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Abstract. The main purpose of the present paper is to show that a class of dynamical
zeta functions associated with the so-called two-dimensional open billiard without eclipse have
meromorphic extensions to the half-plane dstisg of all complex numbers whose real parts
are greater than a certain negative number. As an application, we verify that the zeta function
for the length spectrum of the corresponding billiard table has the same property.

1. Introduction. Let Q1, Q2,...,Qy, J > 3, be a finite number of bounded do-
mains in Euclidean 2—spa<E<>.2 with boundarie® Q1, 00>, ..., 30, each of which is called
a scatterer. Throughout the paper, we assume that these scatterers are located without having
eclipses. Precisely, the following Ikawa conditions (H.1) and (H.2) are satisfied (see Figure 1;
see also [7]).

(H.1) (Dispersing) For eacli, the boundary Q; of the domainQ; is a strictly
convex simply closed curve of cla6¥.

(H.2) (No eclipse) For any triplet of distinct indicég, j», j3), we have

con(Q;,UQ;,)NQj; =9,
where conyA) denotes the convex hull of the sét Consider the exterior of these scatterers
0 =R?\|J/_, 0. Clearly,dQ = |J/{_,9Q;. Forg € 30, n(q) denotes the inward unit
normal ofd Q atq. Let us consider the billiard flo’ on Q, that is, the Euclidean geodesic
flow on the manifoldQ obeying the law of reflections at the boundary (cf. [3], [4] and [18]).

Let SR? = R? x 1 denote the unit tangent bundleRf andr : SR? — R?; (¢, v) > ¢
the natural projection. The state spa¢eof the billiard flow is given by

M=rYQ U100/,

where the equivalence relatienonz ~1(3 Q) means thatg, v) ~ (p, w) ifand onlyifg = p
andw = v — 2(v, n(q))n(q). Namely, the state of incidence and the state of reflection are
identified. Therefore, by selecting the statesadfection as representatives, we may identify
7713 Q)/~ with
M ={x=(q,v);q €30, (v,n(q)) = 0}.
2000Mathematics Subject Classification. Primary 37C30; Secondary 37D50, 37F15.
Key words and phrases. Dynamical zeta functions, thermodynamic formalism, dispersing billiards without

eclipse.
Partly supported by the Grant-in-Aid for Scientific Rasgh (B), Japan Society for the Promotion of Science.




168 T. MORITA

FIGURE 1.

As shown in [9], the non-wandering s& c M of the flow S’ coincides with the set
of initial statesx for which 7 (S’x) € aQ for infinitely many: > 0 and infinitely many
t < 0 as well. Moreover, it has a sort of hyperbolic structure quite similar to the basic sets
for Axiom A flows. Thus, we can investigate the dynamical propertie€ &y constructing a
suspension flow over an appropriate discrete dynamical system. To be more precise, consider
the set2*™ = M+ N £2. The first collision time™ : 27 — R and the first collision map
T : 2% — 271 are defined by

) =infit > 0;S'x e 21}, Tx=5" Wy,

Then the billiard flow restricted t&2 can be represented by the suspension flow over the
discrete dynamical systea®2 ™, 7') with ceiling functions™. Usually, the first collision map
T is called the billiard map.

Given a functionV : 2+ — C, we introduce a formal functiogy (s) of complex
variables, which is called the zeta function f@r with potential functionv, as follows:

o0 n—1
v (s) =exp<2% Z exp(—sZV(Tix))),
n=1 i=0

x:Thx=x
where)" .;.,_, means the sum taken over all pointg 2+ such tha’"x = x.
The main result in this paper is the following.

THEOREM 1.1. Assume that the potential function vV on 22T satisfies the following
three conditions:
(A.1) V isLipschitz continuous with respect to the Euclidean metric restricted to 2.
(A.2) Viseventually positive, i.e., thereexists a positiveinteger ng such that
n—1
> V(x>0

i=0
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foranyx € 21 andn > no;

(A.3) for eachx € 2, V isconstant along the local stable curve of x.
Then there are positive constants ey and By satisfying the following.

(&) The series in the definition of ¢y is absolutely convergent in the half-plane
Res > ay and ¢y defines an analytic function without zero.

