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Abstract. We obtain the topological configurations of the lines of curvature, the as-
ymptotic and characteristic curves on a cross-cap, in the domain of a parametrisation of this
surface as well as on the surface itself.

1. Introduction. Given a surface patch parametrised byr : U ⊂ R2 → R3, Whitney
showed thatr can have a stable singularity under smooth changes of coordinates in the source
and target. A local model of this singularity is given by(x, y) �→ (x, xy, y2). The image of
this map is a singular surface called a cross-capor a surface with a pinch-point. (The zero
set of the functionZX2 − Y 2 = 0 is the union of a cross-cap together with a “handle" and is
called a Whitney umbrella.)

Because the cross-cap is a stable singular surface inR3, it is natural to seek to understand
its differential geometry. Work in this direction was carried out in [12, 20, 22, 40]. In [12] (see
also [40]) the flat geometry of the cross-cap is investigated using singularity theory. It is shown
for instance in [12] that there are generically two types of cross-caps, one labelled hyperbolic
cross-cap where all non-singular points of the immersed surface are hyperbolic, and the other
labelled elliptic cross-cap where the parabolic set consists of two smooth curves meeting
tangentially at the singularity and partitions the surface into hyperbolic and elliptic regions.
This classification turned out to be very useful when seeking to understand the projections of
smooth two dimensional surfaces inR4 to 3-spaces [31].

We study in this paper pairs of geometric foliations of a cross-cap. There are three clas-
sical pairs of foliations defined on a smooth oriented surfaceM in R3. These are the lines of
curvature and the asymptotic and characteristic curves. A line of curvature ofM is a curve
whose tangent line at each point is parallel to a principal direction. The lines of curvature
are defined everywhere on the surface and form an orthogonal net away from umbilic points.
Their configurations at umbilics were drawn by Darboux, but a rigorous proof is given in [34]
and [5] (see also [30] for related results). The study of the behaviour of these foliations in a
neighbourhood of a closed orbit is also carried out in [34].

An asymptotic curve ofM is a curve whose tangent line at each point is parallel to an as-
ymptotic direction. The asymptotic curves are defined in the closure of the hyperbolic region
of the surface. They form a family of cusps at a generic parabolic point. Their configurations
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at a cusp of Gauss are given in [1, 2, 29] and a more general approach for studying the singu-
larities of their equation at such points is given in [14, 15, 30, 38]. Global properties of these
foliations including the study of their cycles are given in [23].

Characteristic directions are defined in the closure of the elliptic region. At elliptic points
there is a unique pair of conjugate directions for which the included angle is extremal ([19]).
These directions are called the characteristic directions and their integral curves are called the
characteristic curves. Their study is carried outindependently in [11] and [21]. In [21] they
are labelled harmonic mean curvature lines and are defined as curves along which the normal
curvature isK/H , whereK is the Gauss curvature andH is the mean curvature.

When the surface is given in a parametrised form, in the domain of the parametrisation,
the above three foliations are the solution curves of some binary differential equations (BDEs),
also called quadratic differential equations. BDEs are implicit differential equations that can
be written, in a local chart, in the form

a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0 ,(1)

where the coefficientsa, b, c are smooth functions (here smooth meansC∞). A BDE defines
no directions whereδ = (b2 − ac)(x, y) < 0, two directions in the region whereδ > 0,
and a double direction on the set∆ = {δ = 0} provided that the coefficients of the equation
do not all vanish at a given point. At such points, every direction is a solution. The set
∆ is called thediscriminant of the equation. BDEs are studied, using various approaches, in
[5, 6, 8, 9, 10, 13–18, 25–28, 30, 35, 36, 38]. The solutions of (1) determine a pair of foliations
Fi , i = 1,2, in the regionδ > 0. In this paper, the configuration of the solutions of (1) refere
to the triple{∆,F1,F2}. In all the figures, we draw one foliation in black and the other in
grey, and the discriminant in thick black.

In this paper we obtain the local topological configurations of the lines of curvature and
of the asymptotic and characteristic curvesof a cross-cap. We do this in two steps. Given a
local parametrisationr : R2,0 → R3,0 of the surface, we first obtain the configurations of
the pairs of foliations in the domain. These are given by BDEs with coefficients all vanishing
at the origin. We obtain in Section 3 a topological classification of BDEs with coefficients
vanishing at the origin and whose discriminant has the sameK-singularities as those of the
geometric foliations on the cross-cap. The topological models are obtained by extendending
Guíñez’s blowing-up technique [25, 26, 27] to cover the cases where the discriminant is not
an isolated point.

Mapping the foliations to the surface is the second step. This is trivial for smooth surfaces
as the parametrisation is a diffeomorphism from the domain to the image. However, this is
not the case for the cross-cap. Here we need to analyse how the leaves of the foliations in the
domain intersect the double point curveD. There is an involutionσ onD that interchanges
points with the same image underr. We show in Section 2 that if a leaf intersectsD in two
points, then generically these are not mapped to the same point byr. This allows us to draw
the pairs foliations on the cross-cap (Section 2).

I would like to thank Evaggelia Samiou for usefull discussions.
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2. Classical BDEs on a cross-cap. Let g : R2,0 → R3,0 be a germ of a smooth
mapping. If we allow smooth changes of coordinates in the source and target (i.e., consider
the action of the Mather groupA), thenf has a local stable singularity if and only if it is
A-equivalent tof (x, y) = (x, xy, y2). We shall follow the notation in [12] and define a
cross-cap as the image of any map-germr : R2,0 → R3,0 that isA-equivalent tof , and say
thatr parametrises the cross-cap.

Given a smooth surfaceM in R3 with a family of normalsN , we have a Gauss map
N : M → S2. At a pointp, the map−dN(p) : TpM → TN(p)S

2 can be thought of
as an automorphism ofTpM. This is the classical shape operatorSp , or simplyS. If M is
parametrised byr(x, y) with shape operatorS, the coefficients of the first fundamental form
Ip : TpM × TpM → R, with Ip(u, v) = u · v, are given by

E = rx · rx , F = rx · ry , G = ry · ry .

Those of the second fundamental form IIp : TpM × TpM → R, with IIp(u, u) = Sp(u) · v,
are given by

l = S(rx) · rx = N · rxx ,
m= S(rx) · ry = N · rxy ,
n = S(ry) · ry = N · ryy .

