,t) for s/2 <s' <2s;
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(w.3) 0<w(l,1).
Let 0 < 4§ < 1. We assume that r (> 0) is not an integer and the function w satisfies
(1.1) Cw):= sup w(2/,27M2=80=IDphtr=lrD) o
0<j<h,0<h

where j,h € Z. A prime example of w satisfying (1.1), (w.1)—(w.3) is w(s,t) =
s30=IrDgr=Ir] (see also Remark 3 below).

Let o (x, &) be a bounded function on R" x R". For the rest of this note, we assume that
o € C®(R" x R") for the sake of simplicity. We write 0@ (x, £)=(3&)%0 (x, £), o(p) (x, £) =
(3x)Po (x, ) and %) (x,£) = (9&)*(dx)Po(x,£). Let L be a non-negative integer. We

)
consider the following conditions:

(12) 0@ (x, &)] < Ca(1+ 16D for || < L;
(13)  |(dyo ) (e )] < Cop(1+ [ENTHP (1 4 |1, Iy]) for |af < L, |8l =[r].

Then we have the following

THEOREM 1. Let 1 < g < 2. Suppose that o(x, &) satisfies (1.2) and (1.3) with
L =[n/ql+ 1. Lets € (6 — Dr,r),q < p <oocandw € Ap/y. Then the operator Ty is
bounded on F ;’q (w). The operator norm is bounded by a constant which is independent of o
if the constants Cy, Cq g in (1.2) and (1.3) are fixed for |a| < [n/q]+ 1, |B] = [r].

Let L be a non-negative integer and 0 < a, b < 1. We consider the following conditions:

(1.4) lo@(x, &) < Co(1+ DT for |af < L;
(1.5 [Gyo ) (x, ) < Ca(l+ [EDT 4| for [n] < |&]/2, lo|=L;
(1.6) |(dyo () (e, )] < Cap(1+ 1ED TP (1 + 18], |y])

for la| <L, [Bl=1rl;
(1.7) |Bydyo G (x. )] < Cap(1+ [EDT=PTB P (1 + &), |y])

for [n| < [&1/2, |lal =L, [|Bl=Ir].

Then, Theorem 1 follows from the following

THEOREM 2. Letl <gqg <2,0<a <land[n/ql+a > n/q. Suppose that o (x, &)
satisfies (1.4)—(1.7)with L = [n/q),a =b. Lets € (§—D)r,r),q < p <oocandw € Ap,.
Then Ty is bounded on F;’q (w). Moreover, the operator norm is bounded by a constant which
is independent of o if we fix the constants Cy, Cq g in (1.4)—-(1.7) for |a| < [n/q], |B| = [r].

This is a consequence of a more general result (Theorem 3). Let p be a non-negative
function such that p~! € L'(R"). Let 1 < ¢ < 2. For an appropriate f, define

. , , 1/q'
1F lag = (fR |f @I p(x)? de) :
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where ¢’ is the exponent conjugate to g: ¢’ = q/(q — 1). We consider the following condi-
tions:

(1.8) Ci :=sup sup |lo(x,2/- )lI/()||Aq < 0,

j=1xeR"
(19 sup lI(dyo(s) (x, 279W ()l 44 < Cp2" (@7, 1y) for 1Bl =1r], j = 1;

xXER"
(1.10) Ca := sup [lo (x, VP ()49 < 00;
x€R"
(1.11) sup Idyop) (x, POl < Cpo(l, y]) for |B| = [r].
XER"

Then we have the following:

THEOREM 3. Suppose that the conditions (1.8)—(1.11) hold. Let s € ((6 — )r,r),
q<p<ooandw € Ap;q. We further assume that
(1.12) supb; x f(x) < CM(f)(x) ae.
t>0
for all non-negative bounded functions f, where 8(x) = p(x)~\. Then T, is bounded on

F ;’q(w). The operator norm is bounded by a constant which is independent of o if the con-
stants Cq, C2, Cp (|B] = [r]) in (1.8)—(1.11) are fixed.

REMARK 1. Letw(s,1) = sC~UD=11 3 5 0,0 <8 < 1. By examples similar to
those in [1], we can see the optimality of the range of s in Theorem 2 ((§ — )r < s < 1).

