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WEAK DEL PEZZO SURFACESWITH IRREGULARITY
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Abstract. We construct normal del Pezzo surfaces, and regular weak del Pezzo sur-
faces as well, with positive irregularity > 0. This can happen only over nonperfect fields.
The surfaces in question are twisted forms of nonnormal del Pezzo surfaces, which were clas-
sified by Reid. The twisting is with respect to the flat topology and infinitesimal group scheme
actions. The twisted surfaces appear as gerférérs for Fano-Mori contractions on certain
threefolds with only canonical singularities.

Introduction. Suppose thak is a smooth and projective scheme over the complex
numbers. The Kawamata-Viehweg Vanishing Theorem assertgfthiat, oy ® £) = 0 for
all integersi > 0 and all invertible sheaves that are nef and big (see [18] and [39]). In
the special case thaf is aweak Fano variety, in other words, the dual of the dualizing
sheaf is nef and big, we may apply the Kawamata-Viehweg Vanishing TheoremCwith
wy and conclude that/! (X, Ox) = O for all integersi > 0. It is unknown whether or to
what extend this particular vanishing holds true for Fano or weak Fano varieties in positive
characteristics.

The Kawamata-Viehweg Vanishing Theorem is a generalization of the Kodaira Vanish-
ing Theorem [20], which deals with ample rathtban nef and big invertible sheaves. It is
well-known that the Kodaira Vanishing Theorem does not hold true in positive characteris-
tics. Raynaud [29] constructed the first couat@mples, which are fibered surfaces whose
generic fiber is regular but not smooth. The surfaces are mostly of general type. A rather
different set of counterexamples is due to Lauritzen [22] relying on representation theory: He
used homogeneous schemes of the farf®, whereB C G is a nonreduced Borel subgroup
scheme in some linear algebraic group. Usiryerelementary methods, Lauritzen and Rao
[23] further constructed smooth Fano varieties of dimengien6 so that Kodaira vanishing
fails for some ample invertible sheavés# wy .

Esnault [8] gives a completely different aspect involving crystalline cohomology: Her
results, which apply to a much wider class than just Fano varieties, tell us that for smooth
Fano varieties over perfect fields with the ring of Witt vectorsW and the field of frac-
tions W C K, the following holds: The part with slopées € [0, 1[ inside the crystalline
cohomology groupsHéris(X/ W) ®w K vanishes fori > 0. On the other hand, this part
(HL(X/ W) ®w K)jo,11 is isomorphic to Serre’s Witt vector cohomolog (X, WOx) @w
K. In turn, the groupH'’ (X, WQOy) is related to ordinary cohomology groups (X, Ox)
by exact sequences, but it seems difficult to gain control over torsion phenomena. Note that
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Berthelot, Bloch and Esnault [3] extended the bijection between the Elofigpart and Witt
vector cohomology to singular schemes, witlid cohomology instead of crystalline coho-
mology.

There are some positive results in low dimensions. If follows from the classification of
smooth del Pezzo surfaces, which are2kdimensional Fano varieties, thHt (S, O5) = 0
holds regardless to the characteristic. The same holds for weak del Pezzo surfaces. For
a nice account, see [7]. Shepherd-Barron [38] established the vanighiog, Ox) =
H?(X, Ox) = 0 for smooth Fano threefolds. On the other hand, Reid [30] constructed non-
normal del Pezzo surfaces Wil (S, Os) # 0.

My original motivation for this work was to construrggular Fano varieties over non-
perfect fields that havé/1(X, Ox) # 0. The point here is that regularity does not imply
geometric regularity (= formal smoothness) over nonperfect fields. | did not quite succeed in
my goals, but | came close to it. The main result of this paper is as follows:

THEOREM. Over every nonperfect field of characteristic p = 2, there are weak del
Pezzo surfaces that are regular, and normal del Pezzo surfaces S with only factorial rational
double points of type A as formal singularities, both with #1(Oy) # 0.

These del Pezzo surfaces are twisted forms of Reid’s nonnormal del Pezzo surfaces, and
the weak del Pezzo surface is obtained by ndaglthe singularity. Such del Pezzo surfaces
necessarily become nonnormal after passing to the perfect closure of the ground field. Indeed,
it follows from the work of Hidaka and Watanabe [17] and myself [32] thitDs) = O for
geometrically normal del Pezzo surfaces.

The existence of such wild del Pezzo surfaSeser nonperfect fields has consequences
for the structure theory of algebraic varieti®sover algebraically closed fields. Namely,
such del Pezzo surfaces might arise as genegegilm some Fano-Mori contractions of fiber
type, obtained by contracting an extremal.rdg my knowledge, the geometry of fibrations
f + X — B whose generic fibek, is not geometrically regular or geometrically normal
has not been studied systematically, except for the quasielliptic surfaces of Bombieri and
Mumford, see [4] and [5].

The existence of Fano-Mori contractions of extremal rays on smooth threefolds in arbi-
trary characteristics was established by Kollar in [21]. In Remark 1.2, he raised the question
whether there are contractions of fiber type whose generic geometric fibers are nonnormal
del Pezzo surfaces. We shall see that our exotic del Pezzo surfaces appear as generic fibers
S = z, for some Fano-Mori contractiofi : Z — E of fiber type, whereZ is a threefold,
and E is the supersingular elliptic curve in characteristic two. Unfortunately, my results are
not strong enough to make the total space smooth. However, the thr&efsldbe locally of
complete intersection, locallfactorial, with only canonical singularities. The anticanonical
divisor is nef and has Kodaira dimension two, and the first higher direct iRage(O7) is
nonzero.

There are several papers dealing with Fano threefolds in positive characteristics. For ex-
ample, Shepherd-Barron [38] obtatha classification for Picard number= 1, and Megyesi
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[25] treated the case of Fano varieties of ingef. Saito showed that on Fano threefolds with
Picard numbep = 2 there are no fibrations whose geometric generic fiber is a nonnormal del
Pezzo surface [31]. Mori and Saito [26] have further results on wild hypersurface bundles.
Here is a plan for the paper: In Section 1, we collect some general facts on twisting and
twisted forms, and give a criterion for regularity of twisted forms. In Section 2, we recall
Reid’s construction of nonnormal del Pezzo surfakeis terms of glueing along a double
line to a rational cuspidal curve, and discuss the glueing process in detail. In Section 3, we
shall see that the resulting del Pezzo surféds locally of complete intersection. In Section
4, | analyse the Picard group and the dualizing sheaf on these del Pezzo surfaces. Section 5
contains a discussion of curves of degree one. In particular, we shall explain how and why
some of these curves are Cartier divisors, and others are only Weil divisors. In Section 6, we
shall prove that the cotangent sheaf modulsitm is locally free of rank two. This seems to
be a rather special situation. An immediate consequence is that the tangent sheaf is locally
free. Under suitable assumptions, we moreover identify a global vectos fiel (Y, Oy /i)
that defines am-action. Unfortunately, this vectdield has a unique zero at the so-called
point at infinity yoo € Y. However, we check in Section 7 that zeros of vector fields are
inevitable, by computing the splitting type of the tangent sheaf. It turns out that our choice of
8 is in some sense the best possible. In Section 8, we usethetion to construct twisted
formsY’ of our del Pezzo surfacg. It turns out that the twisted forms are normal, with only
one singularity. A formal analysis reveals that this singularity is a rational double point of type
A1, which is moreover factorial. In Section 9 we use our results to construct some interesting
Fano-Mori contractions. In Section 10, we finally discuss ampleness and semiampleness for
line bundles orY. Here we see that it is impossible to realZeas hypersurface or double
covering of somé”. The smallest embeddings have codimension three, and the smallest
coverings have degree four.
| wish to thank Torsten Ekedahl, Héléne Esnault, and Christian Liedtke for stimulating
discussions, and Burt Totaro for helpful comments.

1. Twisted forms. In this section | discuss some tiskgeneral aspects of twisting
and twisted form that we shall apply later to nonnormal del Pezzo surfaces. Supjsoae
scheme of finite type over a base figldAnotherk-scheme$’ is called atwisted form of S
if there is a nonzera-algebrar with Sg >~ S%. Such scheme$’ are automatically of finite
type by descent theory (see [15], Exposé VIII, Proposition 3.3).

LEMMA 1.1. If S’ isatwisted form of S, then there is a finite field extension k C E
with Sg >~ S/E'

PrROOF. Choose an isomorphisifi: Sg — S%. As explained in [13], Theorem 8.8.2,
there is ak-subalgebra of finite typ&, C R and an isomorphisi : Sk, — S} inducing
f. Choose a maximal ideal C R,. ThenE = R, /m is a finite field extension of, and we
may restrictf, to E. O
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If follows that the set of isomorphism classes of twisted forshds a subset of the
nonabelian cohomology sét(k, Auts,r), where we may use the finite flat topology. A nice
account of this correspondence in the context of Galois cohomology appears in Serre’s book
[36]. The full theory is exposed at length in Giraud’s treatise [9]. The basic construction goes
as follows: LetT be a torsor under Ayf, with action from the left. Then we may form the
productS x T and obtain the quotient by the diagonal action

SAT =Auts/; \(S xT), (s,1) ~ (gs, gt).