When considering the cross-cap singularity, we run into a problem as there is no well defined
normal to the surface at the singular point. Away from the cross-cap point, the unit normalN

is given byN = rx × ry/||rx × ry ||. However, the equations of the principal, asymptotic and
characteristic directions are homogeneous inl,m, n (see below), so we can multiply them by
an appropriate power of||rx×ry ||, alternatively, replacel,m, n respectively in their equations,
by

l1 = (rx × ry).rxx , m1 = (rx × ry).rxy , n1 = (rx × ry).ryy .(2)

The flat differential geometry of the cross-cap(i.e., the geometry captured by its contact
with lines and planes) is explored in [12] and [40], using singularity theory. It is shown there
that the surface can locally be parametrised (after smooth changes of coordinates in the source
and isometries in the target) by

r(x, y) = (x, xy + p(y), λx2 + µxy + y2 + q(x, y)) ,(3)

wherep(y) andq(x, y) are germs of functions with zero 2-jets andλ,µ are constants. We
shall write

j4p(y) = p3y
3 + p4y

4 ,

j3q(x, y) = q30x
3 + q31x

2y + q32xy
2 + q33y

3 ,

where the notationjkg means thek-jet of the mapg, that is, its Taylor polynomial of orderk at
the origin. We use the above parametrisation of the cross-cap when seeking the configurations
of the integral curves of the BDEs of interest.

REMARK 2.1. It is shown in [4] that the right framework for studying the singularities
of the discriminant is via the action of some groupG on families of symmetric matrices. A list
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of all theG-simple singularities of families of symmetric matrices is obtained in [4]. However,
some of the singularities of the discriminant in this paper are notG-simple. So we refere to
these singularities by theirK-type. (See [41] for the singularity theory concepts.)

2.1. Asymptotic curves. The equation of the asymptotic directions of a smooth sur-
face is given by

ndy2 + 2mdydx + ldx2 = 0 .

For a cross-cap, we take the equation to be

n1dy
2 + 2m1dydx + l1dx

2 = 0 ,

wheren1, l1,m1 are as in (2).
The configuration of asymptotic curves is affine invariant ([12]), so we can use affine

changes of coordinates in the target and set the local parametrisation of the surface in the
form

r(x, y) = (x, xy + p(y), y2 + εx2 + q(x, y)) , ε = ±1 .

The discriminant∆ = δ−1(0) = (m2
1 − l1n1)

−1(0) is the parabolic set. The function
δ has anA1-singularity (i.e., it isA-equivalent tox2 ± y2). Whenε = −1, the singularity
is of typeA+

1 so the parabolic set is an isolated point. Then every non-singular point on the
surface is hyperbolic, and the cross-cap is labelledhyperbolic cross-cap in [12]. In this case,
West showed in [40] that the BDE of the asymptotic directions in the domain is topologically
equivalent toydy2 + 2xdxdy − ydx2 = 0 (Figure 1, left).

Whenε = +1, the parabolic set has anA−
1 -singularity in the domain (a pair of transverse

curves). These are mapped to two smooth curves intersecting tangentially at the cross-cap
point ([40]). This cross-cap is labelled parabolic cross-cap in [12]. We shall labell it here
elliptic cross-cap and call, as in [31], a parabolic cross-cap the one whose discriminant has
anA2-singularity. (A change from an elliptic to a hyperbolic cross-cap occurs at a parabolic
cross-cap.) The asymptotic curves are defined in the closure of the hyperbolic region. To
determine their configurations, we proceed as follows.

The coefficients of the asymptotic BDE are given by

(a, b, c) = (x +M1(x, y),−y +M2(x, y), x +M3(x, y)) ,(4)

whereMi , i = 1,2,3, are smooth functions depending onp(y) andq(x, y) (in (3)), and

j2M1 = q32x
2 + 3q33xy − 3p3y

2 ,

j2M2 = 1

2
q31x

2 − 3

2
q33y

2 ,

j2M3 = 3q30x
2 + q31xy + 3p3y

2 .

We can therefore apply the results in Section 3.1 and Theorem 3.1 to deduce the topological
models of the asymptotic curves in the parameter space. (The change of variables(x, y) �→
(y, x) is required to get the same normal forms as in Section 3.1.) The genericity conditions
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FIGURE 1. Configurations of the asymptotic curves in the domain: hyperbolic cross-
cap left, elliptic cross-cap centre and right.

in Section 3.1 (Λ1 �= 0 andΛ2 �= 0) are now expressed in terms of the coefficients of the
Taylor expansions ofp(y) andq(x, y):

Λ1 = −1/2(9q30 + 5q31 + q32 − 3q33 + 6p3) �= 0 ,

Λ2 = 1/2(9q30 − 5q31 + q32 + 3q33 + 6p3) �= 0 .

PROPOSITION 2.2. The equation of the asymptotic curves in the domain of a parame-
trisation of a cross-cap is topologically equivalent to one of the following.

1. At a hyperbolic cross-cap ([40]): ydy2 + 2xdxdy − ydx2 = 0 (Figure 1, left).
2. At an elliptic cross-cap:

(i) ydy2 + 2(−x + y2)dxdy + ydx2 = 0 (Figure 1, centre), or
(ii) ydy2 + 2(−x + xy)dxdy + ydx2 = 0 (Figure 1, right).

The topological type is completely determined by the 3-jet of the parametrisation of the
surface.

The configurations of the asymptotic curves in Figure 1 are in the parameter space. We
need now to map them to the surface. When the surface is parametrised as in (3), the 3-
jet, at the origin, of a parametrisation of the double point curve in the domain is given by
(−p3y

2 − p3(−µp3 + q33)y
3, y). (We can takeµ = 0 when dealing with the asymptotic

curves.) In particular, this curve is transverse to the two branches of the parabolic set when
the later has anA−

1 -singularity. We observe that the double point curve lives in the hyperbolic
region of the surface (see [40]).

There is one separatrix in the case of a hyperbolic cross-cap and three at an elliptic cross-
cap. (Here, a separatrix is a curve in the parameters space which is the blowing-down of a
stable/unstable or centre manifold of the fields associated to the BDE in Section 3. This is
an abuse of notation as these separatrices, in some cases, do not separate distinct sectors.)
The 3-jet, at the origin, of a parametrisation of the unique separatrix at a hyperbolic cross-
cap and of the separatrix transverse to the parabolic set at an elliptic cross-cap is given by
(−p3y

2 + 1/5(3q33p3 − 8p4)y
3, y). Therefore this separatrix and the double point curve

have generically a 3-point contact at the origin. The image of the above separatrix underr has
a cusp at the cross-cap point (see Figures 2 and 4).

Mapping the solution curves in the parameter space to the surface can be done without
difficulties in the elliptic cross-cap case. In the parameter space, a solution curve of the as-
ymptotic BDE intersects the double point curve in at most one point in a neighbourhood of
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FIGURE 2. Configurations of the asymptotic curves at an elliptic cross-cap, in the do-
main left and on the surface right. The thick curves are the parabolic set and
the double point curve.

the origin (Figure 2, left). One can then map, inthe appropriate way, the configuration in each
hyperbolic region in the domain to the surface, as shown in Figure 2.

PROPOSITION 2.3. The configurations of the asymptotic curves at an elliptic cross-
cap are as shown in Figure 2.

