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Abstract. We obtain the topological configurations of the lines of curvature, the as-
ymptotic and characteristic curves on a cross-cap, in the domain of a parametrisation of this
surface as well as on the surface itself.

1. Introduction. Given a surface patch parametrisedryl ¢ R? — R3, Whitney
showed that can have a stable singularity under smooth changes of coordinates in the source
and target. A local model of this singularity is given by, y) — (x, xy, y2). The image of
this map is a singular surface called a cross-wap surface with a pinch-point. (The zero
set of the functiorZ X2 — Y2 = 0 is the union of a cross-cap together with a “handle" and is
called a Whitney umbrella.)

Because the cross-cap is a stable singular surfaed, iinis natural to seek to understand
its differential geometry. Work in this direction was carried outin [12, 20, 22, 40]. In[12] (see
also [40]) the flat geometry of the cross-cap is investigated using singularity theory. Itis shown
for instance in [12] that there are generically two types of cross-caps, one labelled hyperbolic
cross-cap where all non-singular points of the immersed surface are hyperbolic, and the other
labelled elliptic cross-cap where the parabolic set consists of two smooth curves meeting
tangentially at the singularity and partitionsetburface into hyperbolic and elliptic regions.
This classification turned out to be very useful when seeking to understand the projections of
smooth two dimensional surfacesmf to 3-spaces [31].

We study in this paper pairs of geometric foliations of a cross-cap. There are three clas-
sical pairs of foliations defined on a smooth oriented surfdce R3. These are the lines of
curvature and the asymptotic and characteristic curves. A line of curvatureisfa curve
whose tangent line at each point is parallel to mgipal direction. The lines of curvature
are defined everywhere on the surface ardifan orthogonal net away from umbilic points.
Their configurations at umbilics were drawn by Darboux, but a rigorous proof is given in [34]
and [5] (see also [30] for related results). Thedy of the behaviour of these foliations in a
neighbourhood of a closed orbit is also carried out in [34].

An asymptotic curve oM is a curve whose tangent line at each point is parallel to an as-
ymptotic direction. The asymptotic curves are defined in the closure of the hyperbolic region
of the surface. They form a family of cusps at angec parabolic point. Their configurations
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at a cusp of Gauss are given in [1, 2, 29] and a more general approach for studying the singu-
larities of their equation at such points is given in [14, 15, 30, 38]. Global properties of these
foliations including the study of their cycles are given in [23].

Characteristic directions are defined in the closure of the elliptic region. At elliptic points
there is a unique pair of conjugate directions for which the included angle is extremal ([19]).
These directions are called the characteristieations and their integral curves are called the
characteristic curves. Their study is carried matependently in [11] and [21]. In [21] they
are labelled harmonic mean curvature lined are defined as curves along which the normal
curvature iskK /H, wherek is the Gauss curvature aiflis the mean curvature.

When the surface is given in a parametrised form, in the domain of the parametrisation,
the above three foliations are the solution curves of some binary differential equations (BDES),
also called quadratic differential equations. BDEs are implicit differential equations that can
be written, in a local chart, in the form

1) a(x, y)dy? + 2b(x, y)dxdy + c(x, y)dx?> = 0,

where the coefficients, b, c are smooth functions (here smooth me@ri®). A BDE defines
no directions wheré = (b2 — ac)(x,y) < 0, two directions in the region whete > 0,
and a double direction on the sat= {§ = 0} provided that the coefficients of the equation
do not all vanish at a given point. At such points, every direction is a solution. The set
A is called thediscriminant of the equation. BDEs are studied, using various approaches, in
[5,6,8,9, 10, 13-18, 25-28, 30, 35, 36, 38]. The solutions of (1) determine a pair of foliations
Fi,i =1,2,inthe regiors > 0. In this paper, the configuration of the solutions of (1) refere
to the triple{A, F1, F2}. In all the figures, we draw one foliation in black and the other in
grey, and the discriminant in thick black.

In this paper we obtain the local topological configurations of the lines of curvature and
of the asymptotic and characteristic curedsa cross-cap. We do this in two steps. Given a
local parametrisation : R2, 0 — RS2, 0 of the surface, we first ofin the configurations of
the pairs of foliations in the domain. These are given by BDEs with coefficients all vanishing
at the origin. We obtain in Section 3 a topological classification of BDEs with coefficients
vanishing at the origin and whose discriminant has the sirsengularities as those of the
geometric foliations on the cross-cap. The topological models are obtained by extendending
Guifiez’s blowing-up technique [25, 26, 27] to cover the cases where the discriminant is not
an isolated point.

Mapping the foliations to the surface is thesed step. This is trivial for smooth surfaces
as the parametrisation is a diffeomorphism from the domain to the image. However, this is
not the case for the cross-cap. Here we need to analyse how the leaves of the foliations in the
domain intersect the double point cur®e There is an involutiom on D that interchanges
points with the same image underWe show in Section 2 that if a leaf interse@sn two
points, then generically these are not mapped to the same pointThyis allows us to draw
the pairs foliations on the cross-cap (Section 2).

I would like to thank Evaggelia Samiou for usefull discussions.
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2. Classical BDEson acrosscap. Letg : R?, 0 — R3 0 be a germ of a smooth
mapping. If we allow smooth changes of coordinates in the source and target (i.e., consider
the action of the Mather groug), then f has a local stable singularity if and only if it is
A-equivalent tof (x, y) = (x, xy, y2). We shall follow the notation in [12] and define a
cross-cap as the image of any map-gernR?, 0 — R3, 0 that is.A-equivalent tof, and say
thatr parametrises the cross-cap.

Given a smooth surfac# in R® with a family of normalsN, we have a Gauss map
N : M — S2. Ata pointp, the map—dN(p) : T,M — Ty(»S? can be thought of
as an automorphism df, M. This is the classical shape operasyy, or simply S. If M is
parametrised by(x, y) with shape operatas$, the coefficients of the first fundamental form
lp: TpyM x TyM — R, with | ,(u, v) = u - v, are given by

E=ry-ry, F=rc-ry, G=ry-1,.

Those of the second fundamental forp T, M x T,M — R, with Il ,(u, u) = S, () - v,
are given by

l =S(rx)'rx =N Ty,

m=S(ry) - ry = N - Fxy,

n=_S8ry) -ry=N- Iyy.
When considering the cross-cap singularitg, mun into a problem as there is no well defined
normal to the surface at the singular point. Away from the cross-cap point, the unit ngrmal
is given byN =r, x ry/||r,x x ry||. However, the equations of the principal, asymptotic and
characteristic directions are homogeneous in, n (see below), so we can multiply them by
an appropriate power ofr, xr,||, alternatively, replack m, n respectively in their equations,
by
(2 Iy = (re Xry)rxx, m1=(rx Xry)ryy, n1=Fx Xry)ryy.

The flat differential geometry of the cross-o@e., the geometry captured by its contact
with lines and planes) is explored in [12] and [40], using singularity theory. It is shown there
that the surface can locally be parametrised (after smooth changes of coordinates in the source
and isometries in the target) by

(3 r(x,y) = (x,xy + p(y), Ax% + puxy + y? + q(x, y)) .,

wherep(y) andg(x, y) are germs of functions with zero 2-jets andu are constants. We
shall write
JAp(y) = p3y3 + pay*.
73q(x, y) = gaox® + g31x%y + g3oxy? + g33y®,
where the notatiorif ¢ means thé-jet of the mapy, thatis, its Taylor polynomial of ordérat
the origin. We use the above parametrisation of the cross-cap when seeking the configurations
of the integral curves of the BDEs of interest.