Indeed, for &k > 10, let

k
or(x.£) =Y 27/ expri2/x)) (x = (x1.x2..... %)
j=10

Then, oy (x, &) uniformly satisfies (1.4)—(1.7) for all L and a b = 1. We take ¥ in
the definition of F,ﬁ"’(w) such that ¥ (¢§) = 1 for 9/10 < |&| 10/9, v (27"&) = 0 if
9/10 < 27/|g] < 10/9 and m # j. Let g € S(R") satisfy supp(§) C {|&] < 1077},
0 < llgllLrawy < oo. Then we can see DTy (9)(x) = 27" exp(2mi2tix))g(x), h =
10,11, ..., k, and D, T, (g) = O otherwise. Thus, if s > r,

IA

1/q
sup 7 ()3 = SuP ( Z 2 ’)‘1) gl Lr ) = 00
k=10 h=10

Next, let
o(x, &) =Y 207 exp(=2mi2 x)Y(27/E),
j=10
where ¥ € S(R™) is supported in {7/8 < |&] < 8/7} and ¥ (§) = 1 for 9/10 < |&] < 10/9.
Then o (x, &) satisfies (1.4)—(1.7) forall L anda = b = 1. Put, for m > 10,

m
Sy = 7 2/ exp2mi2/x)g(x)
j=10
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where g is as above. Then T, (fi,)(x) = g(x) ZT:]O j~1. On the other hand, Dy, (f,,)(x) =
h=12h0=0r exp2mi2"x1) g(x) for h = 10, 11, ..., m, Dy (fn)(x) = 0 otherwise, where D,
is defined by ¥ specified above. Thus

m

1/q
I ll 4 y = ( Z h_qzh(sﬂl_s)r)q) lgllLrqw)

h=10

and hence the sequence { f;;} is bounded in F;’q(w) ifs < (—1Drors = (6 — 1)rand
1 < g < o0, while {T, (f;,)} is unbounded there.

REMARK 2. Let
0a(x, &) = exp(—27mi{x, &) — [x|H (A + [EH) ™, a>0.

Suppose that n/2 is not an integer and put &9 = n/2 — [n/2] = 1/2. If M is a non-negative
integer and if 0 < M < [n/2] — 1, then we can see that o4(x, &) satisfies (1.4)—(1.7) with
L=M,a=b=1,50<r <1l,w(s,t) = $r 8 = (r —eo)/r. Although 0 € ((§ — Dr, r),
we can easily see that T, is not bounded on L? = F20 2 (the unweighted Lebesgue space).

Also, we can see that o4(x, &) satisfies (1.4)-(1.7) with L = [n/2],a = b, w(s,t) =
S 0<r<1,8= (r—ep+a)/r,whereey —r <a <egif0 <r <gyand0 < a < g
ifeo <r<1.IfL+a <n/2,then0 € ((§ — 1)r, r); but as we mentioned above, T, is not
bounded on L? (see Coifman-Meyer [3, p. 12] and Yabuta [14, Section 6]).

REMARK 3. Lete=r—[r],>¢e,y>0,0<§<1.Fors>1,tr>0,let

5918 if st <1,
s%re(st)f—e if st >1,

wo(s, 1) = {

and for0 <s < 1,7 > 0, let wy(s, 1) = s7t° (t < 1), wo(s, 1) = sVtP (+ > 1). Then, wo
satisfies (1.1), (w.1)—(w.3).

In Section 2, we recall results relevant to the proof of Theorem 3. In Section 3, we prove
Theorem 3 by applying these results. Theorem 2 is proved in Section 4 by using Theorem

3. In Section 5, we state results on the boundedness of 7, on B;’q(w) as applications of the
results for F;’q(w).

2. Results for the proof of Theorem 3. Take radial functions ¥, ¢ € C5°(R") such

that supp(y) C {1/4 < [§] < 4}, (§) = 1if 1/2 < [§] < 2 and supp(p) C {|§] < 4},
(&) = 1if || < 2. Decompose

o(x,E) =0, HPE + ) o, HW Q2
j=l1
=o(x, HPE)p(E)’ + Y ox. HHW QI E)Y 2T E)>

j=1

_ ( /R Ao, ) expi k. s>>dk)go(s)2
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+y ( /R Aj(x k) expmi 27k, s>)dk>1/f<2—f5)2 :

jz1
where
Aj(x,k)=/ o (x, 2 E)W (€) exp(=2mi(k, ENdE, j=1,
er
Ao(x, k) = /Rn o(x,§)P(§) exp(—2mi(k, §))d§ .
For j > 1, put