(b) ¢y has a meromorphic extension without zero in a domain containing the closed
half-plane Res > ay. In particular, s = oy isa simple pole.

(c) Moreover, ¢y has a meromorphic extension without zero in the half-plane
Res > —By.

Since we can construct a Holder contims conjugacy between the dynamical system
(27, T) and the mixing subshift of finite typeX, o) (see [9] and [12]), assumptions (A.1)
and (A.2) enable us to apply the general theory of thermodynamic formalism for mixing
subshifts of finite type (see [2], [14] and [17]) ¢@ ™, T), where

Y ={w=wWnez € {1,2,...,J}%; w, # wpy1 foranyn € Z}.

Thus, we see that the validity of Assertions (a) and (b) with nurabés characterized by the
equationP (—ay V) = 0, whereP (U) denotes the so-called topological pressure of a function
U. Therefore, the substantial part of Theorem 1.1 is Assertion (c) for which assumption (A.3)
plays a crucial role in the proof. We note tithe general theory is not strong enough to
derive Assertion (c) even if we additionally assume assumption (A.3).ohhis is because
the symbolic dynamic&X’, o) do not inherit the information on the regularity of the invariant
foliation of (£2, T) constructed in [12]. So we have to introduce a new idea to investigate
(27T, T) directly (see Remark 7.2 for the details). It should be remarked that many functions
V satisfy the assumptions in Theorem 1.1. For instance, given any positive valued Lipschitz
continuous functionF on 2+, we obtain a desired functiovi by taking a kind of average
along each local stable curve (see Section 6).

Theorem 1.1 plays a significant role in the study of distribution of the length spectrum of
the billiard tableQ. In this case, the zeta function which is our main concegpisbecause
it plays the same role as the Riemann zeta function for the distribution of the prime numbers.
For example, we have the Euler product formula

G (s) = [ @ — exp(—st () *,

where[ [, means the product taken over all prime closed orbits of the billiard flow/@nd
denotes the Euclidean length of the orbit. It is plausible that the special valye af the
origin yields an invariant of the billiard tabl@, for example, it must have the information

on the number of scatterers. However, unless Theorem 1.1 is establistigd fmme cannot
considers,+(0) at all. Sincer™ satisfies (A.1) and (A.2) but not (A.3), some modification is
necessary to apply Theorem 1.1rta A well-known technique in thermodynamic formalism
allows us to obtain a function on 2+ cohomologous te™ satisfying (A.3). Clearly¢,+ =

g holds. In this procedure, however, the regularity of the resulting function is no better than
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that of the original function, and is possibly much worse in general. Fortunately, we can verify
that the corresponding functianto ™ can be constructed so that it also satisfies both (A.1)
and (A.2). Indeed, we can show the following.

THEOREM 1.2. There exists a function ¢ satisfying Assumptions (A.1), (A.2) and
(A.3) such that it is cohomologous to the function ¢, i.e., there exists a real-valued con-
tinuous function 2 on £2F such that g(x) = t*(x) + h(Tx) — h(x) holdsfor any x € 2.

Note that even it is positive, the functiory cohomologous te* is not necessarily
positive. We only see that it is eventually positive. Thus, we prove Theorem 1.1 under the
Assumption of eventual positivity rather than positivity. Consequently, as a corollary to The-
orem 1.2 we obtain the following.

THEOREM 1.3. Assertions(a), (b)and (c) in Theorem 1.1 are valid forz,+.

Finally, we note that the present paper consists of the unpublished results obtained in [11]
and the second half of [10]. One finds that the first half of [10] is devoted to the construction
of the K -stable foliation for the billiard mag and the second half to Theorem 1.1 above.
Theorems 1.2 and 1.3 are proved in [11]. Inartb make these results more comprehensive,
we reorganize [10] and [11] to obtain [12] and the present paper.

The present paper is organized as follows. In Section 2, we recall some basic definitions
and fundamental results for the billiard map. In Section 3 we explain how to reduce our
problem ofT to that of a one-dimensional expanding map. In Section 4 we introduce a family
of transfer operators that plays a principal role in our argument. Section 5 is devoted to the
proof of Theorem 1.1. In Section 6, by a sort of averaging, we construct a function satisfying
the Assumptions in Theorem 1.1. Finally, we prove Theorems 1.2 and 1.3 in Section 7.