REMARK 2.1. Itis shown in [4] that the right fraework for studying the singularities
of the discriminant is via the action of some grdupn families of symmetric matrices. A list
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of all theG-simple singularities of families of symmetric matrices is obtained in [4]. However,
some of the singularities of the discriminant in this paper aregasimple. So we refere to
these singularities by thel¢-type. (See [41] for the singularity theory concepts.)

2.1. Asymptotic curves. The equation of the asymptotic directions of a smooth sur-
face is given by

ndy2 + 2mdydx + ldx?>=0.
For a cross-cap, we take the equation to be
nldy2 + 2midydx + lldx2 =0,

wheren1, [1, m1 are as in (2).

The configuration of asymptotic curves is affine invariant ([12]), so we can use affine
changes of coordinates in the target and setltital parametrisation of the surface in the
form

rx,y) = (x,xy+ p(y), Y2+ ex’+q(x,y), e==1.

The discriminantd = §71(0) = (m? — l1n1)~1(0) is the parabolic set. The function
8 has anAs-singularity (i.e., it is.A-equivalent tax? + y2). Whene = —1, the singularity
is of typeAir so the parabolic set is an isolated point. Then every non-singular point on the
surface is hyperbolic, and the cross-cap is labéthgmbrbolic cross-cap in [12]. In this case,

West showed in [40] that the BDE of the asymptotic directions in the domain is topologically
equivalent toydy? 4+ 2xdxdy — ydx? = 0 (Figure 1, left).

Whene = +1, the parabolic set has a7 -singularity in the domain (a pair of transverse
curves). These are mapped to two smooth curves intersecting tangentially at the cross-cap
point ([40]). This cross-cap is labelled parabolic cross-cap in [12]. We shall labell it here
dliptic cross-cap and call, as in [31], a parabolic @s-cap the one whose discriminant has
an Az-singularity. (A change from an elliptic to a hyperbolic cross-cap occurs at a parabolic
cross-cap.) The asymptotic curves are defined in the closure of the hyperbolic region. To
determine their configurations, we proceed as follows.

The coefficients of the asymptotic BDE are given by

(4) (a,b,c) = (x + Mi(x,y), =y + Ma(x, y), x + M3(x, y)),
whereM;, i = 1, 2, 3, are smooth functions depending p¢y) andg (x, y) (in (3)), and
J2M1 = g32x® + 3q33xy — 3pay?,

1 3
-2 2 2
My = —qz1x“ — -¢q ,
J 2 2 31 2 33y

J*M3 = 3q30x? + ga1xy + 3p3y”.
We can therefore apply the results in Sectioh &1d Theorem 3.1 to deduce the topological

models of the asymptotic curves in the ganeter space. (The change of varialilesy) +—
(y, x) is required to get the same normal forms as in Section 3.1.) The genericity conditions



PAIRS OF GEOMETRIC FOLIATIONS ON A CROSS-CAP 237
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FIGURE 1. Configurations of the asymptotic curves in the domain: hyperbolic cross-
cap left, elliptic cross-cap centre and right.

in Section 3.1 A1 # 0 andA # 0) are now expressed in terms of the coefficients of the
Taylor expansions op(y) andg (x, y):

A1 = —1/2(9g30 + 5931 + q32 — 333+ 6p3) # O,
Az = 1/2(9930 — 5931 + g32 + 3933+ 6p3) # 0.

PROPOSITION 2.2. The equation of the asymptotic curvesin the domain of a parame-
trisation of a cross-cap is topologically equivalent to one of the following.
1. Atahyperbolic cross-cap ([40]): ydy? + 2xdxdy — ydx? = O (Figure 1, lft).
2. Ataneélliptic cross-cap:
(i) ydy?+ 2(—x + y?dxdy + ydx> =0 (Figure 1, centre), or
(i)  ydy?+ 2(—x + xy)dxdy + ydx?> =0 (Figure1,right).
The topological type is completely determined by the 3-jet of the parametrisation of the
surface.

The configurations of the asymptotic curves in Figure 1 are in the parameter space. We
need now to map them to the surface. When thdage is parametrised as in (3), the 3-
jet, at the origin, of a parametrisation of the double point curve in the domain is given by
(—pay2 — pa(—up3 + q33)y°, ). (We can takex = O when dealing with the asymptotic
curves.) In particular, this curve is transserto the two branches of the parabolic set when
the later has ad | -singularity. We observe that the double point curve lives in the hyperbolic
region of the surface (see [40]).

There is one separatrix in the case of a hyperbolic cross-cap and three at an elliptic cross-
cap. (Here, a separatrix is a curve in the patars space which is the blowing-down of a
stable/unstable or centre manifold of the fields associated to the BDE in Section 3. This is
an abuse of notation as these separatrices, in some cases, do not separate distinct sectors.)
The 3-jet, at the origin, of a parametrisation of the unique separatrix at a hyperbolic cross-
cap and of the separatrix transverse to the parabolic set at an elliptic cross-cap is given by
(—p3y? + 1/5(3q33p3 — 8p4)y3, y). Therefore this separatrix and the double point curve
have generically a 3-point contact at the origin. The image of the above separatrix Unader
a cusp at the cross-cap point (see Figures 2 and 4).

Mapping the solution curves in the parameter space to the surface can be done without
difficulties in the elliptic cross-cap case. In the parameter space, a solution curve of the as-
ymptotic BDE intersects the double point curve in at most one point in a neighbourhood of
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FIGURE 2. Configurations of the asymptotic curves at an elliptic cross-cap, in the do-
main left and on the surface right. The thick curves are the parabolic set and
the double point curve.

the origin (Figure 2, left). One can then maptlire appropriate way, the configuration in each
hyperbolic region in the domain to the surface, as shown in Figure 2.

PROPOSITION 2.3. The configurations of the asymptotic curves at an elliptic cross-
cap are as shown in Figure 2.

A regular solution curve of the asymptotic BDE of a hyperbolic cross-cap intersects the
double point curve at two points in a neighbourhood of the origin (Figure 3(a)). The question
is whether or not these two points map to the same image on the surface.

There is an involutions on the double point curve in the parameter space that inter-
changes two points with the same image on tiege. This involution is smooth in a neigh-
bourhood of the origin.

The BDE of the asymptotic curves determines a pair of foliatibhsi = 1, 2, in the
parameter space. In turn, each ftba determines an involutiosy, i = 1, 2, on the double
point curve which interchanges the two points of intersection of a leaf of the foliation with the
double point curve. (We defing(0) = 0.)

The seiC; of germs of mapping®?, 0 — R3, 0is endowed with the Whitney topology.
The subset; C szs of germs of parametrisations of hyperbolic cross-caps is given the
induced topology.

THEOREM 2.4. For an open and dense set of parametrisations of hyperbolic cross-
caps, 7;(p) # o(p), i = 1,2, for any point p # (0, 0) on the double point curve in a
neighbourhood of the origin. As a consequence, the configuration of the asymptotic curves at
a hyperbolic cross-cap is as shown in Figure 3.