Note that Aug, also acts from the right ofi viasg = g~1s, so we may rewrite the equiva-
lence relation in the particularly attractive form 1) ~ (sg~1, g1).
The resultS A T, which is a sheaf in the finite flat topology, is a sheaf twisted form of
S. This sheaf, however, is not necessarily representable by a scheme. We shall discuss this
below. Conversely, if’ is a twisted form ofS, thenT = Isom(§’, S) is an Aufs,,-torsor with
action from the left, and the canonical m&ép. T — S, (s, 1) — t~1(s) is an isomorphism.
Now let G C Auts,x be a subgroup scheme. Then we have an induced map on non-
abelian cohomologyit(k, G) — H(k,Auts/r). Given anyG-torsor T, we may form
SAT = G\(S x T) to produce twisted forms. Note that the twisted form might be triv-
ial, although the torsor is nontrivial. More precisely:

LEMMA 1.2. Thetwisted form S A T isisomorphic to S if and only if thereisa G-
equivariant morphism7 — Autg.

PROOF. As explained in [9] Chapter Ill, Proposition 3.2.2 , we have a sequence
HOFk, Auts/) — HO(k, G\ Auts;) — H(k, G) — H(k, Auts/s),

which is exact in the following sense: Ti@&torsorsT inducing trivial Auts,;-torsors come
from the sections € G\ Auts, ;. TheG-torsor coming from such a sectiaris the fiber over
x under the projection Aylx — G\ Auts,x, whence the assertion. O

We are mainly interested in the case that the group sch@&nsefinite. Then there are
almost no problems with representability:

LEMMA 1.3. Suppose G is a finite group scheme. Then S’ = S A T is an algebraic
space. Itisa schemeif either G isinfinitesimal, or if S is quasiprojective.

PROOF. It follows from [15], Exposé VIII, Corollary 7.7, that the tors@r is repre-
sentable by a scheme. The quoti§ht= G\(S x T) exists as an algebraic space, according
to very general results of Keel and Mori [19]. df is infinitesimal or if S is quasiprojective
then theG-invariant affine open subséf, C S x T form a covering. By [16], Exposé V,
Theorem 4.1 the quotiet of S x T by the freeG-action exists as a scheme. m|

From now on we assume for convenience that the group scliemsefinite, and that
S = S AT is a scheme, wherE is aG-torsor.

LEMMA 1.4. Thescheme S islocally of completeintersection or smooth if and only if
S’ islocally of complete intersection or smooth, respectively.
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PrRooF This follows from [14], Corollary 19.3.4 and Proposition 17.7.1. O

In contrast, regularity or nonregularity does not transfer to twisted forms. It is possible to
remove singularities by passing to twisted forms, which is indeed the leitmotiv of this paper.
Of course, such things may happen only in positive characteristics. | found the following basic
fact very useful.

THEOREM 1.5. Let A C S bea G-invariant subscheme whose ideal is locally gen-
erated by regular sequences. If the twisted form A" = A A T is a regular scheme, then the
twisted form S’ = S A T isaregular schemeat all pointson thesubset A" C 5.

ProoF. Consider the commutative diagram

AxT — SxT

l !

A — 5.

The vertical maps are surjective and flat, becamsets freely oM x T andS x T. Moreover,
the diagram is cartesian. By assumption, the embeddlings is regular. Hence the induced
embeddingA x T C S x T is regular as well. According to [14], Proposition 19.1.5, this
implies that the embedding’ c S’ is regular. By assumption, the schemeis regular. If
follows that the schem&' is regular at all points € A’, by [14], Proposition 19.1.1. O

We shall mainly apply this in the cases thiatc S is either a Cartier divisor or an Artin
subscheme. Let me record the latter:

COROLLARY 1.6. Let A = Gs bethe orbit of arational points € S, and let s" € S
bea closed pointin A" C §'. If thescheme T isreduced and Gs C S isaregular embedding,
then thelocal ring Oy ¢ isregular.

PROOF. The orbitA = Gs of our finite group schemé is isomorphic to the homoge-
neous spac€/H, whereH = G; is the isotropy group scheme. The project@hH x T —
H\T, (gH, 1) — Hg 1 is well-defined, and induces a bijectich\(G/H x T) — H\T.

If follows that the twisted formA” = A A T is isomorphic toH \T. By assumption, the Artin
schemd is reduced, whence the qotient schefheT is reduced as well. In other words, the
twisted formA’ is regular, and the Theorem applies. a

ExaMPLE 1.7. Consider the global field = F2(¢) in characteristic two and the 1-
dimensional schem& = Spedk[«2, «%], which contains a cuspidal singularity at the origin.
The finite infinitesimal group schent = «» acts onS via the derivation:® — 1. It also acts
ontheT = Sped[+/] viathe derivation/t — 1. The twisted forn§’ = S AT then must be
aregular curve. Indeed, it is the spectrum of the subalgera u® + /11 C k[u?, u®, /1.

Now suppose that € S is a rational point that is fixed under tl@-action. Setting
A = {x}, we see that the twisted fordi = A A T is given by another rational point € S'.
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The following tells us that it is impossible temove singularities by twisting at points that
are both fixed and singular.

PrROPOSITION 1.8. Assumptions as above. If the local ring Os  is not regular, then
thelocal ring Oy , isnot regular aswell.

PROOF. Let B C S x T be the preimage af € S under the projection map, which
coincides with the preimage af € §’ under the quotient map. Suppases S’ is a regular
point. Then the residue fiekd(s") has finite projective dimension. Hené; has finite pro-
jective dimension as well, because the quotient hap7 — S’ is flat. Choose a resolution

- — F1 — Fp — k(s) — 0 with finitely generated fre®g ,-modules. Pulling back under
the flat projection map, we obtain a free resolution— F; — Fj; — Op — 0. Whence
the kernel of someFl.’Jrl — F/is free. By descent theory, the kernelfof.; — F; must also
be free. In other wordsg; € S is regular. ]

2. Glueing along ribbons. Throughout the following sections, we shall study the
geometry of certain nonnormal del Pezzo surfa¢esth irregularitys*(Oy) > 0. Such sur-
faces were first constructed by Reid [30]. A key point in his construction is the use of certain
infinitesimal neighborhoods called ribbons. Reid’s construction works roughly as follows:

We fix a base field of characteristicy = 2. Let X = P? be the projective plane,
andA = P! be the projective line. Choose an embeddihg- X of degree one, and let
B = AW be the first order infinitesimal neighborhood, which is a nonreduced quadric. Let
C be the rational cuspidal curve with arithmetic gentiéOc) = 1, whose normalization is
A — C. The idea now is to extend the nonflat normalization Map- C to a flat morphism
¢ : B — C of degree two, and obtain the desired del Pezzo suifaga the cocartesian
diagram

B — X

o| I

C — Y.
Note that the normalization map: X — Y is a homeomorphism. One way to think about
this is that we thinned out the structure shéaf by artificially removing sections satisfying
certain conditions orB to obtain the structure sheéfy, as explained in Serre’s book [37],
Chapter 1V, §1.1. In some sense, we introduced a curve of alispy’, which itself contains
a cuspidal singularity. Naturally, the singutstron this curve of singularities plays a crucial
role in the whole affair.

To make this construction explicit and to explore its properties, it seems inevitable to

introduce coordinates. Choose indeterminatasand cover the projective plafé = P2 in
the usual way by three affine open subschemes

(1) X = Specdk[u,v] U Spedc[zfl, vl U Speck[uvil, v

We sometimes denote this open affine coveringkby= U U U’ U U”. We shall see that
our constructions do not work well in homogeneous coordinates, and it seems necessary to
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introduce inhomogeneous coordinates. The projectivedine P shall be embedded into
the projective plan& = P? by setting
(2 A = Spedk[u, v]/(v) U Spedc[ufl, vuil]/(vzfl) .

We write the rational cuspidal curve with arithmetic genugp, = 1 as the union of two
affine open subschemes

(3) C = Speck[u?, u®] U Spedi[u~!].

Then we have a canonical morphistn — C, which is the normalization map. Finally,
consider the first order infinitesimal neighborha®d= AV inside the projective spacé =
P2. This nonreduced quadric is given by

(4) B = Sped[u, ¢] U Sped[u~t, eu1],

wheree denotes the residue classwmodulov?. The inclusionA c B is aribbon in the
sense of Bayer and Eisenbud [6]. This means that the TealDp of the closed embedding
A C B satisfiesZ? = 0 and thatZ is an invertible®4-module. Note that the first condition
implies that theD z-module structure off indeed comes from a@ 4,-module structure. We
have an exact cotangent sequenc&gftmodules

(5) O—>I—>Qllg/k®(’),4—>.(2}‘/k—>0,
where we us@€ = Z/72. Pulling back the extension along the universal derivadior0, —
Q%/k, we obtain an extension of sheavesiefector spaces

0—>I—>OB—>OA—>0.

One may recover the multiplication iz by exploiting the fact thatl : O4 — Q}Vk is a
derivation. Note that in particular there is a cartesian diagra@gfmodules

1 1
25/, ® 04— 2,

d®lT Td

OB e OA.