A regular solution curve of the asymptotic BDE of a hyperbolic cross-cap intersects the
double point curve at two points in a neighbourhood of the origin (Figure 3(a)). The question
is whether or not these two points map to the same image on the surface.

There is an involutionσ on the double point curve in the parameter space that inter-
changes two points with the same image on the surface. This involution is smooth in a neigh-
bourhood of the origin.

The BDE of the asymptotic curves determines a pair of foliationsFi , i = 1,2, in the
parameter space. In turn, each foliation determines an involutionτi , i = 1,2, on the double
point curve which interchanges the two points of intersection of a leaf of the foliation with the
double point curve. (We defineτi(0) = 0.)

The setC×3
2 of germs of mappingsR2,0 → R3,0 is endowed with the Whitney topology.

The subsetW1 ⊂ C×3
2 of germs of parametrisations of hyperbolic cross-caps is given the

induced topology.

THEOREM 2.4. For an open and dense set of parametrisations of hyperbolic cross-
caps, τi(p) �= σ(p), i = 1,2, for any point p �= (0,0) on the double point curve in a
neighbourhood of the origin. As a consequence, the configuration of the asymptotic curves at
a hyperbolic cross-cap is as shown in Figure 3.

PROOF. The equation of the asymptotic curves has a unique separatrix at a hyperbolic
cross-cap (see for example [8]). This curve is smooth and for a surface parametrised as in (3),
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FIGURE 3. Configuration of the asymptotic curves at a hyperbolic cross-cap, in the
domain (a) and on the surface (b), (c), (d) viewed from different directions.
The thick curve is the double point curve.

it is given locally by the graph of a functionx = h(y). The functionh satisfies the following
identity

a(h(y), y)+ 2b(h(y), y)h′(y)+ c(h(y), y)h′(y)2 ≡ 0 ,

where(a, b, c) are as in (4).
We seek changes coordinates in the formx = X + f (Y ), y = Y so that the unique

separatrix is along theY -axis. The new BDE is given by

A(X, Y )dY 2 + 2B(X, Y )dXdY + C(X, Y )dX2 = 0 ,(5)

with

A(X, Y ) = a(X + f (Y ), Y )+ 2b(X + f (Y ), Y )f ′(Y )+ c(X + f (Y ), Y )f ′(Y )2 ,
B(X, Y ) = b(X + f (Y ), Y )+ c(X + f (Y ), Y )f ′(Y ) ,
C(X, Y ) = c(X + f (Y ), Y ) .

The unique separatrix is along theY -axis if and only ifA(0, Y ) ≡ 0. So we takef (Y ) =
h(Y ), with h as above. A calculation shows thatj3f (Y ) = −p3Y

2 + 1/5(3q33p3 − 8p4)Y
3.

In this new system of coordinates the double point curve is given by

X = ζ(Y ) = 8

5
(−q33p3 + p4)Y

3 + h.o.t .

The horizontal direction is a solution of the BDE along a smooth curveC given by
C(X, Y ) = 0. A calculation shows thatC is the graph of a function

X = −2p3Y
2 − 3

5
(q33p3 + 4p4)Y

3 + h.o.t .
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Given a point(0, t) (t �= 0) on theY -axis, there is a leaf of, say,F1 that passes transver-
sally through(0, t) for t < 0 and a smooth leaf ofF2 that passes transversally through(0, t)
for t > 0. We shall consider only the foliationF1 as the approach is the same forF2.

Let γt denote the leaf ofF1 passing through(0, t), t < 0. This curve intersects the
X-axis at two points. Denote byU(t) the positive point.

The foliationF1 is given by the direction field parallel to the vector fieldξ1 = a∂/∂x +
(b + √

b2 − ac)∂/∂y. The polar blowing-upx = ρ cosθ , y = ρ sinθ of ξ1 yields a regular
vector fieldη1 for (θ, ρ) ∈ [−π/2,0] × [0, l), with l a small positive real number. So the
mapk : −π/2 × [0, l1) → 0 × [0, l2) determined by the flow ofη1 is smooth andk′(0) �= 0
(herel1 andl2 are appropriately chosen small positive real numbers). Blowing-down yields
U(t) = k(t), soU(t) depends smoothly ont andU ′(0) �= 0. ThereforeU(t) = t (u+ L(t)),
for some non-zero scalaru and a smooth functionL vanishing att = 0.

In the new system of coordinates, the involutionσ = (σ1, σ2) takes a pointp1 =
(ζ(Y ), Y ) to a p2 = (σ1(p1), σ2(p1)), with σ2(p1) = −Y (1 + Ψ (Y )), for some smooth
functionΨ vanishing at the origin. We want to show thatσ(p1) �= τ1(p1) (Figure 4).

The double point curve intersect the leaf in consideration in two pointsp1 and l (see
Figure 4). For generic cross-caps, the double point curve has a genuine inflection at the origin
(p4 − p3q33 �= 0). We assume, without loss of generality, that the double point curve is as in
Figure 4, that is,p4 − p3q33 > 0; the other case is similar.

FIGURE 4. Involutions on the double point curve.
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Consider the pointq1 = (ζ(Y1), Y1) on the double point curve withX-coordinateU1(t).
Thenσ2(q1) > σ2(p1). We havet (u + L(t)) = ζ(Y1) implies Y1 = t1/3k(t), for some
functionk smooth off the origin, continuous at the origin and withk(0) �= 0. (In the above
setting,k(0) < 0, Figure 4.)

Now σ2(q1) = −t1/3k(t)(1 + Ψ (t1/3k(t))), and thereforeσ2(q1) < t for t small. But
as the graph of the leaf in consideration is strictly decreasing forX < 0, theY -coordinate of
l = τ1(p1) is bigger thant, hencel is distinct fromq2, and thereforel is distinct fromp2.

In the above calculations we assumedp3 �= 0 and−q33p3 + p4 �= 0 (we also need
Λ1Λ2 �= 0 for the topological models in the domain). So the subset of parametrisations of
cross-caps satisfying these conditions is open and dense inW1. �

2.2. Lines of curvature. The equation of the principal directions of a smooth surface
is given by

(Fn−Gm)dy2 + (En−Gl)dydx + (Em− F l)dx2 = 0 .

For a cross-cap, we take the equation to be

(Fn1 −Gm1)dy
2 + (En1 −Gl1)dydx + (Em1 − F l1)dx

2 = 0 ,

wheren1, l1,m1 are as in (2). When the surface is parametrised as in (3), the coefficients of
the principal directions BDE at a cross-cap are given by

(a, b, c) = (M1(x, y), x +M2(x, y),−2y +M3(x, y)) ,

whereMi , i = 1,2,3, are germs of smooth functions depending onp andq, with

j3M1 = 4λµx3 + 4(1 + µ2 + 2λ)x2y + 12µxy2 + 8y3 ,

j2M2 = q32x
2 + 3(q33 − µp3)xy − 3p3y

2 ,

j2M3 = q31x
2 + 3(µp3 − q33)y

2 .