PROOF. The equation of the asymptotic curves has a unique separatrix at a hyperbolic
cross-cap (see for example [8]). This curve is smooth and for a surface parametrised as in (3),
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FIGURE 3. Configuration of the asymptotic curves at a hyperbolic cross-cap, in the
domain (a) and on the surface (b), (c), (d) viewed from different directions.
The thick curve is the double point curve.

it is given locally by the graph of a function= 4 (y). The function: satisfies the following
identity
a(h(y), y) + 2b(h(y), Y)I' () + c(h(y), Y)I' (»)* =0,

where(a, b, ¢) are as in (4).
We seek changes coordinates in the form= X + f(Y), y = Y so that the unique
separatrix is along thg-axis. The new BDE is given by

(5) A(X,Y)dY? +2B(X,Y)dXdY + C(X,Y)dX?> =0,
with
A(X,Y) =a(X+f(Y),Y)+2b(X+f(Y),Y)f’(Y)+C(X+f(Y),Y)f/(Y)2,

B(XX,Y) =b(X+ f(Y),Y) +c(X + f(X), ) f(Y),
CX,Y)=cX+ f(Y),Y).

The unique separatrix is along threaxis if and only if A(0, Y) = 0. So we takef (Y) =
h(Y), with h as above. A calculation shows th&tf (Y) = —pa¥?2 + 1/5(3¢3ap3 — 8pa)Y3.
In this new system of coordinates the double point curve is given by

8 3
X=¢Y)= g(-(]ssps + pa)Y° +hot.

The horizontal direction is a solution of the BDE along a smooth cdngiven by
C(X,Y) = 0. A calculation shows thdt is the graph of a function

3
X = —2p3¥? — £(q33P3 + 4py)Y3 +hot.
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Given a point(0, ¢) (¢ # 0) on theY-axis, there is a leaf of, say;1 that passes transver-
sally through(0, ¢) for + < 0 and a smooth leaf gf» that passes transversally throu@hr)
fort > 0. We shall consider only the foliatiaf; as the approach is the same .

Let y; denote the leaf ofF1 passing throughiO, 7), t < 0. This curve intersects the
X-axis at two points. Denote by (¢) the positive point.

The foliationF; is given by the direction field parallel to the vector figld= ad/0x +
(b + ~/b% — ac)d/dy. The polar blowing-upc = p cosd, y = p siné of &; yields a regular
vector fieldn; for (8, p) € [—n/2,0] x [0, 1), with [ a small positive real number. So the
mapk : —m/2 x [0,11) — 0 x [0, I) determined by the flow af1 is smooth and’(0) # 0
(herel; andl, are appropriately chosen small positive real numbers). Blowing-down yields
U(t) = k(t), soU (¢r) depends smoothly anandU’(0) # 0. Thereford/ (¢) = ¢ (u + L(t)),
for some non-zero scalarand a smooth functioh vanishing at = 0.

In the new system of coordinates, the involutien= (o1, 02) takes a pointp; =
¢Y),Y) toapr = (01(p1), 02(p1)), With o2(p1) = —Y (1 + ¥(Y)), for some smooth
function¥ vanishing at the origin. We want to show thetp1) # t1(p1) (Figure 4).

The double point curve intersect the leaf in consideration in two pgintand! (see
Figure 4). For generic cross-caps, the double point curve has a genuine inflection at the origin
(p4 — p3g33 # 0). We assume, without loss of generalitiyat the double point curve is as in
Figure 4, that isps — p3g33 > 0; the other case is similar.

tu+ L) x

I=1(pD

g2 = o(q1)

p2 =a(p)

FIGURE 4. Involutions on the double point curve.
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Consider the poing; = (¢ (Y1), Y1) on the double point curve with -coordinatel/; (¢).
Thenoa(q1) > o2(p1). We haver(u + L(1)) = ¢(Y1) implies Y1 = tY3k(r), for some
function k smooth off the origin, continuous at the origin and wit{®) # 0. (In the above
setting,k(0) < O, Figure 4.)

Now 02(q1) = —13k(t)(1 + W (tY3k(1))), and therefore(q1) < ¢ for t small. But
as the graph of the leaf in consideration is strictly decreasing fer 0, theY -coordinate of
[ = 7r1(p1) is bigger tharr, hencd is distinct fromgz, and therefore is distinct frompy.

In the above calculations we assumesgl # 0 and—g33p3 + pa # 0 (we also need
A1/ # 0 for the topological models in the domain). So the subset of parametrisations of
cross-caps satisfying these conditions is open and derigge.in O

2.2. Lines of curvature. The equation of the principal directions of a smooth surface
is given by
(Fn — Gm)dy? + (En — Gl)dydx + (Em — Fl)dx? = 0.
For a cross-cap, we take the equation to be
(Fny — Gm1)dy? + (Eny — Gly)dydx + (Em1 — Fl1)dx? =0,

whereni, I1, m1 are as in (2). When the surface is parametrised as in (3), the coefficients of
the principal directions BDE at a cross-cap are given by

(a,b,c) = (Mi(x,y), x + Ma(x,y), =2y + M3(x, y)),
whereM;,i = 1, 2, 3, are germs of smooth functions dependingpaandg, with

7M1 = Bux® 4+ AL+ p® + 20x%y + 12uxy? + 82,

J2Mp = q3x® + 3(g33 — up3)xy — 3pay>,

J2M3 = g31x% + 3(up3 — g33)y°.

We can make changes of coordinates (see for example the proof of Proposition 3.2) in
the source and write the 3-jet of the coefficients of the BDE in the form

13
(b, c) = (—4y3, — 5%+ 5pay?+ By, y) :

where 8 is a constant depending on the coefficients of the monomials in the 4-jet of the
parametrisation of the surface. We can therefuse the results in Section 3.2 and Theorem
3.3 to deduce the following.

PROPOSITION 2.5. Theeguation of the lines of curvature in the domain of a paramet-
risation of a cross-cap is topologically equivalent to

—y‘r”dy2 —xdxdy + ydx2 =0.
See Figure 5(a) for illustration.

REMARKS 2.6. 1. The resultin Proposition 2i$also obtained in [22] by studying
directly the equation of the lines of curvature.
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2. Proposition 2.5 shows that, for any surface with a cross-cap point, the singularity of
the BDE of its principal directions is locally an isolated point. Therefore, there is no sequence
of umbilic points on the smooth part of the surface that converges to the cross-cap point. (I
would like to thank Masaaki Umehara for asking the question that led to this remark.)

We investigate now how the configuration of lines of curvature in the domain is mapped
to the cross-cap. We first observe that there three separatrices in this case. When the
surface is parametrised as in (3), one separatrix has a horizontal tangent and is given by
y = —(1/2)g31x2 + h.o.t. and the remaining two have a vertical tangent and are given by
x = ojy?+h.ot., i = 1, 2, wherey; are the roots of the quadratic equatich+3pza—2 = 0.
These last two separatrices are tangent to the double point curve gives bypay?+h.o.t.

We observe that the double point curve is between the two separatrices.

The equation of the principal curves determines a pair of foliatibnsi = 1,2, in
the parameter space. In turn, eachdion determines an involution;, i = 1, 2, on the
double point curve which interchanges the two points of intersection of a smooth leave with
the double point curve, see Figure 5 (a). (We defirig) = 0.)