AP (k) = /R (@12 % 0 (. ) ()W (&) exp(~2mi (k. £))d

where ((§)y-j+12 %0 (-, 276))(x) = [(§)y-j+12(V)o (x — y,2/€)dy.
LEMMA 1. Suppose that the conditions (1.8) and (1.9) hold. Put Ag“(x,k)
Aj(x k) — AP k), j = 1. Then

Q2.1 sup | AP (01 p(k)T M dk < €271 e gy (27 27 Tye"
xeR" JR" X
(2.2) sup sup |A§2)(x, )| pk)d1dk < oo
j>1xern JR

Furthermore, the Fourier transform of Aﬁ.z) (x, k) with respect to the x-variable is supported
in {|&] < 27719 for all k.

PROOF. First we see that
f AP (e, )19 p o)1 dk < € f |@-s+2lllo (x + 3, 27 Oy dy

< C sup o (x, 279% ()1l -

xX€ER"

Therefore by (1.8) we get (2.2). The support condition for the Fourier transform of A;z) is
easily seen.
Next, we prove (2.1). Put

) . 1 .
H(x,y,2/6) =0(x+y,2786) = ) Eyﬁow)(x,zfs),
1Bl<lr1 ™"

where Bl = B1!-- B, B = (B1. ... Bu)s ¥P = Y0~ yi". Since
f([)(y)dy 1, f@(y)y“dy —0 if Ja > 0.
then we have

/ @)y 01 (N0 (x + v, 208)dy — o (x, &) = / @)y o0 () H(x. v, 2E)dy
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and hence
/ AP (e, k)19 p ) /1dk < € / (@22 WIIH (. y. 290 Oy dy
By Taylor’s formula we see that

1H (e, 3,270 Ollgg <€ Y 1yl sup1||a<,s>(x+ty,2f-)wc)—aw)(x,zﬁ)wc)uA%.

=ty OIS

Thus by (1.9)

/ AD e 1Y o dk < € / @542 sup w (27, 1]y dy

0<t<l1

<c / GOIy[¢ 1274 720 380Y up (29, 273124y )7 dy

0<r<l1
< C27 ol 27, 27 Tye / @Y7L+ [y M dy
< C2-£I'/[r]2q’j5[r]w(2/” 2—/')11’ i
where we have used (w.1). This proves (2.1), which completes the proof of Lemma 1.

LEMMA 2. Suppose that the conditions (1.8) through (1.11) hold. Let A(()l) = Ao, and
for j > 1 let A;l) be as in Lemma 1. Define A(I.%})l(x,k) = Dh(A(/.l)(.,k))(x) for j,h > 0.
Then ‘ ‘

sup ( / |A‘,~T,1<x,k>|‘f’p<k)‘f’/‘fdk)l/q
xeR" :
< CminQ M2y (27 2=y, 2~hIrlpidirl i 2hy)
PROOF. Letj > 1andh > 1. We note that
AL G ) = @) 5 A () () = (@)g-ienn 5 (g % A (O ().
Since [ ¥ (y)y®dy = 0 for all &, we have
@)W = [@) 0 0)H Gy 22y
where H is as in the proof of Lemma 1. Thus, as in the proof of Lemma 1, we have
(2.3) f 1Da(Aj (k) )I1 p (k)T Mdk < C279hrpd i3y (2 p=hyd'
and hence

/ [(@)y—j+12 * (lIA/)th * Aj(, k)(x)|‘1/p(k)¢1//qdk

24) <c / |(¢)2,»+1z(y>|[ f @)y AjC, R (x — y>|‘f’p(k>q’/qdk}dy

< szq’h[rlzq’jﬁlrlwej’ 2*h)q"
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Also, by using Lemma 1, we get
(2.5) / |A§.1}1(x,k)|q’p(k)4’/4dk < 274 B8l 27 2=7y4" for h >0, j> 1.