We can make changes of coordinates (see for example the proof of Proposition 3.2) in
the source and write the 3-jet of the coefficients of the BDE in the form

(a, b, c) =
(

−4y3,−1

2
x + 3

2
p3y

2 + βy3, y

)
,

whereβ is a constant depending on the coefficients of the monomials in the 4-jet of the
parametrisation of the surface. We can therefore use the results in Section 3.2 and Theorem
3.3 to deduce the following.

PROPOSITION 2.5. The equation of the lines of curvature in the domain of a paramet-
risation of a cross-cap is topologically equivalent to

−y3dy2 − xdxdy + ydx2 = 0 .

See Figure 5(a) for illustration.

REMARKS 2.6. 1. The result in Proposition 2.5is also obtained in [22] by studying
directly the equation of the lines of curvature.
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2. Proposition 2.5 shows that, for any surface with a cross-cap point, the singularity of
the BDE of its principal directions is locally an isolated point. Therefore, there is no sequence
of umbilic points on the smooth part of the surface that converges to the cross-cap point. (I
would like to thank Masaaki Umehara for asking the question that led to this remark.)

We investigate now how the configuration of lines of curvature in the domain is mapped
to the cross-cap. We first observe that there are three separatrices in this case. When the
surface is parametrised as in (3), one separatrix has a horizontal tangent and is given by
y = −(1/2)q31x

2 + h.o.t. and the remaining two have a vertical tangent and are given by
x = αiy

2+h.o.t., i = 1,2, whereαi are the roots of the quadratic equationα2+3p3α−2 = 0.
These last two separatrices are tangent to the double point curve given byx = −p3y

2 +h.o.t.
We observe that the double point curve is between the two separatrices.

The equation of the principal curves determines a pair of foliationsFi , i = 1,2, in
the parameter space. In turn, each foliation determines an involutionτi , i = 1,2, on the
double point curve which interchanges the two points of intersection of a smooth leave with
the double point curve, see Figure 5 (a). (We defineτi(0) = 0.)

THEOREM 2.7. We have τi(p) �= σ(p), i = 1,2, for p �= (0,0) on the double point
curve in a neighbourhood of the origin. As a consequence, the configuration of the lines of
curvature on a cross-cap is as in Figure 5.

PROOF. The double point curve is given byx = h(y), for some smooth functionh with
a zero 1-jet. We re-parametrise the surface by takingx = X + h(Y ), y = Y . In the new
coordinate system (that we still denote by(x, y)), the double point curve is along they-axis.
We denote by(ā, b̄, c̄) the coefficients of the lines of curvature BDE in this new coordinates

FIGURE 5. Configuration of the lines of curvature at a cross-cap, in the domain (a) and
on the surface (b), (c), (d) viewed from different directions. The thick curve
is the double point curve.
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system. We have

j2ā(x, y) = −4p3xy ,

j2b̄(x, y) = x + q32x
2 + (−3µp3 + 3q33)xy ,

j2c̄(x, y) = −2y + q31x
2 + (3µp3 − 3q33)y

2 .

Given a point(0, t), t �= 0, on theY -axis, there is a smooth leaf say ofF1 that passes
through this point and another ofF2. We shall consider the foliationF1 as the approach is the
same forF2.

We consider the polar blowing upx = ρ2 cosθ , y = ρ sinθ of the direction field parallel

to ξ1 = ā∂/∂x + (b̄ +
√
b̄2 − āc̄)∂/∂y, which is tangentF1. The resulting fieldη1 is regular

for (θ, ρ) ∈ [−π/2, π/2] × [0, l), with l a small positive real number. So the mapk : π/2 ×
[0, l1) → −π/2 × [0, l2) determined by the flow ofη1 is smooth andk′(0) �= 0. Blowing
down yieldsτ1(t) = −k(t).

The involutionσ on the double point curve is given byσ(t) = t (−1 + Ψ (t)) for some
smooth functionΨ with Ψ (0) = 0. We shall show thatτ ′

1(0) �= σ ′(0).
We seek changes of coordinates of the formx = X+Yf (X), y = Y , so that the direction

determinedξ1 is vertical on theX-axis. The new BDE is given by

A(X, Y )dY 2 + 2B(X, Y )dXdY + C(X, Y )dX2 = 0 ,(6)

with

A(X, Y ) = ā(X + Yf (X), Y ) + 2b̄(X + Yf (X), Y )f (X)+ c̄(X + Yf (X), Y )f (X)2 ,

B(X, Y ) = (1 + Yf ′(X))(b̄(X + Yf (X), Y )+ f ′(X)c̄(X + Yf (X), Y )) ,

C(X, Y ) = (1 + Yf ′(X))2c̄(X + Yf (X), Y ) .

So we need the coefficient ofdY 2 to vanish whenY = 0, that is,

A(X,0)+ 2B(X,0)f (X)+ C(X,0)f 2(X) ≡ 0 .

We can factor outX, and since(B(X,0)/X)(0,0) �= 0, it follows (by the implicit function
theorem) that there exists a germ of a smooth functionf that solves the above identity. A
calculation shows that

j3f (X) = −2λµX2 +
((

1

2
µ2 − 2λ+ 1

2

)
q31 − 3µq30q31

)
X3 .

We observe that the change of coordinatesx = X+ Yf (X), y = Y preserves theY -axis, that
is, the double point curve in the domain.

It follows from the above setting that the leaf ofF1 through(0, t) is the graph of a smooth
functionX = Gt(Y ), with sayGt(0) = 0. We can find the Taylor expansion ofGt(Y ) in Y
for t fixed by substitutingX anddX in the BDE (6). The coefficientα1 andα2 of Y − t and
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(Y − t)2 respectively are smooth functions given in the form

α1(t) = t
( − 2

√
p2

3 + 1 + α̃1(t)
)

α2(t) = −1

2

(
p3 + 3

√
p2

3 + 1
) + β̃(t)

with α̃i (0) = 0, i = 1,2. We can show, by induction, that the coefficient of(Y − t)k , for
k ≥ 3, in the Taylor expansion ofGt , is of the formt2−kαk(t) for some smooth functionαk.

The pointτ1(t) is the solution ofGt(Y ) = 0 which is distinct fromY = t, that is, the
solution of

α1(t)+ α2(t)(Y − t)+O2(Y − t) = 0 .