THEOREM 2.7. Wehavert;(p) # o(p),i = 1,2,for p # (0, 0) on the double point
curve in a neighbourhood of the origin. As a consequence, the configuration of the lines of
curvature on a cross-cap isasin Figure 5.

PrROOF. The double point curve is given by= h(y), for some smooth functioh with
a zero 1l-jet. We re-parametrise the surface by taking X + 4(Y), y = Y. In the new
coordinate system (that we still denote @y y)), the double point curve is along theaxis.
We denote bya, b, ¢) the coefficients of the lines of curvature BDE in this new coordinates

(©

() (b)

FIGURE 5. Configuration of the lines of curvature at a cross-cap, in the domain (a) and
on the surface (b), (c), (d) viewed from different directions. The thick curve
is the double point curve.
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system. We have

j%a(x,y) = —4paxy,
j2b(x, y) = x + q32x® + (—3ups + 3g33)xy
j2E(x, y) = =2y 4 g31x° + (3ups — 3¢33)y°.

Given a point(0, 7), ¢t # 0, on theY-axis, there is a smooth leaf say Bi that passes
through this point and another %. We shall consider the foliatiaf; as the approach is the
same forF,.

We consider the polar blowing up= p2cos, y = p sind of the direction field parallel
to& = ad/dx + (b + v/b% —ac)d/dy, which is tangenty. The resulting field); is regular
for (0, p) € [—7/2, /2] x [0, 1), with [ a small positive real number. So the miapn/2 x
[0,11) — —m/2 x [0, l2) determined by the flow o1 is smooth and’(0) # 0. Blowing
down yieldsri () = —k(7).

The involutions on the double point curve is given ay(t) = 1 (—1+ ¥ (¢)) for some
smooth function? with ¥ (0) = 0. We shall show that; (0) # ¢’(0).

We seek changes of coordinates of the farm X+ Y f(X), y = Y, so that the direction
determined is vertical on theX-axis. The new BDE is given by

(6) A(X,Y)dY?+2B(X,Y)dXdY + C(X,Y)dX? =0,
with
AX,Y)=aX+Yf(X),Y)+ 2b(X + YF(X),Y)f(X)+c(X+Yf(X), Y)f(X)Z,
BX,Y) = A+ Y (X)NGBX+YF(X),Y)+ f/(X)X+Yf(X),Y)),
C(X.Y) =1+ Yf(X)?E(X + Yf(X).Y).
So we need the coefficient gi? to vanish whery = 0, that is,
A(X,0) + 2B(X,0) f(X) + C(X,0) f%(X) = 0.

We can factor oufX, and since B(X, 0)/X)(0, 0) £ 0, it follows (by the implicit function
theorem) that there exists a germ of a smooth funcfiahat solves the above identity. A
calculation shows that

1 1
X)) = —2uX? + <<5u2 — 2+ E) q31— 3Mq30q31> x3.

We observe that the change of coordinates X + Y f(X), y = Y preserves th&-axis, that
is, the double point curve in the domain.

It follows from the above setting that the leaf®f through(O0, ¢) is the graph of a smooth
function X = G (Y), with sayG,(0) = 0. We can find the Taylor expansionGf(Y) in Y
for ¢ fixed by substitutingk andd X in the BDE (6). The coefficient; andaz of ¥ — ¢ and
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(Y — 1)? respectively are smooth functions given in the form

a1(t) = t(— 2,/ p3 + 1+ d1(1))

1 -
as(t) = —E(P3 +3/P3+ 1)+ B0

with &;(0) = 0,i = 1,2. We can show, by induction, that the coefficient(Bf— 1)¥, for
k > 3, in the Taylor expansion af,, is of the forms2—* (1) for some smooth functioay.
The pointr1(¢) is the solution ofG,(Y) = 0 which is distinct from¥ = ¢, that is, the
solution of
a1(t) +a2)(Y —t) + O20Y — 1) =
Thereforer; (0) = 1 — «1(0)/a2(0) = (p3 —,/p3 1/(p3+ 3,/p3 1). We haver; (0) 7&
—1=0'(0) and hence(r) # o (¢) for ¢ near the origin and # 0.

2.3. Characteristic curves. The equationlté tharacteristic directions of a smooth
surface is given by
(2m(Gm — Fn) — n(Gl — En))dy?
+ 2(m(Gl + En) — 2FIn)dydx
+ (I(Gl — En) — 2m(Fl — Em))dx?> =0,
(see for example [19, 7, 11]). These are the analogue of the asymptotic directions in the elliptic
region. (The above BDE has no solutions in the hyperbolic region.) Characteristic/harmonic

curves are studied in [19, 32, 33], and more recently in [7, 11, 21].
For a cross-cap, we take the equation to be

(2m1(Gmy — Fni) — n1(Gly — Eny))dy®
4+ 2(m1(Gl1 + Eny) — 2Fl1n1)dydx
+ (I(Gly — En1) — 2m1(Fly — Em1))dx?® = 0

whereny, [1, m1 are as in (2). There are no characteristic curves on a hyperbolic cross-cap as
all regular points are hyperbolic. We analyse the situation at an elliptic cross-cap.

When the surface is parametrised as in (3), the coefficients of the characteristic directions
BDE at a cross-cap are given by

(@,b,c) = (x®+ A(x, y), —xy + B(x, y), —2x% + 2y* + C(x, y)) ,

whereA, B, C are smooth functions depending prandg (in (3)).
We can make changes of coordinates in the source and write the 4-jet of the coefficients
(a, b, c) of the BDE in the form

(x2+(36p3+8)y*, —xy +b3(x, y) +ba(x, y), —x242y% +c1x2y + ey + caxy> 4+ eay?)



PAIRS OF GEOMETRIC FOLIATIONS ON A CROSS-CAP 245

FIGURE 6. Configurations of the characteristic curves in the domain left and on the
surface right at an elliptic cross-cap. The thick curves are the parabolic
curves.

with
c1 = —(—6A%p3 + 3hg32 + 3¢30) /A,
c2 = —(3hg33 — 3Aup3 + 3q31) /X,

andb;, i = 3,4, are homogeneous polynomial of degfehe coefficients of in b3 is
given by—6p3. So the discriminant has always &n »-singularity (which iskC-equivalent to
x* + ax?y?2 — y® with a < 0).

The constants in Section 3.3 that determine the topological type of the BDEjare
—(1/2)(he2 + VAc1) and Az = —(1/2)(he2 — ~/Ac1) with ¢1 andes as above.

We can now use the results in Themr8.6 and deduce the following.

PROPOSITION 2.8. The equation of the characteristic curvesin the domain of a para-
metrisation of an elliptic cross-cap is topologically equivalent to one of the following normal
forms.

(i) (24 y* —xy, —x2+2y% +y3)if A1A, > 0 (Figure6, top), or

(i) (24 y4 —xy, —x2+ 2y2 + xy?) if A1A2 < 0 (Figure 6, bottom).

The topological type is completely determined by the 3-jet of the parametrisation of the sur-
face.

Mapping the solution curves in the domairthe surface can be done without difficulties
in this case. As observed before, the double point curves lies in the hyperbolic region of the
surface. So one only need to map each sector of the configuration in the parameter space to
the surface in the appropriate way (as shown in Figure 6).