Combining (2.3)—(2.5), we obtain the conclusion of Lemma 2 for j > 1. The proof for the
case j = 0 can be done similarly by using (1.10) and (1.11). O

We can prove the following result by applying Holder’s inequality.
LEMMA 3. Leta > 1,1 <r < 00, and let {xk}}:io be a sequence of complex numbers

such that Y72 |xk|” < co. Then

r

<(a/a—1) Z el

k=0

i:: gakxk

The following lemma generalizes a result stated in [1].

LEMMA 4. Forj=0,1,2,...,let f; be atempered distribution whose Fourier trans-
form is supported in {|&| < 2/} for some constant ¢ > 0 (note that fj is a function by the
support condition). We assume that f; = 0 for all but a finite number of values of j. Let
s>0,1<p<oo,1<qg<ooandw € Ap. Then we have

00 1/q
<C E 249JS| £.14
F9 (w) - H( X |f/| )
r j=0

D
j=0

LP(w)
PROOF. There exists a positive integer N such that
00 oo j+N 00 00
eo Yh=Yyoum=y > oum=>n( > 5)
j=0 j=0 =0 =0 j=max(/—N,0) 1=0 j=max(I—N,0)

Now, by Holder’s inequality we have, for appropriate functions g,

00 Jj+N
Dz( fj)gzdx = Z/fj(Z&(%))dx
2.7) Jj=max(/—N,0) j=0 =
rlq 1/p
< (/(qufsm(x)w) w(x)dx) n,
j=0
where

N a'\ p'ld )
2“<ZDZ(91>) ) wx) ="/ Pdx.

=0

(%

Jj=0
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By Lemma 3 with @ = 2* and r = ¢/, we have
q/

> 2“'(2: Dz(91)> =)

Jj=0 j=0

N q
2]S( Z zlel (26[gl)>

=0

o
<CY 2Dyl

=0
Therefore
o0 ) NP )
I< c/(zz—q SI|D1(91)|q> w(x) "/ Pdx

=0
o0 ) NP )

< c/(zz‘f Sl|91|q> w(x) "/ Pdx,
=0

where the last inequality follows from a well-known vector valued inequality, since w—?" "I e
Ay (see [9]). By a duality argument using this estimate in (2.7), we have
Dz( > f j)

o0 q\ P/q
/ <qusl ) w(x)dx
=0 j=max(/—N,0)
r/q
<c / (qufwj(x)w) w(x)dsx

Jj=0

oo

From this and (2.6) we can easily get the conclusion. a
3. Proof of Theorem 3. Put, for j > 1,

E;(N)x,k) = /R oxp (27 27k, ) )W @) f () exp(2i (v, )

= (4T W)y * Aj(H),
where 1 f(x) = f(x — k) and

Aj(f)x) = /R VQ@TE) [ E) exprix. §))dk .
Also put Eo(f)(x, k) = (1_1F () * Ao(f)(x), where
Ao(f)(x) = fR 9(E) f(€) expilx, £))dé .

Then we can see that

T5(fH)(x) =Z/Aj(x,k)Ej(f)(x,k)dk, fesS®RY).

j=0
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Decompose Aj(x, k) = A;l)(x, k) + Aﬁ.z)(x, k) for j > 0, where A;l) and A;z) are as in
Lemmas 1 and 2 (A}” = 0). Put

Bi(f)(x) = Z/A;.i)(x,k)Ej(f)(x,k)dk, i=1,2.

Jj=0

Then 75 (f) = B1(f) + B2(f). We note the following. For a positive integer N, let
. N .
SN0 =3 [ AP B (e bk, i =1.2.
j=0

Then we can easily see that |S1(\j) (f)(x)| < C for some C > 0 independent of x and N. Also,
we can see that S](\ﬁ)(f)(x) — Bi(f)(x) as N — oo for all x.