Thereforeτ ′
1(0) = 1 − α′

1(0)/α2(0) = (p3 −
√
p2

3 + 1)/(p3 + 3
√
p2

3 + 1). We haveτ ′
1(0) �=

−1 = σ ′(0) and henceτ1(t) �= σ(t) for t near the origin andt �= 0. �

2.3. Characteristic curves. The equation of the characteristic directions of a smooth
surface is given by

(2m(Gm− Fn)− n(Gl − En))dy2

+ 2(m(Gl + En)− 2F ln)dydx

+ (l(Gl − En)− 2m(F l − Em))dx2 = 0 ,

(see for example [19, 7, 11]). These are the analogue of the asymptotic directions in the elliptic
region. (The above BDE has no solutions in the hyperbolic region.) Characteristic/harmonic
curves are studied in [19, 32, 33], and more recently in [7, 11, 21].

For a cross-cap, we take the equation to be

(2m1(Gm1 − Fn1)− n1(Gl1 − En1))dy
2

+ 2(m1(Gl1 + En1)− 2F l1n1)dydx

+ (l1(Gl1 − En1)− 2m1(F l1 − Em1))dx
2 = 0 .

wheren1, l1,m1 are as in (2). There are no characteristic curves on a hyperbolic cross-cap as
all regular points are hyperbolic. We analyse the situation at an elliptic cross-cap.

When the surface is parametrised as in (3), the coefficients of the characteristic directions
BDE at a cross-cap are given by

(a, b, c) = (x2 + A(x, y),−xy + B(x, y),−λx2 + 2y2 + C(x, y)) ,

whereA,B,C are smooth functions depending onp andq (in (3)).
We can make changes of coordinates in the source and write the 4-jet of the coefficients

(a, b, c) of the BDE in the form

(x2+(36p2
3 +8)y4,−xy+b3(x, y)+b4(x, y),−λx2+2y2+c1x

2y+c2y
3+c3xy

3+c4y
4) ,
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FIGURE 6. Configurations of the characteristic curves in the domain left and on the
surface right at an elliptic cross-cap. The thick curves are the parabolic
curves.

with

c1 = −(−6λ2p3 + 3λq32 + 3q30)/λ ,

c2 = −(3λq33 − 3λµp3 + 3q31)/λ ,

andbi , i = 3,4, are homogeneous polynomial of degreei. The coefficients ofy3 in b3 is
given by−6p3. So the discriminant has always anX1,2-singularity (which isK-equivalent to
x4 + ax2y2 − y6 with a < 0).

The constants in Section 3.3 that determine the topological type of the BDE areΛ1 =
−(1/2)(λc2 + √

λc1) andΛ2 = −(1/2)(λc2 − √
λc1) with c1 andc2 as above.

We can now use the results in Theorem 3.6 and deduce the following.

PROPOSITION 2.8. The equation of the characteristic curves in the domain of a para-
metrisation of an elliptic cross-cap is topologically equivalent to one of the following normal
forms.

(i) (x2 + y4,−xy,−x2 + 2y2 + y3) if Λ1Λ2 > 0 (Figure 6, top), or
(ii) (x2 + y4,−xy,−x2 + 2y2 + xy2) if Λ1Λ2 < 0 (Figure 6, bottom).

The topological type is completely determined by the 3-jet of the parametrisation of the sur-
face.

Mapping the solution curves in the domain to the surface can be done without difficulties
in this case. As observed before, the double point curves lies in the hyperbolic region of the
surface. So one only need to map each sector of the configuration in the parameter space to
the surface in the appropriate way (as shown in Figure 6).

3. Topological normal forms of BDEs. The three foliations in the previous section
are solution curves of binary differential equations (BDEs), also called quadratic differential
equations. These are implicit differential equations that can be written, in a local chart, as in
(1).
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One approach for dealing with the qualitative study of BDEs that define at most two
directions in the plane is given in [38] (see also [14]). It consists of lifting the bi-valued
direction field defined in the plane to a single fieldξ on the surfaceM̃ = F−1(0) in R3. (The
vector fieldξ is determined by the restriction of the standard contact formdy − pdx in R3 to
the surface.)

When the coefficientsa, b, c all vanish, say at the origin, all directions are solutions at
this point. One way to proceed is given in [5] where the associated surface

M = {
(x, y, [α : β]) ∈ R2,0 × RP 1 | aβ2 + 2bαβ + cα2 = 0

}
to the BDE is considered. The discriminant functionδ = b2−ac plays a key role. Whenδ has
a Morse singularity the surfaceM is smooth and the projectionπ : M → R2,0 is a double
cover of the set{(x, y) | δ(x, y) > 0} ([8]). The bi-valued direction field defined by the BDE
lifts to a single fieldξ onM and extends smoothly toπ−1(0). Note that 0× RP 1 ⊂ π−1(∆)

and is an integral curve ofξ .
Consider the affine chartp = β/α (we also consider the chartq = α/β), and set

F(x, y, p) = a(x, y)p2 + 2b(x, y)p+ c(x, y) .

Then the lifted direction filed is parallel to the vector field

ξ = Fp
∂

∂x
+ pFp

∂

∂y
− (Fx + pFy)

∂

∂p
.

If we write j1a = a1x + a2y, j1b = b1x + b2y, j1c = c1x + c2y, the singularities ofξ on
the exceptional fibre are given by the roots of the cubic

φ(p) = (Fx + pFy)(0,0, p)

= a2p
3 + (2b2 + a1)p

2 + (2b1 + c2)p + c1 .

The eigenvalues of the linear part ofξ at a singularity are−φ′(p) andα1(p) with

α1(p) = 2(a2p
2 + (b2 + a1)+ b1) .

It is shown in [8] (see also [24]) that whenM is smooth, we can change coordinates and write
the 1-jet of the coefficients(a, b, c) of the form(y, b1x + b2y,±y). There are special curves
in the (b1, b2)-plane that bound open regions where the configuration of the BDE is topo-
logically constant, and the models for these configurations are given in [8]. The topological
configurations on generic points of these special curve are also determined in [36].

Another way to proceed in the study of BDEs is to consider a blowing-up of the singular-
ity. This is done in [34] for the lines of curvature BDE on a smooth surface. Guíñez [25] used
this technique on BDEs whose discriminant is an isolated point (labelled there positive qua-
dratic equations). However, we show here and in [36] that Guíñez’s method can be extended
to cover general BDEs. We follow this approach to obtain topological models of BDEs whose
discriminants have the sameK-singularity type as those of the asymptotic, characteristic and
principal BDEs of the cross-cap.
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Following the notation in [25], letω denote the BDE with coefficients(a, b, c) and
fi(w), i = 1,2, the foliation associated toω which is tangent to the vector field

ξi(ω) = a
∂

∂u
+ ( − b + (−1)i

√
b2 − ac

) ∂
∂v
.

If ψ is a diffeomorphism andλ(x, y) is a non-vanishing real valued function, then ([25]) for
k = 1,2,

1. ψ(fk(w)) = fk(ψ
∗(ω)), if ψ is orientation preserving;

2. ψ(fk(w)) = f3−k(ψ∗(ω)), if ψ is orientation reserving;
3. fk(λw) = fk(ω), if λ(x, y) is positive;
4. fk(λw) = f3−k(ω), if λ(x, y) is negative.