3. Topological normal formsof BDEs.  The three foliations in the previous section
are solution curves of binary differential equations (BDES), also called quadratic differential
equations. These are implicit differential equations that can be written, in a local chart, as in

(1).
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One approach for dealing with the qualitative study of BDEs that define at most two
directions in the plane is given in [38] (see also [14]). It consists of lifting the bi-valued
direction field defined in the plane to a single fi€ldn the surfacé/ = F~1(0) in R3. (The
vector field¢ is determined by the restriction of the standard contact féym pdx in R® to
the surface.)

When the coefficients, b, ¢ all vanish, say at the origin, all directions are solutions at
this point. One way to proceed is given in [5] where the associated surface

M = {(x,y,[e: B]) € R% 0 x RPYap? + 2bap + ca® = 0}

to the BDE is considered. The discriminant functios: b2 —ac plays a key role. Whebhas
a Morse singularity the surfadd is smooth and the projection : M — R?, 0 is a double
cover of the sef(x, y) | §(x, y) > 0} ([8]). The bi-valued direction field defined by the BDE
lifts to a single fields on M and extends smoothly to—1(0). Note that Ox RP! ¢ 71(A)
and is an integral curve &f.

Consider the affine chapt = 8/« (we also consider the chart= «/8), and set

F(x,y, p) = a(x,y)p?+2b(x, y)p +c(x,y) .

Then the lifted direction filed is parallel to the vector field
§—F8+F8 (F+F)8
T Poax pp&y * p”ap'

If we write jla = aix + azy, j1b = bix + bay, jlc = c1x + c2y, the singularities of on
the exceptional fibre are given by the roots of the cubic

#(p) = (Fx + pFy)(0,0, p)
= azp® + (2bz + a1) p* + (2b1 + c2)p + c1.
The eigenvalues of the linear part{%ht a singularity are-¢’(p) anda(p) with
a1(p) = 2(azp® + (b2 +a1) + ba) .

Itis shown in [8] (see also [24]) that whekf is smooth, we can change coordinates and write
the 1-jet of the coefficient&:, b, ¢) of the form(y, b1x + boy, +y). There are special curves

in the (b1, b2)-plane that bound open regions where the configuration of the BDE is topo-
logically constant, and the models for these configurations are given in [8]. The topological
configurations on generic points of these special curve are also determined in [36].

Another way to proceed in the study of BDEs is to consider a blowing-up of the singular-
ity. This is done in [34] for the lines of curvate BDE on a smooth surface. Guifiez [25] used
this technique on BDEs whose discriminant is an isolated point (labelled there positive qua-
dratic equations). However, we show here and in [36] that Guifiez's method can be extended
to cover general BDEs. We follow this approach to obtain topological models of BDEs whose
discriminants have the sami&singularity type as those of the asymptotic, characteristic and
principal BDEs of the cross-cap.
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Following the notation in [25], letr denote the BDE with coefficient&:, b, ¢) and
fiw), i =1, 2, the foliation associated to which is tangent to the vector field

&i(w) =ai +(-b+ Fl)"/ﬂ)i.
aM 81}

If ¢ is a diffeomorphism and(x, y) is a hon-vanishing real valued function, then ([25]) for
k=12,

1. ¥ (fi(w)) = fi(¥*(w)), if ¢ is orientation preserving;

2. Yv(fiw)) = fa_x(¥*(w)), if ¥ is orientation reserving;

3. fi(lhw) = fi(w), if L(x, y) is positive;

4. frOw) = fa_r(w), if A(x, y) is negative.

3.1. Discriminant with am -singularity. We study here BDEs with a discriminant
having a Morse singularity at the origin and where the quadratiand the cubigp have
two common roots (see above for notation). The last condition is equivalent to two roots of
¢ being at the points of intersection of the lift of the branches of the discriminant with the
exceptional fibre. (The case whereand¢ have one common root is dealt with in [36].)

When jl(a, b, c) = (v, b1x + b2y, y), a1 and¢$ have a common root if and only if
b1 = £b2 — 1. So we have two common roots whén, b2) = (—1, 0). (At these points the
lifted field & on M has generically a saddle-node singularity.) We write

w=1(a,b,c)=(y+ Mix,y), —x + Mz(x, ),y + M3(x,y)),
whereM; are smooth functions with zero 1-jets at the origin. We set
A(x, y) = j2My1 = aox? + arxy + azy?,
B(x,y) = j®M2 = box” + bixy + b2y?,
C(x,y) = j2M3 = cox® + c1xy + c2y°.

In order to obtain the configurations of the integral curves of these BDES, we consider
the directional blowing-up = u, y = uv. (We also consider the blowing-up= uv, y = v,
but this does not yield extra information.) Then the new BDE is givewby= (i, v)*w =
adv® + 2bdudv + cdu?® with

a

u?(uv + My (u, uv)),
=uv(uv + M1(u, uv)) + u(—u + Mo(u, uv)),

S

c= vz(uv + M1(u, uv)) + 2v(—u + Mo(u, uv)) + uv + M3(u, uv) .
We can writewg = u(u?A1, uB1, C1) with
A1 =v+ uN1(u,v)
B1 = v?> — 1+ u(vN1(u, v) + Na(u, v))
C1 = v(v? — 1) + u(@?N1(u, v) + 20N2(u, v) + N3(u, v))
andM; (u, uv) = u?N;(u,v),i =1, 2, 3.
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The quadratic formw; with coefficients(u?A1, uB1, C1) is a product of two 1-forms,
and to these 1-forms are associated the vector fields

3 . 3
X; = uzAla + (= uB1+ (-1)'\/u?(B? - A1C1))£, i=12.

We can also writev; as the product of two 1-forms associated to the vector fields

i ad d
Z, = (— uBy + (1) 142(312 — A1C1))5 + Cla_u’ i=12.

We can factor out a term in X; and consider the vector fields

d : d
Y =uA1— + (= B1+ (=1)"\/B? — A1C1)—, i=1,2.
i=u 18u+( 1+ (=1 B 1 1)8v i

The blowing-up transformation is orientation preserving is positive and orientation
reserving ifu is negative. As we have factored autwice, it follows thatY1 is tangent to the
foliation associated tg (w) if u is positive and to that associated fg(w) if u is negative;
while Yz is tangent to the foliation associated fe(w) if u is positive and to that associated
to f1(w) if u is negative (see [25] and the statement before Section 3.1).

We study the vector field¥; in a neighbourhood of the exceptional fihre= 0. The
fieldsY; are only defined in the regions Wheﬁé — A1C1 > 0. Onu = 0, this means that

+DH@w-1 =<0.

(This is distinct from the ca&s treated by Guifiez, wherge are defined on the whole excep-
tional fibre.) We observe that the above segment of the exceptional fibre is an integral curve
of both fieldsy;, i =1, 2.

The singularities of; onu = 0 occur when(—B; — /312 — A1C1)(0,v) = 0, that is,
when—(v? — 1) — v/1—v2 = 0. Equivalently, when

V212 —1) =vp(v) =0 and
v2—1<0,

whereg is the cubic in Section 3. Sp; has singularities at = +1 andv = 0.
At v = 0, we haveB1(0, 0) = —1 < 0, so that

—By —/B? — A1C1 = —B1 + B1,/1— A1C1/B?

A1C1 2
= — 28 + Afg(u,v)

for some germ of a smooth functignwith a zero 1-jet at the origin. Therefokg is singular
along the curvet1(u, v) = 0. We consider the vector fieldd = ¥1/A1. ThenY; has a saddle
singularity at the origin.