2. Preliminaries. In this section we summarize the basic facts and results in the pre-
vious work [12] without proof. As mentioned in Section 1, the original forms of all of the
results and their proofs in this section can also be found in the first half of [10].

We consider the billiard flows’ on the exteriorQ of scatterers satisfying the Ikawa
conditions (H.1) and (H.2). The state spadeof S’ is regarded as

M=rxloumT,

wherer : R? x §1 — R? is the natural projection ansf/t is the totality of the states of
reflection

M ={x=1(q,v);q €90, (v,n(g)) >0}.

We introduce a convenient local coordinates system 143 Q. Choose a base poigt(j)
foreachj = 1,2, ..., J, and define the following quantities far= (¢, v) € 7190 (see
Figure 2):

o wox)=jifqedQ;;

e r(x)isthe arclength frorg (wo(x)) to ¢ measured counterclockwise along the curve
200,
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@(x) <0 in this case

x=(q.v)

FIGURE 2.

e ¢(x) is the angle between the vectorand the inward unit normal(¢) measured
counterclockwise from(g) to v.
The coordinates above will be called they)-coordinates. Foy = 1,2, ..., J, set

Mf:{xeMJr;wo(X):j},

each of which will be called a connected componentof. Note that the change of the base
pointg () causes only the translation along theoordinate and preserves thecoordinate.

In other wordsM;.r can be obtained froR x [—x/2, /2] by identifying the pointgr, ¢)

with (r +1(3Q;), ¢), wherel(d Q ;) denotes the perimeter of the simple closed curgs.
Therefore, we often regamljl;r as the fundamental domai0, /(3 Q;)) x [-7/2,7/2]. In
addition, we often use the, ¢)-coordinates without specifying base points and often drop
the first coordinatg when working on a fixed connected componM}J.t. We also abuse the
notationx = (g, v) = (r, ¢) if there is no possibility of confusion. Under this convention, the
totality of reflection states/™ is expressed as

Mt ={xent00; —m/2<¢(kx) <m/2}.

Next, we define the first and the last collision times for the billiard flow & M+ as
follows:
tt(x) =inf{r > 0; S'x e M1},
t~(x) =supt < 0; S'x e MT},
wherer*(x) (resp.t~(x)) is regarded as-co (resp.—oo) if the set in question above is empty.
Set
Di={xeM" ;1T (x) <o}, D_1={xeM':t7(x)> —o00}.

We define the first and the last collision maps Dy — M+ andT~1: D_; — M™* by

Tx =S Wy if xeDi,
T lx=8"®x if xeD_4,

respectively. The first collision map is usually called the billiard ball map Sér
T (resp.T 1) turns out to be & ?-diffeomorphism from inD; (resp. intD_1) onto intD_;
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(resp. intD1). For each positive integer, we defineD,,, D_,, T" andT " inductively by
Dpr1={x € Dp; 1T (T"x) < o0}, T'ix=T(T"x) forx e Dyi1,
Doy ={x €Dt (T"x) > —o0}, T "Dy=r1"2T"x) forx e D_11).

AlthoughT" andT " are independently defined in the context above, it is clearfthét—=
(T™~1 holds for anyz > 1. The non-wandering se&? is given by

2 ={x € M; 7(5'x) € 30 holds for infinitely many > 0 and:s < 0} .

The set2™ = 2 N M™ is expressed a®* = (), .z D, andT is clearly invertible on2 ™,
whereDy is regarded a3/ ™ for the sake of convenience. We see that the ffdwestricted
to £2 can be represented as a suspension flow with base transform@tiar?”) and ceiling
functions*. More precisely, set

2t = {(x,9);x e QF,0<s <1t (0)}/~,
where ~' means thatx, :* (x)) is identified with(T x, 0). We can define a fIO\IT,’+ so that
Tti(x, s)=(x,s+1)

holds for (s, x) with 0 < s + ¢ < tT(x). Then the flows(£2, §') and (2+", T',) are
conjugate each other in such a way that theregsponding periodic orbits have the same
periods.

Forx € M™, we put

w;i(x) = wo(T'x) if T'is defined.