3.1. Discriminant with anA−
1 -singularity. We study here BDEs with a discriminant

having a Morse singularity at the origin and where the quadraticα1 and the cubicφ have
two common roots (see above for notation). The last condition is equivalent to two roots of
φ being at the points of intersection of the lift of the branches of the discriminant with the
exceptional fibre. (The case whereα1 andφ have one common root is dealt with in [36].)

When j1(a, b, c) = (y, b1x + b2y, y), α1 andφ have a common root if and only if
b1 = ±b2 − 1. So we have two common roots when(b1, b2) = (−1,0). (At these points the
lifted field ξ onM has generically a saddle-node singularity.) We write

ω = (a, b, c) = (y +M1(x, y),−x +M2(x, y), y +M3(x, y)) ,

whereMi are smooth functions with zero 1-jets at the origin. We set

A(x, y) = j2M1 = a0x
2 + a1xy + a2y

2 ,

B(x, y) = j2M2 = b0x
2 + b1xy + b2y

2 ,

C(x, y) = j2M3 = c0x
2 + c1xy + c2y

2 .

In order to obtain the configurations of the integral curves of these BDEs, we consider
the directional blowing-upx = u, y = uv. (We also consider the blowing-upx = uv, y = v,
but this does not yield extra information.) Then the new BDE is given byω0 = (u, v)∗ω =
ādv2 + 2b̄dudv + c̄du2 with

ā = u2(uv +M1(u, uv)) ,

b̄ = uv(uv +M1(u, uv))+ u(−u+M2(u, uv)) ,

c̄ = v2(uv +M1(u, uv)) + 2v(−u+M2(u, uv))+ uv +M3(u, uv) .

We can writeω0 = u(u2A1, uB1, C1) with

A1 = v + uN1(u, v)

B1 = v2 − 1 + u(vN1(u, v) +N2(u, v))

C1 = v(v2 − 1)+ u(v2N1(u, v)+ 2vN2(u, v) +N3(u, v))

andMi(u, uv) = u2Ni(u, v), i = 1,2,3.
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The quadratic formω1 with coefficients(u2A1, uB1, C1) is a product of two 1-forms,
and to these 1-forms are associated the vector fields

Xi = u2A1
∂

∂u
+ ( − uB1 + (−1)i

√
u2(B2

1 − A1C1)
) ∂
∂v
, i = 1,2 .

We can also writeω1 as the product of two 1-forms associated to the vector fields

Zi = ( − uB1 + (−1)i
√
u2(B2

1 − A1C1)
) ∂
∂u

+ C1
∂

∂v
, i = 1,2 .

We can factor out a termu in Xi and consider the vector fields

Yi = uA1
∂

∂u
+ ( − B1 + (−1)i

√
B2

1 − A1C1
) ∂
∂v
, i = 1,2 .

The blowing-up transformation is orientation preserving ifu is positive and orientation
reserving ifu is negative. As we have factored outu twice, it follows thatY1 is tangent to the
foliation associated tof1(w) if u is positive and to that associated tof2(w) if u is negative;
while Y2 is tangent to the foliation associated tof2(w) if u is positive and to that associated
to f1(w) if u is negative (see [25] and the statement before Section 3.1).

We study the vector fieldsYi in a neighbourhood of the exceptional fibreu = 0. The
fieldsYi are only defined in the regions whereB2

1 − A1C1 ≥ 0. Onu = 0, this means that

(v + 1)(v − 1) ≤ 0 .

(This is distinct from the cases treated by Guíñez, whereYi are defined on the whole excep-
tional fibre.) We observe that the above segment of the exceptional fibre is an integral curve
of both fieldsYi , i = 1,2.

The singularities ofY1 onu = 0 occur when(−B1 −
√
B2

1 − A1C1)(0, v) = 0, that is,

when−(v2 − 1)− √
1 − v2 = 0. Equivalently, when{

v2(v2 − 1) = vφ(v) = 0 and
v2 − 1 ≤ 0 ,

whereφ is the cubic in Section 3. SoY1 has singularities atv = ±1 andv = 0.
At v = 0, we haveB1(0,0) = −1< 0, so that

−B1 −
√
B2

1 − A1C1 = −B1 + B1

√
1 − A1C1/B

2
1

= −A1C1

2B1
+ A2

1g(u, v)

for some germ of a smooth functiong with a zero 1-jet at the origin. ThereforeY1 is singular
along the curveA1(u, v) = 0. We consider the vector field̃Y1 = Y1/A1. ThenỸ1 has a saddle
singularity at the origin.

The singularities atv = ±1 occur at the points of intersection of the exceptional fibre
with the branches of the blown-up discriminant. Consider the situation atv = +1. We change
variables and sets = u, t2 = B2

1 − A1C1, with t ≥ 0. The 2-jet of the vector field(s, t)∗Y1
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FIGURE 7. Integral curves of(s, t)∗Yi (t ≥ 0), i = 1 left, andi = 2 right.

is equivalent to(Λ1s + t)∂/∂t + st∂/∂s, whereΛ1 is given by

Λ1 = −1

2
(A(1,1)+ 4B(1,1)+ 3C(1,1)) .

The singularity of(s, t)∗Y1 is a saddle-node providedΛ1 �= 0, and its integral curves (up to a
reflection with respect to the vertical axis, depending on the sign ofΛ1) are as in Figure 7 left,
and therefore those ofY1 are as in Figure 8 top. Observe that the centre manifold of(s, t)∗Y1

is transverse to thet-axis.
We proceed similarly atv = −1, change variables and sets = u, t2 = B2

1 −A1C1, with
t ≥ 0. The 2-jet of the vector field(s, t)∗Y1 is equivalent to(Λ2s + t)∂/∂t + st∂/∂s, where
Λ2 is given by

Λ2 = 1

2
(A(1,−1)− 4B(1,−1)+ 3C(1,−1)) .

The singularity of(s, t)∗Y1 is a saddle-node providedΛ2 �= 0, and its integral curves (up to
a reflection with respect to the vertical axis, depending on the sign ofΛ2) are as in Figure 7
left, and therefore those ofY1 are as in Figure 8 top.

We have two possibilities (up to a reflection with respect to the vertical axis) for the con-
figuration of the integral curves ofY1 in a neighbourhood of the exceptional fibre depending
on the sign ofΛ1Λ2, see Figure 8 top.