The singularities ab = +1 occur at the points of intersection of the exceptional fibre
with the branches of the blown-up discriminant. Consider the situatior=a#-1. We change
variables and set = u, 1> = B? — A1C1, with t > 0. The 2-jet of the vector fields, 1)* Y1
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FIGURE 7. Integral curves ofs, 1)*Y; (t > 0),i = 1 left, andi = 2 right.

is equivalent taq A1s + 1)d/dt + std/ds, whereAs is given by
1
AL = _E(A(l’ 1)+4B(1,1) +3C(1,1)).

The singularity of(s, #)*Y1 is a saddle-node providetlh; # 0, and its integral curves (up to a
reflection with respect to the vertical axis, depending on the sigtypére as in Figure 7 left,
and therefore those 6f, are as in Figure 8 top. Observe that the centre manifold,o§* Y1

is transverse to theaxis.

We proceed similarly at = —1, change variables and set u, 12 = Bf — A1C1, with
t > 0. The 2-jet of the vector fiel@s, 7)* Y1 is equivalent ta Azs + ¢)d/0t + std/ds, where
Az is given by

Ay = %(A(l, -1)—4B(1,-1)+3C(1, -1)).
The singularity of(s, 1)*Y; is a saddle-node provided, # 0, and its integral curves (up to
a reflection with respect to the vertical axis, depending on the sigtppare as in Figure 7
left, and therefore those af are as in Figure 8 top.

We have two possibilities (up to a reflection with respect to the vertical axis) for the con-
figuration of the integral curves df; in a neighbourhood of the exceptional fibre depending
on the sign ofA1 A, see Figure 8 top.

The vector fieldy, is singular ont = 0 when(—B1 +,/Bf — A1C1)(0,v)=0, that is, when
v = £1. Similar calculations to those above fBy show that the 2-jet of the vector field
(s, 1)*Yo is equivalent ta(Ays — t)d/0t + std/ds atv = 1 and(Aas — 1)d/dr + std/ds at
v = —1, with A; and A, as above. We observe that the configurations of the integral curves
of (s, 1)*Y>2 can be deduced from those ©@f 7)*Y1 by the change of variable —~ —z. So
at both pointsv = +1, the integral curves aofs, 7)*Y; and (s, 1)*Y> are (up to a reflection
of both figures with respect to the vertical axis) as in Figure 7 (leftfor)* Y1 and right for
(s, 1)*Y2). The configurations (two possibilities) of the integral curve§-pére as in Figure
8 top. Blowing-down vyields the configuration of the integral curves of the original BDE.
Consequently, we have two distinct types of configurations depending on the sigmef
One can show that any two configurations of the same type are topologically equivalent. This
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><

FIGURE 8. Configurations of the integral curves of the BDEs whgrand¢ have two common roots and
their blown up modelsA1 A5 > 0 left, andA A < O right.

can be done by choosing an appropriate neighbourhood of the origin and by sliding along
integral curves (see for example [6, 35, 37]).
We have thus the following result.

THEOREM 3.1. Supposethat the quadratic o1 and the cubic ¢ havetwo common roots
and the lifted field & has genuine saddle-node singularities there. Then the BDE is topologi-
cally equivalent to one of the following normal forms.

() ydy?+2(—x + y?dxdy + ydx?> =0 (Figure8, left), or
(i)  ydy?+2(—x + xy)dxdy + ydx> =0 (Figure8, right).
The topological models are completely determined by the 2-jets of the BDE.

3.2. Discriminant with anAz-singularity. We study here BDEs where the 1-jet of
the coefficients is given by0, box, y), bo # 0. We start by reducing thie-jet of the BDE
w = (a, b, ¢) to a normal form (see also [10]).

PROPOSITION 3.2. The k-jet (k > 2) of a BDE w with jlw = (0, box, y) can be
reduced, for bg distinct from a finite set of values, by smooth changes of coordinates and
multiplication by a non-zero polynomial to

ar(y)dy? + 2(box + bi(y))dxdy + ydx?,

where a;, and by are polynomialswith zero 1-jets.

ProOF. We writew = (a(x, y), box + b(x, y), y+c(x, y)), and make smooth changes
of coordinates in the form

x=X+pX,Y), y=Y+q(X,Y),
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wherep andg are germs of homogeneous polynomials of degrigeX, Y. We also multiply
the new BDE by 1 r(X, Y), wherer is a germ of homogeneous polynomial of degree 1
in X, Y. The homogeneous part of degieef the coefficients of the new BDE are given by

Ax = ar + 2boXpy ,
Br = bop + boX (px + qv) + Ypy + boXr + by,
Cr = 2boXqx +2Ypx +qx + Yr + ¢k,

where all the polynomials are evaluated &t Y). It is clear that we can eliminate all terms
divisible by X in Ay by choosing an appropriate polynomjal To reduce furtheB; andCy
to the required forms, we need to show that the systegnandr

boXqy + boXr = by,
2boXqx +qi+Yr =ck

has a solution, wherg is the polynomial—(bop + boXpx + Ypy + bi) with the termy*
removed and; = —(2Ypx + cx) (p chosen as above). The above system has a solution if a
certain matrix has a non-zero determinant. This is the case# (i — 1)/(2(k —i)), 1 <

i <k — 1. We observe that the system has always a solution When—1/2, as is the case

in Section 2.2. O

In Section 2.2 the discriminant has atg-singularity. So we can takg3w =
(azy®, box + boy? + bay3, y), with az # 0. We write

o = (azy® + Mi(x, y), box + bay? + Ma(x, y), y + M3(x, y)) ,

where the germa/; and M3 have zero 3-jets anti> has zero 2-jet.

We consider now the following quasi-homogeneous blowing-ups:

y-direction:x = uv?, y = v,

x-direction: x = u?, y =uv andx = —u?, y = uv, withu > 0.

The blowing-up in they-direction does not give any singularities at the origin, and so it
is enough to work with the blowing-ups in thedirection.

The new BDE® obtained by considering the blowing-up= cu?, y = uv (¢ = +1)
has coefficients

ula (8142, uv),

Q1
Il

S

= uva(suz, uv) + 28u2b(8u2, uv),

vza(suz, uv) + 48uvb(8u2, uv) + 4uzc(su2, uv).

We write® = u3u?A1, uB1, C1) with
A1 = agv® + uN1(u, v),
B1 = 2bg + 281721)2 + a3v4 + uvN1(u, v) + 2suNo(u, v) ,
C1 = v(4(bo + 1) + 4ebov? + azv®) + uvN1(u, v) + deuvNa(u, v) + 4uNa(u, v),

whereM; (eu?, v) = u®N; (u, v) fori = 1, 3, andMa(cu?, v) = u3No(u, v).
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The quadratic formw; = (u?A1,uB1,C1) is a product of two 1-forms, and to these
1-forms are associated the vector fields

. 9 0
2 .
Zi = (—uB1+ (1) \/u?(Bf — AlCl))_au + Cl—av , i=1,2.

The blowing-up transformation is orientation preserving ¥ +1 and orientation re-
serving ife = —1. Furthermore, ag > 0, it follows thatZ4 is tangent to the foliation
associated tgi1 (w) if ¢ = +1 and to that associated fo(w) if ¢ = —1; while Z» is tangent
to the foliation associated tfp(w) if ¢ = +1 and to that associated (w) if ¢ = —1 (see
[25] and the statement before Section 3.1).