The normalization mapt — C induces an®,-linear map.(zé/k ® Op — Qi/k. We

may use the latter map to pull back the extension (5). As explained in [6], Theorem 1.6
the splittings of this induced extension @f,-modules correspond bijectively to the desired
extensionp : B — C of the normalization map — C along the inclusiomA C B. In other
words, we are looking for commutative diagrams

1 1
2 ®0a —> 24,

seoi] T

1 1
¢/ ®0a —> 2¢; ®0a

of O4-modules. We thus happily arrived at a linearization of the problem.
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To proceed, we merely have to compute the sheaf of diﬁerenﬁélﬁ andfzé/k, to-
gether with their restrictions td. We start with the nonreduced quadfc The Og-module
.(2};,/,( is freely generated by the differentials

du, de and dw™b), d(su™b)

over the two open subsesN U andB N U’, respectively. The corresponding 1-cocycle for
the locally free(’)g-moduleﬁé/k is the 2x 2-matrix

u‘z 8u‘2
0 ul )

becausel (u 1) = u—2du on the overlap, and similarly fat(su—71).
We next turn to the rational cuspidal cur¢e TheOc-moduIeQé/k is generated by the
differentials
dw?), dw® and dw™

over the two open subsets, respectively. On the first open subset, we have a single relation
u*d(u?) = 0, because we are in characterigtie= 2. It follows that.Qé/k modulo torsion is
invertible, with generatord (12) andd («~1), and corresponding 1-cocyale®. We refer to
[34], Section 3 for further results.

Now to the desire4-linear maplp ® 1: 2( ,, ® O — 25, ® Oa. Any such map
is of the form

dw® — uldu+ Pwde and du™H—duw™YH + 0w Hdeu™h

for some polynomials? (1) and Q (u~1) with coefficients fromk. The 1-cocycles computed
in the preceding paragraph impose the conditfin)u 2 = Q(u~1). The upshot is that the
polynomialsP = P(u) of degree< 3 correspond to suaf 4 -linear maps. The corresponding
morphismg : B — C is given in coordinates by

2 2 3

Wisu?, uP— ud+eP and ul

> u 4+ eutP.
Throughout, we calP theglueing polynomial and write it as
P = a3u3 + a2u2 + o1u + ag,

with scalarses, ..., ap € k. For the constructions we have in mind it is important that the
morphismg : B — C of degree two is flat. This condition depends on the constant term of
the glueing polynomial:

PROPOSITION 2.1. Themorphismg : B — C isflat if and only if the constant term
ag inthe glueing polynomial P € k[u] is honzero.

PrRoOOF. Clearly,¢ is flat outside the singular pointe C. Sog is flat if and only if the
Artin schemep~1(c) C B has length two. Clearly, the fiber in question is the spectrum of the
Artin ring

klu, €1/ w? u®+ eP) = k ® ku ® ke ® kue /(s P).
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If «p = 0O, this is ak-vector space of dimensiah= 3 ord = 4. If ag # 0, the residue class
of P is a unit, and th&-vector space has dimensign= 2. a

From now on we assume that the glueing polynorfiiat a3u®+ - - - 4+ ag has a nonzero
constant term, such that our morphigm B — C is flat. Moreover, we regard our rational
cuspidal curve as

C = Sped[u?, u®+eP] U Speck[u '+ su"P].

In other words, we viewD¢ as a subsheaf @p with respect to our morphism : B — C,
and not merely as a subsheaf@f,. We call the rational point», € C that constitutes the
complement of the affine open subset Spe?, u® + ¢ P] C C thepoint at infinity. We shall
see that it plays a special role. This is already apparent in the following fact.

PROPOSITION 2.2. The O¢-module 7 = ¢,Op/O¢ isinvertible, and isomorphic to
Oc(ys0), Where yo € C isthe point at infinity.

PROOF Sinceyp : B — C is flat of degree two7 must be invertible. We compute
deq7) = x(7) — x(Oc) = x(Op) — 2x(Oc¢) = 1.

HenceH®(C, 7) is 1-dimensional. To compute a nonzero section, we use the affine fpgc-
coveringV LI V' — C given by the formal completior = Sped[[u?, u® + ¢P]] and the
affine open subsét’ = Speck[u‘l + eu—*P]. One easily sees that the residue classes of the
unitu € I'(V, Op) and the nilpotentu=1P e I'(V’, Op) generate the quotient she&fas
anOc¢-module. On the overlap x¢ V’, we have(u® + ¢ P)u=? - u = eu~1P moduloOc.
Using
1

Wt ePu?
we see that the local sections & € I'(V,7) and (u Y + euP) - eu=1P € I'(V',T)
glue together and define a global section, which vanishes precisely at the point at infinity
Yoo € C. O

ul + cu 4P s

3. The geometric construction. We keep the notation from the preceding section,
and use the flat morphisgn: B — C to form the cocartesian square

B — X

© 1L

C — Y.
The surfaceY is our desired del Pezzo surface, as we shall see in due course. Pushouts
like the above exists as algebraic spaces adegrth a very general criterion of Artin [1],
Theorem 6.1. The morphism: X — Y is the normalization, and the cartesian square is also
cocartesian. In particular, we havel(C) = B. Fortunately, we may immediately forget
about the category of algebraic spaces.

PrROPOSITION 3.1. Thealgebraic space Y is a projective scheme.
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PrROOF. It suffices to find an ample invertib@y-module. As explained in [33], Propo-
sition 4.1, the pushout diagram yields an exact sequence of abelian sheaves

1- 05 -0y xOf > O — 1,
which results in an exact sequence of abelian groups
(7) 0 — Pic(Y) — Pic(X) & Pic(C) — Pic(B) .

Clearly, the preimage map R&) — Pic(B) is surjective. Hence there is an invertitilg -
module£ with L = Opg(1). Consequently, there is an invertidd -moduleOy (1) whose
preimage ornX is isomorphic toOx (1). According to [11], Proposition 2.6.2, the invertible
sheafOy (1) must be ample, so the algebraic sp#cds projective. |

REMARK 3.2. The proof works under fairly general assumptiokismight be any
projective schemeB a one-dimensional subscheme, and B — C a morphism of curves
that is generically an isomorphism.

It is not difficult to write down the coordinate rings for the affine open coveting
V U V" U V” corresponding to the affine open coverikig= U U U’ U U” defined in (1).
Indeed, the diagram

OB<—OX

®) 4 T

Oc «— Oy
is cartesian, and this implies that
V = Spedc[uz, ud + VP, vz, vzu, v3, v3u] ,
(9) V' = Specku=2, ut +vu"?P, vZu?, vZu3, v3u3, v3u ),
V" = Sped[uvt, vl

Let me explain this for the first open subseét Clearly, the six given elemenig, u® +
vP, ..., v3u lie in Oy. Moreover, any monomial of the form”v"* with m,n > 2 is a
monomial in the elementg?, v2, v2u, v3, v3u. Finally, the residue classes of, u® + vP
generate the quotient she@f |y . Whence the given elements gener@ige.

The two open subsets, V' c Y need uncomfortably many generators. It is possible to
compute, with computer algebra, a Grobner basis for the ideal of relations, but this sheds little
light on the situation. However, we shall see that things clear up under passing to suitable
localizations or completions.

The schemé& has as reduced singular locus the rational cuspidal cdrve Y. Our
ultimate goal is to construct twisted forms Bfthat are regular, or at least normal. This can
only happen if the singularities dn are not too bad. Recall that@cally noetherian scheme
S is calledlocally of complete intersection if for all pointss € S, the formal completion of the
stalk O s is of the formO¢ ;. = R/I, whereR is a regular local noetherian ring afid_ R
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is an ideal generated by a regular sequence ([14], Definition 19.3.1). The whole paper hinges
on the following observation.

THEOREM 3.3. TheschemeY islocally of complete intersection.

PrROOF. We shall determine the local generators and relations explicitly. This will be
useful later, when we compute the cotangent sheaf of the singular sahefeestart with,
consider the affine open subgétc ¥ occurring in (9), with coordinate ring = k[u?, u® +

vP, v2, v2u, v3, v3u]. To simplify notation, we give names to the generators:

(10) a=u’, b=ul+vP, c=1v>, e=vu, =13, f=%u.
The idea now is to localize so that fewer than seagrators suffice. First, let us take the affine
open subseY,> C V obtained by inverting the element
P2 =a§a3+a%a2+a%a+a§ €A.
Recall thatP = azu® +- - - +apg is the glueing polynomial in the indeterminatelefining our

glueing mapy : B — C. | contend thatA p2 = kla, b, ] p2 as subrings inside the function
field k(u, v). Indeed, we have = (b2 + a%)/P? and compute

ch = ea + c'(ag + apa) + f(ay + aza),
eb = ca® + c(ara + ot3a2) + f (oo + aza) .
The matrix of coefficients at’, f has determinant
et( oo +aza2 o1 +a3a) _p2,
a1a + aza o + aza

and hence we may express f in terms ofa, b, e, 1/ P?. The upshot is that the canonical
inclusionkla, b, e] p2 C A p2 is bijective.

According to the work of Avramov [2], the property of being locally of complete inter-
section is stable under localizatiorherefore, it remains to check thdt, b, e]is of complete
intersection. But this is trivial: We write the 2-dimensional ritlg, b, ¢] as a quotient of a
polynomial ring in three indeterminates, and since the latter is factorial, the ideal of relations
is generated by a single element. For later use, | write down the such a relation; it is

(11) P? +ba+a’.