For integersk and/ with —oco < k <1 < o0, a sequencq;wi}ﬁ:k is called the itinerary
of x € M™T from timek to time! if w; = w;(x) holds for each € Z N [k, []. The number
[—k+1, possiblyc, is called the length of the itinerary. Af= —oo and! = oo, the sequence
{wi (x)}72_ . is simply called the itinerary of and is denoted by (x). On the other hand,
for non-negative integer, a sequencéw;}’_, € {1,2,..., J)"*t1is called admissible or an
admissible word if there exists € X such that; = w; holds for each € ZN [0, n]. The
numberm + 1 is called the length of the word. The totality of admissible words with length
is denoted byV,.

In [10] and [12] (see also [9]) it is shown that the map

wH):RT > X, x> wk)
is a topological conjugacy between the topological dynamical syst&s T) and the shift
(X, 0).
We reduce our problem to a one-dimensional expanding map in Section 3. To this end we

need more investigations. For eagby, wy, ..., w,) and(w_,, w_—1), . .., wo) iN W41,
set

Dp(wowt -+ wy) ={x e MT; wi(x) =w; fori =0,1,...,n} and

D_p(W_pw_(z—1)---wo) = {x € MY wi(x)=w;fori =0,-1,...,—n}.
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The definition domain®,, of 7" andD_, of T~" are expressed as

D,= |J D.w) (disjointunion) and

wEWn+l

D_, = U D_,(w) (disjoint union).

wEVVn+]_

Put

kmax = max{k(g); ¢ € 0}, kmin = min{k(q); g € 00},
tmin = Min{dist(Qj, , 0},); j1 # Jjo} »
1 1

K = k + — ) = . .
max max Imin 1+ tminkmin

wherek(x) = k(g) denotes the curvature 81 atg with x = (¢, v).

We introduce the notion of increasing curves and decreasing curves. Ajzumaf ™,
expressed ags = r(p),a < ¢ < B, is said to be increasing (resp. decreasing)(if is
increasing (resp. decreasing) as a functiop.ofVhen a curve is expressed@s= ¢(r), a <
r < b, we also say it is increasing oedreasing according to whethg¢.) is increasing or
decreasing as a function of Increasing curves and decreagourves are occasionally called
monotone curves for convenience. For a cupvin M ™, ©(y) denotes the variation af-
coordinate along . Clearly, if y is a monotone curve which is expressed-as r(¢), a <
@ < B (respp = ¢(r), a <r <b),then®(y) is given by

(2.1) O)=p—a (resp.O(y) = |pb) — ¢l .

An increasing (resp. decreasing) curve is calteéhcreasing (respk -decreasing) if

1L _r)—r@) _ 1 <resp___ W) 1 )
Kmax -9 kmin kmin Y —9 Kmax

holds for anyy andy witha < ¢ < ¢ < B.

We employ the following notation. For = (q,v) = (r,¢), ki, ri, @i, ci, tl.+ and
t”, denotek(T'x), r(T'x), o(T'x), c(T'x), tT(T'x) ands~ (T"x), respectively, where =
c(x) = cosgp.

We summarize the useful formulas in the following.

LEMMA 2.1. Let y be a curve of class C! which is expressed as {(j,r, ¢); ¢ =
@(r), a <r < b}, wherep(-) isaC! functioninr. Assumethat 7 and 7! are defined on y.
If theimages y1 = Ty and y_1 = T 'y are expressed as {(j1, r1, 91); 91 = ¢1(r1), a1 <
r1 < biyand {(j-1, -1, 9-1); -1 = ¢-1(r—1), a—1 < r—1 < b_1}, where g1(-) and _1(-)
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are C1 functionsin r1 and r_1, respectively, then we have the formulas:

d 1 Cc 1 d 1 c_1 1
== 1+ ) 4 =—ka1+——""F,
d}"l t+ 1 di"_l c 1 1
C dq) k c d(l)
dr+ dr
dri_ oy, CUeldra k) dia e (g, CWvldr =),
dr Cc1 c dr c_1 c

d d Yk d
AN LA | i
do c1dy c1 do
do_ d 1~k d
Pl = (1) (1-45),
do c_1dy c_1 do
ar _ sin dry sin a_ sin dr-y sin
ar oy, ¢ gy TN, ¢
These formulas have meaning even when dg/dr = 0 and we obtain similar formulas if the

role of the r-coordinate and that of the ¢-coordinate are exchanged in the representations of
curvesy, y1 and y_1.