We can seti3 = £1 by a scalar change of coordinates and treat now the egsesl
andaz = —1 separately.

() Thecase j2w = (—y3 box + b2y? + b3y, y). The vector fieldsz; are defined
along the whole exceptional fibre. The number and type of their singularities along this fibre
depend only on the paibo, b2). (Reflecting with respect to the origin shows that the type of
the BDE associated to the péir, —by) is the same as that associated#g, b»).) There are
three curves in thébg, by)-plane where the number or thgpe of the singularities changes.
These are the parabolai—]bo+b2 = 0, and the line$g = —1 andbg = 0 (see Figure 9, left).

In the open regions determined by these curves, the configurations of the foliations associated
to Z;,i = 1, 2, are constant and are as in Figure 10. (The calculations are similar to those in
the previous section and are omitted here.)

(i) Thecase j3w = (3, box + bay? + b3y®, y). Here the vector fieldg; are defined
in a neighbourhood of the exceptional fibre thtI%— A1C1 = 0. On the criminant curve
Bf — A1C1 = 0, one can show that the integral curvesZgpfform a family of regular curves
ending transversally at this curve (the exceptional fibre being a common integral curve of both
fields).

The number and type of the singularitiesff on the exceptional fibre depend only on
the pair(bo, b2). There are five curves in thgo, b2)-plane where the number or type of

. 02 b
R3 Ra| 72 RS AR

R2 RS
R4

R1 R6 R1

FIGURE 9. Partition of the(bg, bo)-plane,e = —1 left ande = +1 right.
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singularity changes. These are: the parabolabp — b2 = 0, and the lineg = —1,bg = 0,
24 bo— 2bp =0, 2+ bo + 2b2 = 0 (see Figure 9, right). In the open regions determined by
these curves, the configurations of the foliations associatéq,to= 1, 2, are constant and
are as in Figure 11.

We have then the following result.

THEOREM 3.3. Supposethat j3w = (y3, box + bay? + bay®, y). Then the topolog-
ical type of the BDE w is constant in the open regions in the (bg, b2)-planein Figure 9. The
configurations of the integral curves of the BDE in these regions are as shown in Figures 10
and 11.

REMARK 3.4. Normal forms for the BDEs in Theorem 3.3 can be taken in the form
(£y3, box + b2y?, y) with (bo, b2) any fixed value in the open regions in Figure 9.

3.3. Xi-singularity. We study in this section certain BDEs with a discriminant hav-
ing anX 1 o-singularity K-equivalent toc® 4+ Ax?y? — y8 with A < 0. The characteristic BDE
in Section 2.3 has a 2-jét2, —xy, —ax2+ 2y?),a > 0.

PROPOSITION 3.5. The4-jet of a BDE with a 2-jet (x2, —xy, —ax?+ 2y?) and whose
discriminant hasan X 2-singularity can be reduced, by smooth changes of coordinates when

R1 J&%
AR S
A 2El =
B
— N
ESE =
NPNERE
NGRS

FIGURE 10. Configurations of the integral curves(efy3, box + bay? + b3y, y) and
their associated directional blowing-up models.
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FIGURE 11. Configurations of the integral curves(ry\a, box + b2y2 + b3y3, y) and their associated directional
blowing-up models.

a #0,t0

%+ dy*, —xy + b3(x, ) + ba(x, y), —ax? + 2y% + c1xy? + c2y® + coxy® + cay?)
where b3 (resp. b4) is a homogeneous polynomial of degree 3 (resp. 4) and d and ¢;, i =
1, 2, 3, 4, are constants.

The proof is similar to that of Proposition 3.2 and is omitted.

Whena < 0, the discriminant has ak »-singularity which isk-equivalent tax +
ax2y? — y®with A < 0if d — b3, > 0, wherebas is the coefficients of the terp?® in bs.

We consider the blowing-up = u,y = uv. (We also consider the blowing-up =
uv, y = v, but this does not yield any extra information.) We can write the coefficients of the
new BDE in the forma, b, ¢) = u?(u?A1, u?By, C1) with

A1 =1+u?N1(u,v),
B1 =b3(1,v) +uNo(u,v),
C1=—a+v>+uN3@u,v),

whereN; (u, v), i = 1, 2, 3, are smooth functions along the exceptional fibre.
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We consider the vector fields

i 0 0
Zi= (_”231+(_1)1\/”2(”2312_1416‘1))5+C1£, i=12.

The discriminant lifts to two smooth curves that are generically transverse to the excep-

tional fibre at—a 4+ v2 = 0. The fieldsZ;, i = 1, 2, are defined in a neighbourhood of the
segment-a + v2 > 0 and are regular alonga + v2 > 0.

At v = \/a, we change variables and set= u,1?> = u?B? — A1C1, with r > 0. It
follows thatC1 = (uB1 — t)(uB1 + 1)/ A1 andv = ¢(s, t). The ODE associated 3, 1)*Z;
is

((sBy— t)(sBL+ 1)/A1)ds — (—s*B1 + (=1)'|s|t)(geds + gidt) = 0,

whered; = A1(s, g(s, 1)) andBy = Bi(s, (s, t)). We can factor oug¢s By — 1) or (s By + 1),
depending oni and the sign of (i.e.,u). So we need to consider the vector fields
_ . . _ 9 -9
(s By + sign(s)(—1)'t + sAlgs)E + sAlg,a—, s>0, i=12.
N
As the blowing-up transformation is orientation preserving (f.e., s) is positive and orien-
tation reserving if: is negative, we can drop sign above and deal with the vector fields
_ . - 9 -9
Wi =(B1+ (D't +sA19) — +sA19—, i=12.
at as
Their foliations are associated to thosefpfw), i = 1, 2 (see [25] and the statement before
Section 3.1).

FIGURE 12. Configurations of the integral curves of a BDE aarp-singularity of the
discriminant and their associatdilectional blowing-up modelsij Ao >
0 top, A142 < 0 bottom.
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The 2-jet of W; is equivalent to(Ays + (—1)'1)d/dt + (1/4/a)std/ds, whereA; =
—(1/2)(acz2 + +/ac1). The singularity is a saddle-node providag # O.

Atv = —./a, similar changes of coordinates as above show that the 2§&t,6f= 1, 2,
is equivalent taAzs — (—1)'1)d/8t + (1//a)std/ds, with Ap = —(1/2)(acz — /ac1). The
singularity is a saddle-node provided # 0.

We have two possible generic configurations for the integral curves of the BDE depend-
ing on the sign ofA1 A (see Figure 12).

THEOREM 3.6. Suppose that the BDE has a 2-jet equivalent to (x2, —xy, —ax?2 +
2y?), witha > 0, and its discriminant has an X1 o-singularity of type x* 4+ Ax2y? — y6, with
A < 0. Then it istopologically equivalent to one of the following normal forms.

() 2+ y4 —xy, —x2+2y? + y°) (Figure 12, |eft),

(i)  (x%+y* —xy, —x2 + 2y2 4+ xy?) (Figure 12, right).

REFERENCES

[1] T.BANCHOFF, T. GAFFNEY AND C. MCCRORY, Cusps of Gauss mappings, Pitman (Advanced Publishing
Program), Research Notes in Mathematics, 55, London, 1982.