To continue, let us look at the affine open subggtC V given by localizing the element
Q = a? + c(a1 + aza)®> € A. With this choice, | claim thaty = k[a, b, c, ']p. The
argument is very similar to the one in the preceding paragraph, and reveals how to come up
with a denominator likeD: We compute

ch = ea+ f(ay+ aza) + ' (ag + aza) ,
¢'b = ec(or + aza) + fa + c*(ao+ aza) .
The coefficients a¢, f comprise a matrix, whose determinant is

a o1 toza) 2 ) 2
det(c(al—i—aga) B )_a + (o1 +aza) = 0.
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Hence we may express the generatorg in terms ofa, b, ¢, ¢/, 1/Q, and therefored p =
kla, b, c,c']p. Itremains to see tha = k[a, b, c, ¢'] is a complete intersection. The gener-
atorsa, ¢ € R are algebraically indeperdt, and we have relations

(12) b>+a®+cP? and 2=c3.
| claim that the canonical surjection
R =kla, c][x1, xz]/(x%—i—a?’ +cP2,x% +¢3 >R, x1—=b, x20>¢

is bijective, wherex, x2 are indeterminates. Indeed, both rings in question are 2-dimensi-
onal, andR is integral, so it suffices to check that the rikg on the left is integral. The
inclusion k[a,c] C R’ is purely inseparable, so Sg&) is irreducible. Being a com-
plete intersection, the affine scheme S@E has no embedded components. Hence, to
check that the 2-dimensional ring’ is reduced we may replace it by the local Artin ring
k(a, c)lx1, x21/(x% + a® + c P2, x5 + ¢®). By Lemma 3.4 below, it suffices to check that the
differentials

d(a3 + CPZ) = (a2 + a%c + a%caz)da + P%dc¢ and d(cs) = c?dc

from .le(a ok are linearly independent, and the latter is obvious. If follows that the affine
opensubsel C Y is locally of complete interséion, because the open subsgjs, Vo C V
cover the singular locus Sing) = VN C.

To finish the proof, it suffices to see that the formal completion
R = k[[u_z, u 4 vu_4P, vzu_z, vzu_s, vsu_s, vsu_4]]
of the second affine open sub3&tC Y is a complete intersection. We introduce names

2. -2 3 -3

(13) x=ut4w P and y=0v%"? and z=11%"3

The equation? = u=2 + y (a2 + o2u~2 + eZxu~* + «3u~5), viewed as a recursion relation
for u~2, reveals that the generator? is a formal power series ir?, y. Next, we decompose
the glueing polynomiaP = asu® + ... + ag into even and odd pa®® = Pey 4+ Pogq, such
that Peyu 2 and Py g~ are polynomials i —2. Computing

xy = v2u™3 + 3™ Peyu? 4 2 Pogau 3,

xz = vzuf?’yPevu*Z + 03t 4 szoddlf?’ )

we see that the matrix of coefficientsi#u—3, v3, u=4 has determinant

1 Poyu 2 _
det(yPeVu_z evl > =1- yPeZVM 4 ,

which is a unit. Whence it is possible to express the generafars®, v3u—* as formal power
series inx, y, z, so the inclusiork[[x, y, z]] C R is bijective. But the ringk[[x, y, z]] is
obviously a complete intersection, with relatiph+ z2 = 0. |

In the preceding proof, weaeded the following fact.
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LEMMA 3.4. Let K beafield of characteristic p > 0,and f1, ..., f, € K elements
so that the differentialsdf1, ..., df, € .Q,l(/,(,, arelinearly independent. Then thelocal Artin

rng K [xa, ..., x,1/(x] — fi.....x} — f) isafield.

PROOF. LetA = K|[x1, ..., x,] be the polynomial algebra and set= xl.” — fi. Let
m C A be the maximal ideal containing the iddal, ..., y,). It suffices to check that the
residue classes € m/m? are linearly independent, according to [12], Proposition 17.1.7.

By assumption, we fin& ”-derivationsD; : K — K with D;(f;) = §;; (Kronecker
delta). The cotangent sequence

0— Qll(/Kp(X)A — Q/ﬁ/,{p N Q/ﬁ/,{ -0

is exact and splits, because the ring extensionc A is smooth. Hence we may extend
our D; to K”-derivationsD; : A — A, which haveD;(y;) = §;;. These derivations in-
duce linear map®; : m/m? — A/m. If follows that the residue classes gf are linearly
independent. O

REMARK 3.5. The condition that differentialéf1, ..., df, € .Q,l(/,(,, are linearly
independent exactly means that the elem¢its. ., f, € K are p-linearly independent.

4. Picard scheme and dualizing sheaf. We keep the notation from the preceding
section, such thdt is an integral projective surface locally of complete intersection, which is
defined by the cocartesian square (6). It is nonnormal, with reduced nonsmootit’laci’s
and normalizatiorX = P2. In this section we study invertible sheavesnin some sense,
everything reduces to the cur¢ec Y:

PROPOSITION 4.1. The restriction map Picy;x — Picc i of Picard schemes is an
isomor phism.

PrROOF. The exact sequence of abelian sheaves V7 — O3 x Of — Op — 1
induces an exact sequence of Picard schemes

0— PiCY/k — PiCX/k X PiCc/k — PiCB/k .

Hence it suffices to check that the restriction mapxPic— Picg/« is an isomorphism.
Recall thatB is the first order infinitesimal neighborhood of a linénside X = P2. Clearly,

the restriction map Pig — Pica/« is an isomorphism, so it suffices to check that the
restriction map Pig/x — Pica/« is an isomorphism. Lef C Op be the ideal for the
closed embedding c B. ThenZ? = 0 and we have an exact sequence of abelian sheaves
0— 7 — Oy — Oy — 1, which gives an exact sequence

HY(B,T) — Picg/x — Picasx — H?(B,T).

The outer terms vanisbgcause the abelian shé&ais isomorphic to the& 4-moduleO 4 (—1),
whence the assertion holds. O

We conclude that the Picard schemeyRjic= Picc/ is reduced and therefore smooth,
and 1-dimensional. In particular, its tangent spab"e{Y, Oy) is 1-dimensional. The Picard
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scheme sits inside a split extension
(14) 0— G, — Picy;y - Z— 0.

The map on the right is given by sending an invertile-module £ to the degree of the
restriction £L¢. To simplify notation, we set dég) = degLc¢) and call this integer the
degree of L.

PROPOSITION 4.2. Aninvertible Oy-module £ isampleif and only if deg L) > 0.

PROOF. According to [11], Proposition 2.6.2, the invertible shé&afs ample if and
only if its preimagev*(£) is ample. If follows easily from the definition of = deg £) that
v*(L) = Ox(d). HenceL is ample if and only itZ > 0. ]

Being locally of complete intersection, the proper schafraso has an invertible dual-
izing sheafwy. It is straightforward to compute its degree:

PROPOSITION 4.3. The degree of the dualizing sheaf isdeqwy) = —1.

PrROOF. Consider the Tschirnhausen moddle= v,Oyx/Oy. Its annulator ideat C
Oy is called theconductor ideal for the normalization map : X — Y. According to
Proposition 2.2, th&y-module7 is an invertibleO¢c-module, and hence = Oy (—C).
Since the square (6) definirfgis cocartesian, the induced ideal &rsatisfiesc = ¢cOx. As
the square is also cartesian, we hafg = Ox(—B).

The conductor is closely related to duality: The equality Hom(v,Oyx, Oy) shows
that the conductor ideal has a natu¢at-module structure, and coincides with the relative
dualizing sheafvy,y. The latter satisfieexy = wx,y ® v*wy. Clearly, the projective plane
X = P? has dualizing sheaby = Ox(—3). Together withwy,y = Ox(—2), it follows
v¥(wy) = Ox(—1). O

In particular, the dualizing sheafy is antiample. We thus call ouf a nonnormal del
Pezzo surface. Let me point out that its irregularity is1(Oy) = 1, which is highly unusual
for del Pezzo surfaces, even for singular ones (compare [17], Corollary 2.5 and [32], Theorem
2.2 and [30]).

To determine the isomorphism classwjf in the Picard group, it suffices to compute
its restriction toC. Recall that the Tschirnhausen moddle= v,Ox /Oy is the invertible
Oc-moduleO¢ (yx), Wherey, € C is the point at infinity.

PROPOSITION 4.4. Wth the preceding notation, we have wy |¢ = O¢(—Yoo)-

PrOOF. We consider the relative dualizing sheaf,y = é‘xt}gy (Oc¢, Oy), which sat-
isfieswc = wc/y ® wylc. The exact sequence8 ¢ - Oc — Oc — 0 yields an exact
sequence

0 — Homp, (O, Oy) — Homp, (¢, Oy) — &t (Oc. Oy) — 0.
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We have an obvious inclusiafly ¢ Hom(c, Oy), and we now check that it is bijective. The
composition map

Homp, (Ox, Oy) ®o, HOMo, (¢, Ox) — Homp, (¢, Oy)

is bijective, because the cductor ideal is invertible a®x-module. For the same reason, the
evaluation map

Homo, (¢, Ox) ®oy ¢ — Ox
is bijective. Composing the previous maps, we obtain a chain of incluélign C
Hom(c, Oy) C Oy, which clearly is bijective. The upshit that the relative dualizing sheaf
wc,y coincides with the Tschirnhausen modileUsing thaiwc = O¢ and Proposition 2.2,
we deduce the assertion. O

5. Cartier divisorsand Weil divisors. Our del Pezzo surface has a natural polar-
ization furnished by the ample invertible shegf. Given any Weil divisotD onY, we define
its degree by the intersection number d@@) = wy - D. In this section we have a closer look
at curvesD C Y of degree one. Much of the geometrylofs captured by these curves. Any
such curve is the schematic image of a lin@n the normalizatiorX = P2. To begin with,
we compute some cohomology groups.