Combining Lemma 2.1 with the fact that the boundagy is of classC3, we can easily
show the following lemma.

LEMMA 2.2. Lety beaC?curvein M+ whichisexpressedas{(r, ¢); ¢ = ¢(r), a <
r < b}. Assume that y isincreasing (resp. decreasing) and T (resp. T~1) is defined on .
Then Ty (resp. T—1y) turns out to be a C2 curve which is expressed as {(r1, 1); 1 =
@1(r1), a1 <r1 < b1} (resp. {(r-1, 9—1); ¢—1 = ¢_1(r—1), a—1 < r—1 < b_1}) satisfying

d do_
kmin < £o < Kmax resp. — Kmax < L < —kmin | .
dry dr_1
In addition, we have
OTy) =070y (rep.O(T1y) = 07t0(y)).
where @ (y) denotes the variation of ¢-coordinate along y (see (2.1)).

We make further investigations of the structure of the definition dorfgifresp.D_,)
of T" (resp.T™"). Forj =1,2,..., J, define

S;F ={xeM";wox)=j, px) =m/2}, S;={xe M* 5 wo(x) = j, (x) = —7/2)
and put

J J
+ _ + - _ - _ ¢ +
st=Jsr, s =S and s=s5"Ust.
j=1 j=1
If (i, j) is admissible, we can show th& (ij) is a closed domain iMi+ enclosed by four

curvesT 187, ¢ = —n/2, T71S;, andy = =/2. Similarly, D_1(ij) is a closed domain
in M;F enclosed by four curvess; , ¢ = —7/2, TS;", andg = /2. Since cog; = 0
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FIGURE 3.

(resp. co®_1 = 0) holds onT~1S (resp.T'S), T—ls;r andT—lsj‘ (resp.T'S; andT's;") are
K -decreasing curves (resfi-increasing curves) expressed by the equation of the form

dy
dr 1t
We call such a closed domain enclosed by a pair of increasing curves and a pair of decreasing

curves a quadrilateral. Combining these facts with Lemma 2.2, we can show inductively the
following.

LEMMA 2.3 (see Figure 3). Assume that Q is the exterior domain of the scatterers
satisfying Conditions (H.1) and (H.2). Let wows - - - w, and w_, w_(,—1) - - - wo beadmissible
words of length n 4+ 1 for a positive integer n. Then we have the following.

(1) The set D, (wows1 - - wy) (resp. D, (w_,w—_(n—1) - - - wo)) is a quadrilateral en-
closed by a pair of K-decreasing curves (resp. K -increasing curves) and ¢ = +/2.

(2) T" (resp. T~") is a homeomorphism from D,,(wow1 - - - wy,) onto D_, (wowy - - -
wy) (resp. D, (wows - - - wy,) onto D, (wow1 - - - w,)) and a diffeomorphism of class C?
from intD,(wowsy ---wy,) onto INtD_,(wowy---wy,) (resp. from intD_, (wows - - -
wy) onto int D, (wow1 - - - wy)).

(3) The Hausdorff distance with respect to (r, ¢)-coordinates between two K-de-
creasing curves (resp. K-increasing curves) lying in the boundary of D, (wo - - - w,) (resp.
D_p(w—, ---wp)) isnot greater than C16" for some positive number C; depending only on
thedomain Q.

(4) Each K-decreasing curve lying along the boundary of D, (wo - - - w),) intersects
each K -increasing curve lying along the boundary of D_,, (w_,, - - - wo). Moreover, the diam-
eter of the set D_, (w—,, - - - wo) N Dy (wo - - - wy,) is not greater than C26" for some positive
number C depending only on the domain Q.

Now we recall the itinerary problem studied in [9]. By the itinerary problem we mean
the problem finding a point € 2 which satisfies the equation

wx) =w
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for a sequence in X' given beforehand. In virtue of Theorem 2.4 below, the itinerary prob-
lem has a unique solution. Thus, we denotexloy) the point having the given itinerany.
Forw, w' e X, putdp(w,w’) = 6", wheren = minli > O;w_; # w, or

w; # w;}. Thend, is a metric onX which introduces the same topology as that induced
by the product topology ofl, 2, ..., J}4. In virtue of Lemma 2.3, we can show tlalg-
Lipschitz well-posedness of the itinerary problem as follows.