We estimate B;(f), i = 1,2, separately under the hypotheses of Theorem 3. We
begin with the estimation of By(f). First, observing that the Fourier transform of
[ Ag.z)(x,k)Ej( F)(x,k)dk, j > 1, is supported in an annulus of the form {c|2/ < || <

229} with ¢1, ¢2 > 0, by a vector valued inequality (see [9], [2]) we have, for s € R,

00 q~\ rlq
1B2(W sy < € / (ZZ"“ ) w(x)dx .
j=1

By Holder’s inequality and Lemma 1 (2.2), the right hand side is bounded by, up to a constant
factor,

/Af)(x,k)Ej(f)(x,k)dk

rlq
/(Z/P(k)_lijs|Ej(f)(X,k)|qdk> w(x)dx .

jzl1

Let g be a non-negative function on R". Then, a direct computation yields

|3 [owr2 |En el akgds

j=1
=Cc) f ( f P! f 2MFT T =y + k)|g(x)dxdk)2‘”f|A iy
j=1
<C)y / ( / p(k) " M(g)(y — 2f'k>dk>2‘ffs |4;(HM|" dy
Jj=1
<C) f MM () (329 | A; (Y| dy .
j=1

where the last inequality follows from (1.12). Put

_ rlq
I= f(Zz‘f”m,-(f)(y)rf) w(y)dy .

j=1
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Now we assume that p > ¢. Then by Holder’s inequality

> [ 20002 4,00y

j=1
, , 1/(p/q)
<C (/ MM () P/D (yyw(y)~ 9P/ P dy) 14/p

< Cjﬂgﬂlxpmy(wgquvap)lq/pv

ifg e L®P/9) (w=4P/0'/Py and w € Ap/q- Therefore by the converse of Holder’s inequality
we have

G.1) / (Z [ ootz | ol dk>p/qw(x)dx <cr.
jz1
The case p = g, w € Aj can be treated similarly and we also have this inequality. Thus
) rlq
(32) 1B2(H)lfsa ) < € f ( Zl 29 | A5 (HO! ) w(y)dy.
Jj=

Next, we estimate Bj (f). For positive integers N, M, put
N M
Uvm(H@ =Y / A R E (), Kk,
=0 h=0

where Ay;l is as in Lemma 2. We estimate Uy j(f) on F;’q(w). The estimate will be
uniform in N and M. Put A}) = A} if0 < n < Mand AY) = 0if h > M; also
E;j(f) = E;j(f)if0<j <Nand E;(f) =0if j > N. Then

Unm(Hx) =Y )" f AN G OE (), kydk = Gi(x) + Ga(x) + G3(x)

Jj=0h=0
where
oo j-10 )
Giw =Y fAjf},(x,k)E,-(f)(x,k)dk,
j=10 h=0
00 oo . . oo h+9 . .
G)= Y Y /Agf;(x,k)Ej(f)(x,k)dk= 3 /A%(x,k)Ej(f)(x,k)dk,
j=10h=j—9 h=1 j=10

o 9
G3(x) =ZZ/Ag}l(x,k)E,(f)(x,k)dk.

h=0 j=0
We estimate G1, G» and G3 separately.
Observing that the Fourier transform of | 2 0<h<j—10 A% (x, E; (f)(x, k)dk, j > 10,
is supported in an annulus of the form {¢12/ < || < ¢327}, ¢1, c2 > 0, via Holder’s inequality
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we have

o0
1G 170 ) = C/( 3 2w

j=10

=<[(x(J

j=10

j—10

~(1 N q\ P/q
f S AN (O Ej () kdk ) w(x)dx
h=0

N~ 40 7 N rla
Z Aj’h(x,k)‘ o(k)? /‘Idk) Fj(s,q,x)) w(x)dx ,
h=0

where
Fj(s,q. ) =fp(k>*1zqf‘|ﬁ~(f>(x k)\dk.
J ’ 9 J 9
We note that
Y. AN =g A, =10
0<h<j—10
for some gU:M) e §(R") such that ||g/"M)||,1 < ¢, where c is a constant independent of j
and M. Therefore by Lemma 1 (2.1) we have

/

Thus for any s € R

j—10 q
> AT, k)‘ p(k)¥4dk < €274l 1y 2] iy
h=0

r/q
< CC(w)? f( > 246D s, q,x)) w(x)dx

j=10

r/q
< CC(w)? / ( Y 20210 =h|A ,-(f)(y>|q) w(y)dy,

j=10

p
1G1 ”F;’q(w)

(3.3)

where the second inequality can be proved as above (see (3.1)).