PROPOSITION 5.1. Let £ be an invertible Oy-module of degree d. Then we have
x (L) = d(d + 1)/2. Moreover, H(Y, L) = Ofor d > 0,and H(Y, L) = Oford > 1.

PROOF The exact sequence-8 £ — Lx — L ® 7 — 0 of coherent sheaves gives
x(L) = x(Lx) — x(L.®T). HereT = Ox /Oy is the Tschirnhausen module. We clearly
havex (Lx) = (d+2)(d+1)/2. According to Proposition 2.7, is an invertibleO-module
of degree one. It follows thgt(£L ® 7) = d + 1, and the assertion on the Euler characteristic
follows.

Now supposel > 0. Then the term on the left in the exact sequence

HYC,L®T)— HY, L) - H*X, Lx)

vanishes. The term on the right is Serre duatify( X, Ly (—3)), and vanishes as well. Hence
H2(Y, L) = 0.

Finally, suppose that the degreedis= 1. We now use the short exact sequence-0
L— Lx ®Lc— Lp — 0,which gives an exact sequence

HOX, Lx) ® H(C, Lc) — HO(B, L) — HY(Y, L) — HY(X, Lx) ® HY(C, Lc).

The sum on the right vanishes, and the map on the left is surjective. The latter follows from
the exact sequence

H°(X, L) —» H%B, Lp) — HYX, L(-2)) = 0.
The upshot is thal/1(Y, £) = 0. 0

Ford = 1, this means thatl°(Y, £) is 1-dimensional. In other words, each invertible
sheafL of degree one, there is precisely one effective Cartier divi3oC Y with £ =
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Oy (D). Note that this applies in particular to the antidualizing sheaf wy. It turns out
that the position of these Cartier divisors steérmined by restricting to the reduced singular
locusC C Y:

PROPOSITION 5.2. Let £ bean invertible sheaf of degree d = 1. Then therestriction
map HO(Y, £) — HO(C, L¢) isbijective.

PROOF. The exact sequence® Lx(—B) — Ly — Lp — 0 gives an exact se-
quence

HO(X, Lx(—B)) — H°X, Lx) — HYB, L) — HYX, Lx(—B)).

Both outer terms vanish, and hence the restriction H&pX, £Lx) — HO(B, Lp) is bijec-
tive.

Using the exact sequence-8 £ — Lx & Lc — Lp — 0, we obtain a short exact
sequence

0— HO(Y, £) - HX, Lx) ® H°(C, Lc) — HYB, L) — O.

In light of the preceding paragraph, the restriction niaxY, £) — H°(C, L) must be
bijective. ]

We conclude that given a rational poine C in the smooth locus of', there is precisely
one Cartier divisoiD C Y of degree one passing throughOf course, there is a continuous
family of Weil divisors of degree one passing through that point. Any such Weil divisor is
the image of a unique line aki = P2. How to distinguish between such Cartier divisors and
Weil divisors?

PrROPOSITION 5.3. Let L C X bealine not contained in the conductor locus B C X,
and D C Y beitsimage, and y € C N D be the unique intersection point with the singular
locus C C Y. Then the Weil divisor D is Cartier if and only if the schematic preimage
v~1(y) c X iscontainedin L.

PROOF. Suppose thaD C Y is Cartier. Then the preimage1(D) c X is Cartier
as well, and clearly contains 1(y). The inclusionL c v~—1(D) is an equality outside the
conductor locu8 C X. Since both subschemes are Cartier, they must be equal. If follows
thatv=1(y) c L.

Now suppose~1(y) ¢ L. Let D' c Y be the unique Cartier divisor of degree one
passing throughy. Its preimagel.’ = v=%(D’) c X is a line containing:~(y), which is
an Artin subscheme of length two. However, through any Artin subscheme of length two on
X = P2, there passes precisely one line. We conclude L', whenceD = D’ is Cartier. O

We finally determine what kind of scheme a Weil divisor of degree one is.

PROPOSITION 5.4. Let D C Y bea Wil divisor of degree one.
(i) If D c Y isCartier or if D = C, then the curve D is isomorphic to the rational
cuspidal curve with arithmetic genus p, = 1.
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(i) If D C Y isnotCartier and D # C, then the curve D isisomorphic to the projec-
tiveline P1.

PROOF. The caseD = C is clear, becaus€ is by definition the rational cuspidal curve
with p, = 1. Now suppose thab is Cartier. Thenwp = wy (D) |p has degree zero. It
follows that—2x (O¢) = deqwp) = 0, whenceh!(O¢) = 1. Clearly, D is birational and
homeomorphic to the projective line, and the assertion follows.

Finally, suppose thad # C is not Cartier. Lef. C X be the unique line witth = v(L),
and consider the birational morphisfn: L — D. According to Proposition 5.3, the fiber
f~(y) = L nv~1(y) is an Artin scheme of length one. It follows thtis an isomorphism.

O

To close this section, we look again at the antidualizing sh¢aiWe know from Propo-
sition 5.1 that there isnly one effective anticanonical divisab C Y. We note in passing an
interesting consequence: The anticanonical divi3oC Y is invariant under any automor-
phism ofY.

6. Thetangent sheaf. We keep the notation from the preceding sections, such that
Y is a nonnormal del Pezzo surface. To construct twisted forn¥s ofe have to understand
the group scheme Aut; and its Lie algebra 0y, Oy/i). In this section we shall see that
the tangent sheady/ is locally free of rank two, and that it is not difficult to determine its
global sections. This is somewhat prising, because the cotangent sh@éf/k is not locally
free along the singular curve C Y. However, we shall see that the trouble only comes from
the torsion subsheaf C Q)}/k. This effect seems to be special to positive characteristics.

THEOREM 6.1. The coherent Oy-module .Q}];/k/l' islocally free of rank two.

PrRooOF This is a local problem ify. First, consider the affine open sub¥etc Y that
is the spectrum of

k[uz, ud +vP, vz, vzu, v3, v3u] =kla,b,c,e,c, f],

as in Equation (10). As explained in the proof for Proposition 3.3, it is advisable to localize
further, usingP? = a3a® + a3a? + a2a + a3 andQ = a® + c(a1 + aza)? as denominators.
We saw thal/,2 is an open subset inside the spectrum of

kla, b, e]/(P‘le2 +b%a + a7) .

The module of differentials is generateddyy, db, de modulo the relatiorib* +a®)da. Since
Y is generically smooth, the coefficiebt + a® must be a regular element, hence the differ-
entialda is torsion. We conclude that the differentials, de form a basis o{Q%/k modulo
torsion overVp2 C Y. A similar argument using Equation (12) gives that the differentials
db, dc’ form a basis foﬂ% modulo torsion ove¥y C Y.

It remains to treat the affine open sub¥étC Y. Since the point at infinity., € V’
is the only singularity not contained i, it suffices to consider the formal completiéh=
kl[x, y, z11/(y® — z2) of Oy, as in Equation (13). The separated complelflb}h/k modulo



310 S. SCHROER

torsion is free, with basigx, dz. Since the two functions = u~1 + vu—4P andz = u3v—3
are already contained i@y ,_, it follows thatdx, dz are a basis modulo torsion in some
affine neighborhood of, € Y. O

COROLLARY 6.2. Thetangent sheaf ®y/ islocally free of rank two.

PROOF. Dualizing the exact sequence-8 © — 27, — 27/t — 0, we see that
the canonical ma]b{om(s?%/k/r, Oy) —> Hom(.Q%/k, Oy) is bijective. O

Our next task is to compute the Lie algebra of global sections for the tangent sheaf. We
are mostly interested in the behavior of derivations near the singular cusY, whence
we shall describeZ®(Y, ©y,;) as a subalgebra af%(V,2, Oy /). We just saw thaﬂ%/k
modulo torsion has a basis &2 C Y given bydb, de. We denote byD;, D, the dual basis
of Oy, on Vp2. The following result gives an implicit description ofO(Y, Oy/k), Which
will give enough information for our purposes.

PROPOSITION 6.3. The Lie algebra HO(Y, Oy/r) consists of all derivations of the
form f Dy, + gD,, where f, g € k[u?, u® + vP, v?, v2u, v3, v3u] are polynomials so that the
rational functions

u Pv+ Puv+ud 1 u?+ P'v
15 —— ————— and f—— _
( ) fU2P+g VAP fU2P+g VAP
are contained in k[u /v, 1/v].