[2] T.BANCHOFF AND R. THOM, Erratum et compléments: “Sur les points paraboliques des surfaces" by VY. L.
Kergosien and Thom, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), A503—A505.

[3] J.W.BRUCE A note on first order differential equations of degrgreater than one and wavefront evolution,
Bull. London Math. Soc. 16 (1984), 139-144.

[4] J.W.BRUCE, On families of symmetric matrices, Moscow Math. J. 3 (2003), 335-360, 741.

[5] J.W.BRuUCE AND D. FIDAL, On binary differential equations and umbilics, Proc. Roy. Soc. Edinburgh Sect.
A 111 (1989), 147-168.

[6] J.W.BRUCE G.J. RETCHER AND F. TARI, Bifurcations of implicit differential equations, Proc. Royal Soc.
Edinburgh 130A (2000), 485-506.

[7] J.W.BRUCE, G.J. RETCHER ANDF. TARI, Zero curves of families of curve congruences, Real and complex
singularities, 1-18, Contemp. Math., 354, Amer. Math. Soc., Providence, R.1., 2004.

[8] J.W.BRuUCE AND F. TARI, On binary differential equations, Nonlinearity 8 (1995), 255-271.

[9] J. W. BRUCE AND F. TARI, Generic 1-parameter families of binary differential equations of Morse type,
Discrete Contin. Dynam. Systems 3 (1997), 79-90.

[10] J.W. BRucCE AND F. TARI, On the multiplicity of implicit differential equations, J. Differential Equations 148
(1998), 122-147.

[11] J. W. BRUCE AND F. TARI, Dupin indicatrices and families of curve congruences, Trans. Amer. Math. Soc.
357 (2005), 267-285.

[12] J. W. BRUCE AND J. M. WEST, Functions on cross-caps, Math. Proc. Cambridge Philos. Soc. 123 (1998),
19-39.

[13] M. CiBRARIO, Sulla reduzione a forma delle equationi linealéalerviate parziale di secondo ordine di tipo
misto, Accademia di Scienze e Lettere, Instituto Lombardo Redicconti 65 (1932), 889-906.

[14] L. DARA, Singularité génériques des équations différdie8emultiformes, Bol. Soc. Brasil Mat. 6 (1975),
95-128.

[15] A. A. Davybpov, Normal forms of differential equations unresolved with respect to derivatives in a neigh-
bourhood of its singular point, Functional Anal. Appl. 19 (1985), 1-10.

[16] A. A. DAavyDov, Qualitative control theory, Translations of Mathematical Monographs 142, AMS, Provi-
dence, R.l., 1994.



[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]
[31]
[32]
(33]
[34]
[35]

[36]
[37]

(38]

[39]

[40]
[41]

PAIRS OF GEOMETRIC FOLIATIONS ON A CROSS-CAP 257

A. A. DAVYDOV AND L. ORTIZ-BOBADILLA, Smooth normal forms of folded elementary singular points, J.
Dynam. Control Systems 1 (1995), 463—482.

A. A.DAvYDOV AND E. ROSALES-GONZALEZ, Smooth normalforms of folded resonance saddles and nodes
and complete classification of generic linear secort&ioPDE’s on the plane, International Conference on
Differential Equations (Lisboa, 1995), 59—68, World Sci. Publishing, 1998.

L. P. EISENHART, A treatise on the differential geometry of curves and surfaces, Ginn and Company, 1909.

T. FUKUl AND J. J. NONO-BALLESTEROS Isolated roundings and flattenings of submanifolds in Euclidean
spaces, Tohoku Math. J. (2) 57 (2005), 269-503.

R. GARCIA AND J. SOTOMAYOR, Harmonic mean curvature lines on surfaces immersekiSinBull. Braz.
Math. Soc. (N.S.) 34 (2003), 303-331.

R. GARCIA, J. SOTOMAYOR AND C. GUTIERREZ, Lines of principal curvature around umbilics and Whitney
umbrellas, Tohoku Math. J. (2) 52 (2000), 163-172.

R. GARCIA AND J. SOTOMAYOR, Structural stability of parabolic poisiand periodic asymptotic lines, Work-
shop on Real and Complex Singularities ($2arlos, 1996), Mat. Contemp. 12 (1997), 83—-102.

V. GUINEZ, Positive quadratic differential forms and foliations with singularities on surfaces, Trans. Amer.
Math. Soc. 309 (1988), 447-502.

V. GUINEZ, Locally stable singularities for positive quadratic differential forms, J. Differential Equations 110
(1994), 1-37.

V. GUiNEZ, Rank two codimension 1 singularities of positigeadratic differential forms, Nonlinearity 10
(1997), 631-654.

V. GUINEZ AND C. GUTIERREZ Rank-1 codimension one singularities of positive quadratic differential
forms, J. Differential Equations 206 (2004), 127-155.

A. HAYAKAWA , G. ISHIKAWA, S. IzuMIYA AND K. YAMAGUCHI, Classification of generic integral diagrams
and first order ordinary differential equations, Internat. J. Math. 5 (1994), 447-489.

Y. KERGOSIEN ANDR. THOM, Sur les points paraboliques des surfaces, C. R. Acad. Sci. Paris Sér. A-B 290
(1980), A705-A710.

A. G. Kuz’'MIN, Nonclassical equations of mixed type and th@placations in gas dynamics, Internat. Ser.
Numer. Math. 109, Birkhauser Verlag, Basel, 1992.

J. J. NURo BALLESTEROS ANDF. TARI, Projections of surfaces iR* to 3-spaces, Preprint 2005.

R. OccHIPINTI, Sur un systeme de lignes d’une surface, L'enseignement Mathematiques, 16 (1914), 38—44.

L. RAFFY, Sur le réseau diagonal conjugué liBSoc. Math. France 30 (1902), 226—233.

J. SOTOMAYOR AND C. GUTIERREZ, Structurally stable configuratiorsf lines of principal curvature, Bi-
furcation, ergodic theory and applications @ij 1981), 195-215, Astérisque, 98-99, Soc. Math. France,
Paris, 1982.

F. TARI, Two-parameter families of implicit differerati equations, Discrete Contin. Dyn. Syst. 13 (2005),
139-162.

F. TArI, Codimension 2 singularities and their bifurcatiambinary differential equations, Preprint, 2005.

F. TARI, Geometric properties of the integral curves an implicit differential equation, Discrete Contin. Dyn.
Syst. 17 (2007), 349-364.

R. THOM, Sur les équations différentielles multiformes etrfeintégrales singuliéres, Bol. Soc. Brasil. Mat. 3
(1972), 1-11

F. TAKENS, Constrained equations; a study of implicit differential equations and their discontinuous solutions,
in: Structural stability, the theory of catastrophesd applications in the sciences, LNM 525, Springer-
Verlag, 1976.

J. WEST, The differential geometry of the cross-cap, Ph. D. Thesis, Liverpool University, 1995.

C. T. C. WALL, Finite determinacy of smooth mapgis, Bull. London Math. Soc. 13 (1981), 481-539.



258 F. TARI

DEPARTMENT OFMATHEMATICAL SCIENCES
DURHAM UNIVERSITY
SCIENCELABORATORIES

SOUTH ROAD

DURHAM DH1 3LE

UK

E-mail address; farid.tari@durham.ac.uk