The vector fieldY2 is singular onu = 0 when(−B1 +
√
B2

1 − A1C1)(0,v)=0, that is, when
v = ±1. Similar calculations to those above forY1 show that the 2-jet of the vector field
(s, t)∗Y2 is equivalent to(Λ1s − t)∂/∂t + st∂/∂s at v = 1 and(Λ2s − t)∂/∂t + st∂/∂s at
v = −1, withΛ1 andΛ2 as above. We observe that the configurations of the integral curves
of (s, t)∗Y2 can be deduced from those of(s, t)∗Y1 by the change of variablet �→ −t. So
at both pointsv = ±1, the integral curves of(s, t)∗Y1 and(s, t)∗Y2 are (up to a reflection
of both figures with respect to the vertical axis) as in Figure 7 (left for(s, t)∗Y1 and right for
(s, t)∗Y2). The configurations (two possibilities) of the integral curves ofY2 are as in Figure
8 top. Blowing-down yields the configuration of the integral curves of the original BDE.
Consequently, we have two distinct types of configurations depending on the sign ofΛ1Λ2.
One can show that any two configurations of the same type are topologically equivalent. This
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FIGURE 8. Configurations of the integral curves of the BDEs whenα1 andφ have two common roots and
their blown up models:Λ1Λ2 > 0 left, andΛ1Λ2 < 0 right.

can be done by choosing an appropriate neighbourhood of the origin and by sliding along
integral curves (see for example [6, 35, 37]).

We have thus the following result.

THEOREM 3.1. Suppose that the quadratic α1 and the cubic φ have two common roots
and the lifted field ξ has genuine saddle-node singularities there. Then the BDE is topologi-
cally equivalent to one of the following normal forms.

(i) ydy2 + 2(−x + y2)dxdy + ydx2 = 0 (Figure 8, left), or
(ii) ydy2 + 2(−x + xy)dxdy + ydx2 = 0 (Figure 8, right).

The topological models are completely determined by the 2-jets of the BDE.

3.2. Discriminant with anA3-singularity. We study here BDEs where the 1-jet of
the coefficients is given by(0, b0x, y), b0 �= 0. We start by reducing thek-jet of the BDE
ω = (a, b, c) to a normal form (see also [10]).

PROPOSITION 3.2. The k-jet (k ≥ 2) of a BDE ω with j1ω = (0, b0x, y) can be
reduced, for b0 distinct from a finite set of values, by smooth changes of coordinates and
multiplication by a non-zero polynomial to

ak(y)dy
2 + 2(b0x + bk(y))dxdy + ydx2 ,

where ak and bk are polynomials with zero 1-jets.

PROOF. We writeω = (a(x, y), b0x+b(x, y), y+ c(x, y)), and make smooth changes
of coordinates in the form

x = X + p(X, Y ) , y = Y + q(X, Y ) ,
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wherep andq are germs of homogeneous polynomials of degreek in X,Y . We also multiply
the new BDE by 1+ r(X, Y ), wherer is a germ of homogeneous polynomial of degreek− 1
in X,Y . The homogeneous part of degreek of the coefficients of the new BDE are given by

Ak = ak + 2b0Xpy ,

Bk = b0p + b0X(pX + qY )+ YpY + b0Xr + bk ,

Ck = 2b0XqX + 2YpX + qk + Yr + ck ,

where all the polynomials are evaluated at(X, Y ). It is clear that we can eliminate all terms
divisible byX in Ak by choosing an appropriate polynomialp. To reduce furtherBk andCk
to the required forms, we need to show that the system inq andr

b0XqY + b0Xr = b̄k ,

2b0XqX + qk + Yr = c̄k

has a solution, wherēbk is the polynomial−(b0p + b0XpX + YpY + bk) with the termY k

removed and̄ck = −(2YpX + ck) (p chosen as above). The above system has a solution if a
certain matrix has a non-zero determinant. This is the case ifb0 �= (i − 1)/(2(k − i)), 1 ≤
i ≤ k − 1. We observe that the system has always a solution whenb0 = −1/2, as is the case
in Section 2.2. �

In Section 2.2 the discriminant has anA3-singularity. So we can takej3ω =
(a3y

3, b0x + b2y
2 + b3y

3, y), with a3 �= 0. We write

ω = (a3y
3 +M1(x, y), b0x + b2y

2 +M2(x, y), y +M3(x, y)) ,

where the germsM1 andM3 have zero 3-jets andM2 has zero 2-jet.
We consider now the following quasi-homogeneous blowing-ups:
y-direction:x = uv2, y = v,
x-direction:x = u2, y = uv andx = −u2, y = uv, with u ≥ 0.
The blowing-up in they-direction does not give any singularities at the origin, and so it

is enough to work with the blowing-ups in thex-direction.
The new BDEω̄ obtained by considering the blowing-upx = εu2, y = uv (ε = ±1)

has coefficients

ā = u2a(εu2, uv) ,

b̄ = uva(εu2, uv) + 2εu2b(εu2, uv) ,

c̄ = v2a(εu2, uv) + 4εuvb(εu2, uv)+ 4u2c(εu2, uv) .

We writeω̄ = u3(u2A1, uB1, C1) with

A1 = a3v
3 + uN1(u, v) ,

B1 = 2b0 + 2εb2v
2 + a3v

4 + uvN1(u, v)+ 2εuN2(u, v) ,

C1 = v(4(b0 + 1)+ 4εb2v
2 + a3v

4)+ uv2N1(u, v)+ 4εuvN2(u, v)+ 4u3N3(u, v) ,

whereMi(εu
2, v) = u4Ni(u, v) for i = 1,3, andM2(εu

2, v) = u3N2(u, v).
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The quadratic formω1 = (u2A1, uB1, C1) is a product of two 1-forms, and to these
1-forms are associated the vector fields

Zi = ( − uB1 + (−1)i
√
u2(B2

1 − A1C1)
) ∂
∂u

+ C1
∂

∂v
, i = 1,2 .

The blowing-up transformation is orientation preserving ifε = +1 and orientation re-
serving if ε = −1. Furthermore, asu ≥ 0, it follows thatZ1 is tangent to the foliation
associated tof1(w) if ε = +1 and to that associated tof2(w) if ε = −1; whileZ2 is tangent
to the foliation associated tof2(w) if ε = +1 and to that associated tof1(w) if ε = −1 (see
[25] and the statement before Section 3.1).

We can seta3 = ±1 by a scalar change of coordinates and treat now the casesa3 = 1
anda3 = −1 separately.

(i) The case j3w = (−y3, b0x + b2y
2 + b3y

3, y). The vector fieldsZi are defined
along the whole exceptional fibre. The number and type of their singularities along this fibre
depend only on the pair(b0, b2). (Reflecting with respect to the origin shows that the type of
the BDE associated to the pair(b0,−b2) is the same as that associated to(b0, b2).) There are
three curves in the(b0, b2)-plane where the number or the type of the singularities changes.
These are the parabola 1+b0+b2

2 = 0, and the linesb0 = −1 andb0 = 0 (see Figure 9, left).
In the open regions determined by these curves, the configurations of the foliations associated
to Zi , i = 1,2, are constant and are as in Figure 10. (The calculations are similar to those in
the previous section and are omitted here.)