PROOF. Since the cotangent sheaf satisfies Serre’s condifignand the complement
of Vp2 UV” C Y is finite, the restriction map/O(Y, Oy/k) — HO(VPz UV”, Oy,r) must be
bijective. The latter group is the kernel of the difference map
(16) HO(Vpz, Oyy0) & HO(V", Oyjx) > HO(Vp2 NV, Oy 1),
coming fromCech cohomology. To determine the kernel, we first compute with differentials
rather than derivations:

db = W? + P'v)du + Pdv, de=v?du
dw/v) = 1/vdu + u/v’dv, d(1/v) = 1/v?dv,
as follows from (10). Consequently,

_(uP+Pv 0P (1w O
(47 A_( P 0>’ B_<u/v2 1/v2)

are the base change matrices for base changesfbode to du, dv, and fromd (u/v), d(1/v)
to du, dv, respectively. It follows thatB~1A is the base change matrix froub, de to
d(u/v),d(1/v), and whence

ol a1 u/v2P  (Pv+ Puv+ud)/v*P

(B"A) " = 2 2 priy b

1/veP w4+ P'v)/v*P

is the base change matrix from the dual bdsis D, to D, ., D1/,. Using this base change
matrix, we compute the kernel in the exact sequence (16), and the assertion follows
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Recall that the normalization df is the projective plan& = P2. Pulling back to
X, we see thaH%(X, Oy, ® Ox) is given by derivations of the forniD;, + gD., where
f> g € kl[u, v] are polynomials so that the two rational functions in (15) li¢fia/v, 1/v]. In
particular, the rational derivatioh = P D, defines a global section @y, ® Ox. It does
not, however, always come from a global sectior®gf ;:

COROLLARY 6.4. Suppose the glueing polynomial P iseven, thatis, P = au? + «g.
Then the rational vector field s = P D, liesin HO(Y, Oy/k). Moreover, we have§ o § = 0.

PrROOF. The first statement follows from the preceding proposition. We ligwe =
aza + ag andé(b) = 0, and thereforé o § = 0. |

From now on we assume that the glueing polynon#ias even. Using the base change
matrices in (17), we easily express the global vector field P D, in terms of other rational
derivations, and obtain

§=PD, = (Pv+ u3)v74Du/v + u2v74D1/v = PtszM + u2v72Dv .

In the next section, we shall interprétas a group scheme action @ on Y. The fixed
points for the group scheme action corresptmthe zeros of the veat field. By definition,

8 = PD, has no zeros on the open subggt. Clearly, it vanishes or” to first order along
the closed subscheme given byvl= 0. It remains to determine the precise behavior of the
vector field near the curve of singulariti€sc Y.

ProPOSITION 6.5. The only zero of the global vector field § = PD, lying on the
singular curve C C Y isthepoint at infinity yo, € C. Wth respect to the formal coordinates
O3y, = Kllx, y, 211/ (3° = 2%), we have § = x D...

PROOF. Usings = Pv—2D, +u?v—2D, and the definitions af, y, z in Equation (13),
one computes(x) = 8§(y) = 0 andé(z) = x, whenced = xD,. It remains to write5 on
Vo C Vinterms of the basi®;,, D, wherec’ = v3. Note thatQ = a + c(azu® +a1u) = a,
because we assume the glueing polynomial to be even. Wedtaye= 0 and compute
8(v®) = u? = a, whences = a D, has no zero on the affine open subggtc Y. O

7. Splitting type of tangent sheaf. In this section we determine the restriction
Oy k|p of the tangent sheaf to Weil divisol3 C Y of degree one. This will show that
our choice of global vector fielsl= P D, is, in some sense, the best possible choice.

The computation with the tangent sheaf i easy, because we may dually work with
the cotangent sheaf modulo torsion. The latter sits in an exact sequence

(18) I/IZ—>Q§/,(®OD—>Q})/,(—>O,

whereZ = Oy (—D) is the ideal of the Weil divisor. For the following arguments, note that
the torsion subsheaf C Q%/k is locally a direct summand, becau@«%/k/r is locally free,
whence this subsheafgonutes with base change.
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PROPOSITION 7.1. Let D C Y bea Cartier divisor of degree one. Then the tangent
sheaf splits as Oy,k|p ~ Op/x @ wylp. Both summands are invertible O p-modules, of
degree four and one, respectively.

PROOF. The ®p-moduleZ/Z? is invertible of degree- D? = —1, and the canonical
mapZ/7? — Q%/k ® Op on the left in the cotangent sequence (18) is injective, because
D C Y is Cartier. According to Proposition 5.4, the scheés the rational cuspidal curve
with arithmetic genugp, = 1. It follows 7/Z? =~ wy|p, and that}, ,, modulo torsion is an
invertible sheaf of degree 4. SinceY is smooth at the generic pointe D, the torsion in
2}, ® Op maps to the torsion a2, ., and this map must be bijective becaudp,, /7 is
locally free of rank two, which contairis/Z2 locally as a direct summand. The result now
follows by taking duals, and the fact that there are no nontrivial extension of invertible sheaves
of degree one by invertible sheaves of degree foubon m|

In particular, we see that the invertible sheaf(dst ;) has degree five.

PROPOSITION 7.2. Let D C Y be a W&l divisor of degree one that is not Cartier
and not the singular curve C. Then Oy, «|p =~ Op(3) @ Op(2) isadirect sum of invertible
Op-modules of degree two and three.

PROOF. In this case, Proposition 5.4 tells us that~ P'. Hence®j, , is invertible
of degree—2. It follows that the torsion oﬂ%/k ® Op maps to zero irﬂ%/k. The induced
map(Q%/k/r) ® Op — Q})/k has invertible kernel, which must have degre® The result
follows after dualizing, and the fact that there are non nontrivial extensiold$-0f3) by
Op1(2). O

PROPOSITION 7.3. Let C C Y bethereduced singular locus. Then the tangent sheaf
splitsas Oy, klc = Oc/k ® Oc (yso). Both summands are invertible, of degree four and one,
respectively.

PROOF. | claim that the torsion irs?%/k maps to the torsion imé/k. It suffices to check
this on the formal completioR’ = k[[x, y, z]1/(y® + z?) of the affine open subsét’ C Y

at the point at infinity. The curv€ C Y has ideaky, z), and the torsion is generated &y,
whence the claim follows. Whence we have an exact sequence

0— K — 27, ® Oc/(torsion — 2¢,,/(torsion — 0

for some coheren-module K. Since both terms on the right are locally free, the-
moduleC must be invertible. It must have degred, because’zé/k modulo torsion is in-
vertible of degree-4. Such an extension @¢-modules must split. Dualizing it, we obtain
Oy/klc = Ock ® K.

It remains to see thdf” ~ O¢(y~). We use our global vector fieldl = PD,. By
Proposition 6.5, the restrictioch® 1 vanishes only at, € C, and has vanishing order one
there. DecomposeR 1 = §'+8”, wheres’ is a global vector field o, ands” € H(C, V).
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If 8 = 0, then®¢,« would have degree one, contradiction. HeAte# 0, and it follows
KY >~ Oc(yoo)- O

REMARK 7.4. Letm C Oy bethe maximal ideal for the point at infinity, € Y. The
preceding result tells us that any global vector fieldroihe corresponding tangent vector in
Oy/k(Yoo) C Homy (m/m?2, k) is tangent to the curve of singulariti€s c Y. We conclude
that our§ = PD, is in some sense the best possible choice when it comes to twisting in
Section 8.

REMARK 7.5. SupposeF is a locally free sheaf of rank on the projective plane
X = P2 The restriction to any lind. ¢ X splits into a direct sum of invertible sheafs
Fr >~ 0p(d) ®---® Or(dy), say withdy < --- < d,. This sequence of integers is called
the splitting type of F along the lineL. The preceding results tell us: The generic splitting
type of F = v*(®y/,x) is given by the sequencg, 3). The generic splitting type degenerates
to the special splitting typél, 4) on those lined. ¢ P? whose image irD C Y is Cartier or
equalsC.

8. Twisted del Pezzo surfaces. We keep the assumptions as in the preceding section,
such thatt is a nonnormal del Pezzo surfaces, dedi by an even glueing polynomi&l =
aou? + ag. Then we have a global vector fiesde HO(Y, Oy /i) with § o § = 0 given by the
formulas = P D,. Such vector fields correspond to actions of the group sclemehich is
finite and infinitesimal.

Recall that we have,; = Spedk[¢] as a scheme. Its values bralgebrasr is the group
a2(R) = {f € R | f? = 0}, with addition as group law. The actian x Y — Y is given by
the formula

Oy —> kle]l®r Oy, s> 68(5)eQs.

A rational pointy € Y is a fixed point for thexp-action if and only if§(y) = 0 as a section of
Oy, or equivalentlys(m,) C m, as derivatiors : Oy — Oy.

As explained in Section 1, any-torsor T yields a twisted formt” = Y A T of our
nonnormal del Pezzo surfade Note that the projections < Y x T — Y’ are universal
homeomorphisms, and we may identify pointstowith points onY’. Any such twisted form
Y’ is locally of complete intersection. Moreovesy: is antiample, and we havet(Oy:) =
h1(Oy) = 1. Whence the twisted forrii’ is another del Pezzo surface, possibly with less
severe singularities thain.

Any ap-torsor is of the formil’ = Spedk(+/A) for some scalak € k, with action given
by the derivationy/a — 1. The torsor is nontrivial if and only if € k is not a square. We
now can formulate the main result of this paper:

THEOREM 8.1. Letk beanonperfect field of characteristic two, A € k beanonsguare,
and T = Spedk(+/1) the corresponding ao-torsor. Then the twisted formY’ = Y A T isa
normal del Pezzo surface with #1(Oy) = 1. It has a unique singularity y., € Y’, which
corresponds to the point at infinity y., € Y.
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PROOF. First observe thak’ is smooth outside the curve corresponding to the reduced
singular locusC C Y. According to Proposition 6.5, the point at infinity, € Y is a fixed
point on the singular locus. The corresponding point on the twisted §§rne Y’ then must
be a singularity, by Proposition 1.8.