Next we estimate G». Since the Fourier transform of f Z?:?o Aﬁlfi (x, k) E i (N (x, k)dk,

h > 1, 1is supported in {|&| < 2, by Lemma 4 we have, for0 < s < r,

00 ‘ h+9 ) _ g~ p/q
16255, < Cf(Zz‘f’“ / > A L RE () (x, kydk ) w(x)dx .
h=1 j=10

By Holder’s inequality, the right hand side is bounded by, up to a constant factor,

00 h+9 . ' B - q\ p/q
f (Zzh“—”Zz(’—”/ / (2—”2th5}}1@,k))(2~VE,-(f)(x,k))dk ) w(x)dx .
h=1 j=10

By Holder’s inequality and Lemma 2, the inner integral is bounded by

1/q'
([ ifoior owrear) ([

1/q
< cz—(’—“””2’“’—[’]%»(2/,2—h>( / |2“Ej(f)(x,k>|qp(k)—1dk) :

o q 1/q
Sj L. -1
2 Ej(f)(x,k)‘ p (k) dk)
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Therefore, ||G2||’;,S,q is bounded by
P

(w)

o0 h+9 r/q
CC(w)? /(Zzh(sr) Z 2(rfs)j/ |2*(178)rj2sjEj(f)(x’ k)|qp(k)1dk) w(x)dx

h=1 j=10

00 r/q
< ccwy’f( Z[u“5>’f2SfE,-(f)(x,k)|‘fp(k)1dk> w(x)dx .

j=10

Thus, we have (see (3.1))

r/q
< CC()? / ( Y 27 1mdripais| A j(f)(y)l"> w(y)dy .

B4 1G],
P
j=10

>4 (w)

Finally, in the same way as in the case of G, if 0 < s < r, we have

[e¢)
(Gallga,, = [ (o2
h=0

g\ rl4
) w(x)dx

9
[ X A 0. ar
3.5) . j=0 Ny
= G C@)” / (ZZ‘"’zq”m/(f)(y)w) w(y)dy
j=0

forany n > 0.
By (3.3) through (3.5) we have

o0

' rlq
(3.6) |OnM (D sy < € / (qu“m j(f)(y)l") w(y)dy,

j=0

where the constant C is independent of N and M. Fix j and put

M
Tu(f)x) =) / Al e O E(f)(x, kydk
h=0

Then we can see that [Ty (f)(x)| < C for some C > 0 independent of x and M and that
Tu(f)(x) — [ A;l)(x, K)E;(f)(x, k)dk as M — oo for all x. Therefore, letting M — oo
then N — oo in (3.6), we have

e¢]

‘ rlq
(3.7 1B1() I a g,y = C / (Zz‘mm ,-(f)(y>|‘f) w(y)dy .

j=0

By the estimates (3.2) and (3.7), we can get the conclusion of Theorem 3, since

P

00 ' r/q
/ ( > 247514 j(f)(y)l"> wmdy < Clf I,
j=0

fors e R,0<g <00,0 < p<ooandw € Ay (see, e.g., [2]).
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4. Proof of Theorem 2. Under the hypotheses of Theorem 2 we prove the validity of
the conditions (1.8) through (1.11) with p(k) = (14 |k|9)%, s = [n/q]+d, where d is chosen
sothata > d and [n/q] +d > n/q.

Let j > 1. Then, integration by parts gives

Aj(x, k) = Qriky) /4] / [(3/3Em) 9 (o (x, 27 £)W (8))] exp(—2mi (k, £))dE .
Rn

Let ¢ be as in Section 2. Then by applying the Hausdorff- Young inequality we have, for
[=0,

1A, 1 (1 + [k|19)7 /9 dk

k|l |, 2! < || <27 +1

4.1 < 245! / 1w 27 k) A (x, k)| dk
Ikl |

q'/q
< C2"‘”</R'1 |((1ﬁ)271 * F(x, -))(§)|‘1d$) )

where F(x, £) = (3/0&,)"/ 1) (o (x, 2/€)W (£)). Then, by (1.4) and (1.5) with L = [n/q] we
have, for all x, &, n € R",
4.2) |F(x,6)| <C and |F(x,&+n)— F(x,8)|=<Clnl".