(ii) The case j3w = (y3, b0x + b2y
2 + b3y

3, y). Here the vector fieldsZi are defined
in a neighbourhood of the exceptional fibre whereB2

1 − A1C1 ≥ 0. On the criminant curve
B2

1 − A1C1 = 0, one can show that the integral curves ofZi form a family of regular curves
ending transversally at this curve (the exceptional fibre being a common integral curve of both
fields).

The number and type of the singularities ofZi on the exceptional fibre depend only on
the pair(b0, b2). There are five curves in the(b0, b2)-plane where the number or type of

FIGURE 9. Partition of the(b0, b2)-plane,ε = −1 left andε = +1 right.
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singularity changes. These are: the parabola 1+ b0 − b2
2 = 0, and the linesb0 = −1,b0 = 0,

2 + b0 − 2b2 = 0, 2+ b0 + 2b2 = 0 (see Figure 9, right). In the open regions determined by
these curves, the configurations of the foliations associated toZi , i = 1,2, are constant and
are as in Figure 11.

We have then the following result.

THEOREM 3.3. Suppose that j3ω = (±y3, b0x + b2y
2 + b3y

3, y). Then the topolog-
ical type of the BDE ω is constant in the open regions in the (b0, b2)-plane in Figure 9. The
configurations of the integral curves of the BDE in these regions are as shown in Figures 10
and 11.

REMARK 3.4. Normal forms for the BDEs in Theorem 3.3 can be taken in the form
(±y3, b0x + b2y

2, y) with (b0, b2) any fixed value in the open regions in Figure 9.

3.3. X1,2-singularity. We study in this section certain BDEs with a discriminant hav-
ing anX1,2-singularityK-equivalent tox4 + λx2y2 − y6 with λ < 0. The characteristic BDE
in Section 2.3 has a 2-jet(x2,−xy,−ax2 + 2y2), a > 0.

PROPOSITION 3.5. The 4-jet of a BDE with a 2-jet (x2,−xy,−ax2+2y2) and whose
discriminant has an X1,2-singularity can be reduced, by smooth changes of coordinates when

FIGURE 10. Configurations of the integral curves of(−y3, b0x+ b2y
2 + b3y

3, y) and
their associated directional blowing-up models.
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FIGURE 11. Configurations of the integral curves of(y3, b0x + b2y
2 + b3y

3, y) and their associated directional
blowing-up models.

a �= 0, to

(x2 + dy4,−xy + b3(x, y)+ b4(x, y),−ax2 + 2y2 + c1xy
2 + c2y

3 + c2xy
3 + c4y

4) ,

where b3 (resp. b4) is a homogeneous polynomial of degree 3 (resp. 4) and d and ci , i =
1,2,3,4, are constants.

The proof is similar to that of Proposition 3.2 and is omitted.
Whena < 0, the discriminant has anX1,2-singularity which isK-equivalent tox4 +

λx2y2 − y6 with λ < 0 if d − b2
33 > 0, whereb33 is the coefficients of the termy3 in b3.

We consider the blowing-upx = u, y = uv. (We also consider the blowing-upx =
uv, y = v, but this does not yield any extra information.) We can write the coefficients of the
new BDE in the form(ā, b̄, c̄) = u2(u2A1, u

2B1, C1) with

A1 =1 + u2N1(u, v) ,

B1 =b3(1, v)+ uN2(u, v) ,

C1 = − a + v2 + uN3(u, v) ,

whereNi(u, v), i = 1,2,3, are smooth functions along the exceptional fibre.
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We consider the vector fields

Zi = ( − u2B1 + (−1)i
√
u2(u2B2

1 − A1C1)
) ∂
∂u

+ C1
∂

∂v
, i = 1,2 .

The discriminant lifts to two smooth curves that are generically transverse to the excep-
tional fibre at−a + v2 = 0. The fieldsZi , i = 1,2, are defined in a neighbourhood of the
segment−a + v2 ≥ 0 and are regular along−a + v2 > 0.

At v = √
a, we change variables and sets = u, t2 = u2B2

1 − A1C1, with t ≥ 0. It
follows thatC1 = (uB1 − t)(uB1 + t)/A1 andv = g(s, t). The ODE associated to(s, t)∗Zi
is

((sB̄1 − t)(sB̄1 + t)/Ā1)ds − (−s2B̄1 + (−1)i |s|t)(gsds + gt dt) = 0 ,

whereĀ1 = A1(s, g(s, t)) andB̄1 = B1(s, g(s, t)). We can factor out(sB̄1 − t) or (sB̄1 + t),
depending oni and the sign ofs (i.e.,u). So we need to consider the vector fields

(sB̄1 + sign(s)(−1)i t + sĀ1gs)
∂

∂t
+ sĀ1gt

∂

∂s
, s ≥ 0 , i = 1,2 .

As the blowing-up transformation is orientation preserving ifu (i.e.,s) is positive and orien-
tation reserving ifu is negative, we can drop sign(s) above and deal with the vector fields

Wi = (sB̄1 + (−1)i t + sĀ1gs)
∂

∂t
+ sĀ1gt

∂

∂s
, i = 1,2 .

Their foliations are associated to those offi(w), i = 1,2 (see [25] and the statement before
Section 3.1).

FIGURE 12. Configurations of the integral curves of a BDE at anX1,2-singularity of the
discriminant and their associateddirectional blowing-up models:Λ1Λ2 >

0 top,Λ1Λ2 < 0 bottom.
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The 2-jet ofWi is equivalent to(Λ1s + (−1)i t)∂/∂t + (1/
√
a)st∂/∂s, whereΛ1 =

−(1/2)(ac2 + √
ac1). The singularity is a saddle-node providedΛ1 �= 0.

At v = −√
a, similar changes of coordinates as above show that the 2-jet ofWi , i = 1,2,

is equivalent to(Λ2s − (−1)i t)∂/∂t + (1/
√
a)st∂/∂s, withΛ2 = −(1/2)(ac2 − √

ac1). The
singularity is a saddle-node providedΛ2 �= 0.

We have two possible generic configurations for the integral curves of the BDE depend-
ing on the sign ofΛ1Λ2 (see Figure 12).

THEOREM 3.6. Suppose that the BDE has a 2-jet equivalent to (x2,−xy,−ax2 +
2y2), with a > 0, and its discriminant has an X1,2-singularity of type x4 + λx2y2 − y6, with
λ < 0. Then it is topologically equivalent to one of the following normal forms.

(i) (x2 + y4,−xy,−x2 + 2y2 + y3) (Figure 12, left),
(ii) (x2 + y4,−xy,−x2 + 2y2 + xy2) (Figure 12,right).
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