It remains to see what the effect of twisting is on the affine open subsetY at the
singular locus. Recall that the open subggi C V is given by the algebra[a, b, e, P~1]/
(P*?+b*+a"), and thas = P D,, compare the proof for Theorem 3.3. We first analyse the
rational pointy € Y corresponding to the origim = b = ¢ = 0. We havel(a) = §(b) =0
ands(e) = P, whence the orbiGy C Y is given by the ideala, b, ¢2). Clearly, this ideal
is generated by, b, which is a regular sequence. Now Theorem 1.5 tells usithetregular
near the point corresponding foc Y.

Next we treat the singular locus &%z outside the origin. Consider the Cartier divisor
A C Vp2 supported by the singular locus given by the ring eleneeatv? = (b2 + a%)/ P2.
This element is invariant, and we have

kla,b, e, P~Y/(P*? + b%a +a’,b?> +a®) = kla, b, e, P~/ (b? + a®, €?).

Twisting this algebra, we obtain as twisted algebrax)[a, b, P11/ (b%+a®), which defines
arational cuspidal curve over the quadratic extension fieldh). The latter is regular outside
the origin. Using Theorem 1.5 again, we conclude that the twisted forim regular on the
open subset correspondingWaz C Y.

Finally, we treat the other open sub3gs C V, which is given by

kla,b,c,c, cfl]/(b2 + a® + CPZ, %= c3) .

Here our derivation takes the forén= aD.. Again, consider the Cartier divisot C Vg
supported by the singular locus givenayWe have

kla,b,c,c'1/b%+ a® +cP?, 2 =3, ¢) = kla, b, '1/(b* + a®, ?),
and we may argue as above. The upshot is that the twistedifoisiregular outside the point
atinfinity y,, € Y. a

Itis not difficult to analyse the singularity:

THEOREM 8.2. Thesingularity y,, € Y’ isa rational double point of type A1. The
minimal resolution of singularities» : ¥’ — Y’ is obtained by blowing up the reduced singu-
lar point. The exceptional divisor E = r~1(y.,) isisomorphic to a regular quadricin P,E that
is a twisted form of the double line. The regular surface Y’ is a weak del Pezzo surface with
h(0y) = 1.

PROOF. As explained in the proof for Proposition 3.3, the complet(ﬁj;m_’yoo is the

algebraR = k[[x, v, z]1/(y2 + z%), and furthermoré = x D.. It follows that the completion
O}, is the subalgebr& k[vA, x,y,z1/(y® + z%) generated by the invariants y, z/,

wherez’ = z + +/Ax, which has defining relatiogi? = y2 + Ax2.
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Consider the blowing ugZ — Spec¢R) of the maximal idealx, y, 7). It is covered by
two charts: Thec-chart

(19) x, y/x, Z/x modulo (z'/x)?= (y/x)%x + A,
and thez’-chart
(20) x/Z, y/Z, 7 modulo 22 = (y/2)% + r(x/7)?.

The exceptional divisoE C Z is given by settingec andz’ to zero, respectively. Whence
E is covered byy/x, z//x modulo(z’/x)? = A andx/z, y/z’ modulo(x/z/)% = 1/xr. The
exceptional divisor is evidently regular, and hence the blowing Ui regular as well. Fur-
thermore, we easily infer that = r~1(y.,) is isomorphic to a regular quadric Hﬁ,f that
becomes a double line after adjoining..

We infer thater*((’));,) = 0, so the singularity is rational. It also follows that the map
HY(Y',0y)) — HY(Y', 0y, is bijective. Finally, write the relative dualizing sheaf in the
formwy, = Oy, (nE) for some integen. Using

(21) 2 =degwg) = wy(E) - E = (n+ DE?,

we conclude: = 0 andE? = —2. In other words, the singularity is a rational double point of
type A1. Moreover, we have;, = r*(wy), and hence the antidualizing sheaf f6ris nef
and big. In other words, the regular surfatds a weak del Pezzo surface. O

According to Mumford’s result [27], the only normal surface singularities over the com-
plex numbers whose formal completion are factorial are the rational double points of type
Eg (for arbitrary algebraically closed ground fields, see [24], §25). The situation is more
complicated over nonclosed ground fields.

COROLLARY 8.3. Thecompletelocal rings Oy, Vv of our twisted del Pezzo surface Y’
arefactorial.

PROOF. LetD C Y’ be a Weil divisor, and) C Y’ be its strict transform. The excep-
tional divisor E C Y’ carries no invertible sheaf of degree one. Rather, it is a cyclic group
generated by the invertible she@f: (E), which has degree two. Writ® - E = 2n for some
integern. Then(D +nE)- E = 0. This implies that the invertible shedf= O;,(D +nE) is
trivial on the formal completion along, becaus#/1(Y’, O,,r) = O for all integersn > 0. It
follows that the coherer®y/-moduler, (L) is invertible. Therefore, the Weil divisd c Y’
must be Cartier. The same argument applies for formal Weil divisors ortsp%(;). O

9. Fano-Mori contractions. We now use the results of the preceding section on del
Pezzo surfaces over nonperfect ground fields to construct some interesting Fano-Mori con-
tractions of fiber type over algebraically closed fields. Let us now work, for simplicity, over
an algebraically closed ground fietdf characteristic two.

Choose an abelian varie#/ with a-numbera(A) > 1. This mean that there exists at
least one embedding C A’, and in turn arxp-action on the abelian variety via translations.
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In dimension one, for example, we could choose a supersingular elliptic curve with Weier-
strass equation of the forn? + y = x2 4+ asx + ae, With action given by the derivation

x — 1,y = x4+ a4. Note that in characteristic two, all supersingular elliptic curves are iso-
morphic. The quotiend = A’/a> is again an abelian variety, and the quotient map> A

is a purely inseparable isogeny of degree two.

We now fix once and for all an embedding c A’ and consider the corresponding
ap-action onA’ via translations. LeY be the nonnormal del Pezzo surface constructed in the
preceding sections. We assume that the glueing polynafnisleven, such that we have the
global vector fieldd = P D, corresponding to aaz-action onY. The productZ’ =Y x A’
carries the diagonal action, and we may take the quoffert a2\Z’. The projectionf’ :

Z' — A’ induces a projectiorf : Z — A. To understand its fibergpnsider the function
fields K’ = k(A’) andK = k(A). ThenK C K’ is a purely inseparable quadratic field
extension, and hence of the forki = K (+/A) for some nonsquare € K. We may view
T = SpecK’ as anuz-torsor overk .

ProPOSITION 9.1. The generic fiber Z,, of the projection f : Z — A isthe twisted
formYx A T, whichisanormal del Pezzo surface. For all closed pointso € A, the fiber Z,
isisomorphic to the nonnormal del Pezzo surface Y.

PROOF. Taking quotients by free group actions commutes with arbitrary base change.
Given a pointo € A with residue fieldc = « (o), andT C A’ be its preimage. Making base
change with respecttb — A, we see that the fibef,; is the quotient ol xspeq«) T by the
diagonal action, so th&, = Y, A T. If o is a closed point, the torsdr is trivial, and hence
Z, =Y. If o is the generic point, then the torspris nontrivial. According to Theorem 8.1,
the twisted form is then normal. O

The point at infinityys, € Y is invariant under thes-action. Whence it defines a section
s : A — Z,whose image is the quotient pf.} x A’ by the diagonal action.

PROPOSITION 9.2. The scheme Z isnormal and locally of complete intersection. The
reduced singular locus of Z equals the image of the section s(A) C Z.

PrROOF. The morphisny : Z — A is flat, because the compositiail — A is flat and
the quotientz’ — Z is faithfully flat. The based and all fibersz, are locally of complete
intersection, whencg is locally of complete intersection.

According to Theorem 8.1, the singular locus of the generic fiber(is},. It follows
thats(A) C Sing(Z). The translation action o’ on Z’ = Y x A’ via the second factor
commutes with the diagonab-action, whence induces an action4obn the quotienZ. For
any closed point € Z, the induced magf : Az — A is surjective. Using that the singular
locus is invariant under this action, we infer that Sy C s(A). In particular,Z is regular
in codimension one. It follows that is normal. m|

PROPOSITION 9.3. Theblowingup r : Z — Z with center the reduced subscheme
s(A) C Zisaresolution of singularities. The singularities of Z are canonical.
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PrROOF. According to 8.2, the generic fibé,7 is regular. Moreover, thd-action onZ
leaves the center of the blowing wpA) C Z invariant, and hence the action extends to the
relative homogeneous spectr@n: Proj (®(Z"/7"t1)), whereZ ¢ O denotes the ideal
of the center. We now may argue as in the preceding proof and infeZthmist be regular.

Let E C Z = r~1(s(A)) be the exceptional divisor. It must be flat over the base of the
projectionZ — A because it carries an-action. The relative dualizing sheapfz/z is of
the formO; (nE) for some integer, which is called thediscrepancy for the resolution of
singularities. The singularities on the threef@dre calleccanonical if n > 0. According to
(21), we haver = 0, and henc¢ is canonical. ]

Recall that a morphism of proper normal schefhe V. — W is called aFano-Mori
contraction if Oy — f.(Oy) is bijective, the total spac¥ is Q-Gorenstein, andy; is
f-ample.

PROPOSITION 9.4. Themorphism f : Z — A isa Fano-Mori contraction. The Oy4-
module R £, (©) isinvertible and commutes with base change.