By (4.2) we see that
((P)gmt % Fx, )E)] = V[F(x,é +n)— F(x,é)](lﬁ)zl(n)dn‘

<

/ [F(x.& + 1) — Fx, f)](*ﬁ)zz(n)dn‘

Inl<l|&1/2

+ ‘ / [F(r, &+ 1) — F(x, sn(v?)zz(n)dn‘
Inl=1&1/2

< Cxo(8) / 17111 (m)1dn + € min2~, 2'15])~%")
<271+ gp~n,

where xo is the characteristic function of the ball {|£| < 5}. Using this in (4.1), we have

(43) / |A/(X, k)lql(l + |k|q)S‘1//qdk < Z Czq/dlzfq’al < C.
|kI~lkim |, [k|=1 >0

It is easier to get the estimate
/ A G I k197 9dk < €
k=<1

Using this and (4.3) form =1, ..., n, we see that the condition (1.8) holds.
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Next we show that the condition (1.9) holds. Let || = [r]. Put

A,y k, j, B) = /I; o+, 278) — o(p)(x, 2/6)1W (§) exp(—2mi (k, &))dE .

Then, by integration by parts
Ax, y,k, j, B) = Qrik,,) /4] / G(x,y, &) exp(—2mi(k, £))dE
Rn

where G(x, y, &) = (3/3&m)" 1 [(o(p)(x +y,278) — o(p) (x, 27€))¥ (£)]. By the Hausdorff-
Young inequality we have, as above, for/ > 0

|AGx, y, k, i, B9 (1 + [k19)*9 9 dk

~ ! I+1
(4.4) |k |~k |,2! <|k|<2

< cﬁ"”( fR (@)% G, y, ->)(s>|‘Ids)q /q.
By (1.6), (1.7) with L = [n/q] and a = b, we have, for all x, y, &, n € R",
IG(x,y, &) < C27°Vw@2/ |y]) and
IG(x,y. 6+ 1) — G(x,y.6)| < Cln|*2° w2/, |y]).
Using (4.5) and arguing as in the proof for (1.8) above, we can see that
|yt % G(x, y, N(E)] < 2742727 |y (1 + [E) 7"

Using this in (4.4) and summing up in/ > 0, we have

(4.5)

(4.6) / JAGx, v, k, j, B19 (1+ [k|9)*9 /9 dk < €297 27y
[k|~km |, k|>1

‘We also have
f JACx, y, k, j, B9 (1 + k|99 /9dk < €297 (27, |y)7" .
lk|<1

Using this and (4.6) form =1, ..., n, we can get (1.9).
The validity of the conditions (1.10) and (1.11) can be proved similarly. Since p(x) =
(1 + |x|9)* satisfies (1.12), now Theorem 2 follows from Theorem 3.

5. Boundedness on the weighted Besov spaces. As applications of Theorems 1-3,
we have the following:

THEOREM 4. Let 1 < t < 2. Suppose that o(x, &) satisfies (1.2) and (1.3) with
L =[n/t]+ 1. Then

1o (D) llgst ) < ClFlpsiqy - £ € SRY),

wheret < p < 00,5 € (6§ —Dr,r),0 <g <ocoandw € Ap,.
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THEOREM 5. Letl <t <2,0<a <1land[n/t]+a > n/t. Suppose that o (x, &)
satisfies (1.4)—(1.7) with L = [n/t],a = b. Lett < p <o0,5s € (6§ — Dr,r),0 < g <
andw € Apj;. Then, we have

IA

1o (Dl < Clf iy £ € SRY.

THEOREM 6. Let1 <t < 2. Suppose that (1.8)—(1.11) hold with t in place of q. We
further assume (1.12). Then

1T (Dl < Clf oy £ € SR,

wheret < p <o00,s € (6 —Dr,r),0<g <coandw € Ap,.

Also, we have remarks similar to those in Theorems 1-3 for the dependence of the
bounds on o. We can derive Theorems 4—-6 from Theorems 1-3, respectively, by applying
interpolation arguments (see [2, Theorem 3.5]).
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