PrRooF For all closed pointa € A, we haveZ, = Y, and hencézo(OZa) = 1 and
hZ(OZa) = 0. If follows that the canonical ma@@, — f.(Oz) is bijective, and that the
coherent ,-moduleR? £, (Oy) is locally free, of rankhl(Oza) = 1.

By Proposition 9.2, the schen#is Gorenstein. LeC C Z be an integral curve, and
C’ C Z' be its preimage. We have; ® Oz = pr;(wy). If follows thatC - wz < 0, with
equality if and only if the induced map : C — A is finite. Summingupf : Z — Aisa
Fano-Mori contraction. O

10. Mapsto projective spaces. We now return to our nonnormal del Pezzo surface
Y. In this final section we study maps to peofive spaces, which are defined in terms of
semiample invertible sheaves. The upshot will be that it is not possible to deiiina simple
way as a hypersurface in projective space, or a finite covering of projective space. Obviously,
the same then holds for twisted forfis=Y A T.

The various geometric properties of invertible sheave @an be nicely expressed in
terms of degrees.

THEOREM 10.1. Aninvertible Oy-module £ # Oy of degreed = deg L) is:
(i) semiampleifandonlyifd > O;

(i) ampleifandonlyifd > 1;

(iii) globally generated if and only if d > 2;

(iv) veryampleifandonlyifd > 3,

PrROOF. For this we may assume that the ground fielg algebraically closed. We
already proved assertion (ii) in Proposition 4Qoncerning (i), recall that semiampleness
means that some tensor power is globally generated. Suppdsesemiample. Then the
restrictionL¢ is semiample as well, and hende> 0. Conversely, suppose> 0. If d > 1,



318 S. SCHROER

thenc is ample, and it/ = 0, then the sheat®? is trivial by the exact sequence (14). In both
cases’ is semiample.

Next, we prove (iii). Suppose thdt is globally generated. Then the restrictiGg to
the cuspidal curve of arithmetic genps = 1 is globally generated as well, and this implies
thatd > 2 by Lemma 10.3 below. Conversely, suppose the degrée=s2. Decompose
L=L1®- - Q Ly into a tensor product of invertible sheaves of degree one. According to
Proposition 5.1, we have®(£;) = 1, whence there are unique Cartier divis@fsC Y with
L; = Oy (Cy). It follows that the base locus dfis contained irUle C;. The exact sequence
0— L(—-C;) - L - L¢; — Oyields an exact sequence

HO(Y, £) - HO(C;, Lc) — HY Y, L(—C))).

The term on the right vanishes by Proposition 5.1, becdl(seC;) has degreel — 1 >
1. To finish the argument, it suffices to check tlfa is globally generated. According to
Proposition 5.4, th€; are isomorphic to the rational cuspidal curve with= 1. By Lemma
10.3 below L, is globally generated.

It remains to prove (iv), which is the most interesting part. Suppose firsitlimvery
ample. Then the restrictiofic is very ample as well, and this impligs> 3 by Lemma 10.3
below. Conversely, suppoge> 3. LetA C Y be an Artin subscheme of length two. We
have to show thati®(Y, £) — H®(A, L,) is surjective. The idea is to use Cartier divisors of
degree two.

Let A be an invertibleDy-module of degree two. We already saw thatis globally
generated, whence defines a morphiggn: ¥ — P2. The image-\r(A) C P? is an Artin
scheme of lengtks 2, and henceV” has a nonzero global section whose zero schBrne Y
containsA. The exact sequence-8 L(—D) — L — Lp — 0 yields an exact sequence

HOY, £) — HYD, Lp) — HYXY, L(-D)).

The term on the right vanishes by Proposition 5.1, bec#liseD) has degree- 1. Hence it
suffices to show thati%(D, £p) — HO(A, L) is surjective.

Now suppose for a moment thay ® N®? # £ and thatr(A) ¢ P? has length one.
Using the latter, we see thaf has another nonzero section whose zero schBme Y
having no irreducible component in common withand containingd. SetA’ = DN D'.
ThenA c A’, and the inclusiom’ C D is Cartier. The exact sequence9 Lp(—A") —
Lp — L — 0yields an exact sequence

HOD, Lp) — HY%A', Lo) — HND, Lp(—A)).
The term on the right sits inside the exact sequence
HY\ Y, LQNY) — HYD, Lp(—=A")) — H2Y, LR N® 2.

In this sequence, the term on the left vanishes by Proposition 5.1, since we hagexleg
NY) < 0. The term on the right is Serre dual&? (Y, M), whereM = wy @ L2~1 Q N'®2,
This sheaf has degree-3d, and hencé?%(Y, M) vanishes fodl > 3. In the boundary case
d = 3 we also havéf°(Y, M) = 0, because we are presently assumingdha® N'®? £ L.
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Combining these observations, we see that the restriction ¥4y, £) — HC(A, L4) is
surjective.

To complete the proof, we now may assume that for all invertible shesivetdegree
two with wy ® N'®2 £ £ the imagern/(A) C P? has length two. Our goal now is to find a
global section off whose zero scheme intersegtbut does not contaid. This implies that
HO(Y, £) — HO(A, L,) is surjective, because we already know thas globally generated.
By our assumption, for any of degree two withvy ® N'®? £ £, we find a global section
of A/ whose zero schem@ C Y intersectsA but does not contaid.

We now have to distinguish the cases that deg L) is even or odd. | only go through
the case that = 2m + 1 is odd, the even case being similar. Choose a Cartier difisar Y
of degree two disjoint fromi. The equation of invertible sheavés~ N ((m — 1)D’ + E)
defines an invertible shed@y (E) of degree one. SincB°(Y, Oy (E)) = 1, the effective
Cartier divisorE C Y is also unique. Now note thai C Y is the image of a lind. C
P2, and that the restriction mali%(Y, Oy (E)) — H9(C, O¢(E)) is bijective, according to
Proposition 5.2. From this we infer that there is at most one invertible sheaf of degree one
Oy (E) with A C E. So tensoring\V” with some general numerically trivial invertible sheaf,
we may assume that ¢ E. If A is disjoint fromE, thenD + (m — 1) D’ + E is the desired
Cartier divisor representing that intersect but does not contain If A N E is honempty,
we simply replace by a linearly equivalent Cartier divisor disjoint forAy and conclude as
above. O

Suppose that the invertibldy -moduleL is globally generated. In other words, its degree
isd >2.Setn =d(d+1)/2—1, and let, : Y — P" be the resulting morphism defined by
L.

COROLLARY 10.2. Ifd = 2, then the morphismr, : Y — P2 isflat, surjective, of
degree four, and all fibers are Artin schemes of complete intersection. There is no surjection
to the projective plane of smaller degree. If d = 3, then r, is a closed embedding Y ¢ P®.
Thereis no closed embedding into any projective space of smaller dimension.

PROOF. Supposel = 2. The morphism, : ¥ — P? s flat becaus& is Cohen-
Macaulay andP? is regular ([35], page IV-37, Proposition 22). The other statements follow
immediately from Theorem 10.1. |

In the course of the proof for Theorem 10.1, we used the following facts.

LEMMA 10.3. Let C betherational cuspidal curve of arithmetic genus p, = 1, and
L # Oc¢ bean invertible Oc-module of degreed. Then £ is globally generated if and only if
d > 2,and very ampleif and only if d > 3.

ProoF. Of course, we may assume that the ground ftelslalgebraically closed. The
arguments are similar to the case of elliptic curves. The problem, however, is that some Weil
divisors onC are not Cartier.



320 S. SCHROER

Let us first prove that the numerical conditions are necessary. Suppogeishgipbally
generated, sd > 0. The casel = 0 is impossible, becausé is nontrivial by assumption.
Henced > 1, and the usual argument give4C, £) = d. The invertible sheaf is ample,
whence the morphism; : C — P?~1 s finite, and thereford > 2. If, furthermore L is
very ample, we must havé > 3.

The converse is more interesting. Suppdse 2, and lety € C be any closed point,
which is a Weil divisor of length one. | claim that there is a Cartier divioc C of degree
at most two that containg and hasC % O¢ (D). Suppose this for the moment. The short
exact sequence® L(—D) — L — Lp — 0yields an exact sequence

(22) HOC, L) — HYD, Lp) — HYXC, L(-D)).

The term on the right is Serre dual #°(C, £Y (D)). The invertible sheaf" (D) has degree
n <2—d <0, andinthe case = 0 is nontrivial. Whence it has no global section, and it
follows thatL has a section that does not vanisly at

Let us now verify the claim. There is nothing to proveyife C is contained in the
regular locus. So let us assume that it is the singular point, and @fite = k[[u?, u®]). For
any scalan < k, the element:? + Au® defines a Cartier divisaP, c C of length two with
supporty.

Finally, suppose that > 3. LetA C C be a closed subset of length two. We have to
see that the restriction map®(C, £) — H®(A, L£,) is surjective. It follows from the above
that there is a Cartier divisdp C A of length four containingd, and withL % O(D). In the
cased > 4, one proceeds easily as above to see Y, £) — HO(A, L£,) is surjective.
Ford = 3 we argue as follows: We havé(C, £) = 3, and we already know that is
globally generated, hence there is a finite morphism C — P2, which does not factor over
alineP! c P2. Whence is birational onto its image, (C), which must be a cubic. Any
cubic has arithmetic genys, = 1. SinceC also has arithmetic genys, = 1, the birational
morphismr,. must be an isomorphism. ]
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