THEOREM 2.4. For any sequence w € X, there exists a unique x € 2 such that
w(x) = w. Moreover, there exists a positive constant C3 depending only on the domain Q
such that

Ir(x(w)) — r(x(")| < Cadg(w, w'), |px(w)) — @) < Cadp(w, w')
hold for any w, w’' € X.

It is an easy consequence of Theorem 2.4 thay : 2T — X gives a topological
conjugacy betwee2*, T) and(X, o).

Next we summarize the facts on the structure of the local stable curve and the local
unstable curve fox € 21 as Theorem 2.5.

THEOREM 2.5. Givenx € 27, let
Y x) ={y e Mt w,(y) = wy(x) foranyn > 0},
(resp. yU(¥) = {y € M* ; Wn(y) = Wn(x) for anyn < 0}).

Then y5(x) (resp. y*(x)) yields a K-decreasing curve (resp. K-increasing curve) of class
C? except for the endpoints, and satisfies

Y () = () Dulwox), ..., wn(x)),

n=1
(resp. ') = () Do n(x), ..., WO(X))) :
n=1

In the rest of this section we give the existence theorem Kfstable foliation for the
billiard map (2™, T). From Lemma 2.3 and Theorem 2.5 we can easily notice the existence
of a horseshoe-like structure. In particular, we have seen that the set| J, .o+ ¥*(x)
forms an invariant laminatiog with the following properties.

(£.1) Each leaf ofZ is a K -decreasing curve of clag®.

(£.2) Each leafis a local stable curve for some pairt 2.

(£.3) Forany poink € I" the leaf£(x) containingx satisfiesT £L(x) C L(Tx).

The main theorem in the first half of [10] asserts that the invariant lamination can be
extended to a Lipschitz continuous invariant foliation supported on th®sePrecisely we
have the following.

THEOREM 2.6 (see [12]). With the same notation as above, we can construct a folia-
tion F supported on the set D1 satisfying the following.
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(F.1) Eachleaf of F isa K -decreasing curve.

(F.2) Forany x € 27, the leaf F(x) containing x coincides with the local stable
curve y*(x).

(F.3) Foranypointx € Do, TF(x) C F(Tx) holds.

(F.4) F isa Lipschitz continuous foliation on D1 with respect to the Euclidean dis-
tancein the (r, ¢)-coordinates.

We call the foliation in Theorem 2.6 E-stable foliation for( 2™, T).

REMARK 2.7. (1) In this paper, a foliation is said to be Lipschitz continuous if it
has a bi-Lipschitz continuous foliation atha Precisely, we have the following. For each
(i, j) € Wo, we identifyD;(ij) with a quadrilateral in thér, ¢)-plane which is enclosed by
two K -decreasing curves and two lings= 7/2 andg = —m/2. Then there exist numbers
a = a(ij)andb = b(ij) with a < b and a bijection

& =& :la,b] x[-n/2, /2] = D1(ij)

with the following properties.
(i) @ is Lipschitz continuous with respect to the usual Euclidean distange, & x
[—7/2, /2] and that on thé&r, p)-plane.

(i) @ 1is Lipschitz continuous with respect to the Euclidean distance otvtks-
plane and that ofu, b] x [—n/2, 7/2].

(i) Foreachr € [a, b], ® maps{r} x [—7/2, 7/2] homeomorphically to a leaf of.

(2) It will be convenient if we can extenfl to a Lipschitz continuous foliation on the
whole of M*. We can obtain such an extension in the following way.

If £ is a quadrilateral in thér, ¢)-plane enclosed by tw& -decreasing curvegy and
y1 and two linesp = —n/2 andg = 7/2, then we can construct a Lipschitz continuous
foliation on &£ whose leaves arg -decreasing in the following way. We may assume that
is expressed as = r;(¢) with ¢ € [—7/2, /2] fori = 0, 1. If we define the curves;,

t € [0, 1], expressed by = r,(¢) = (1 — t)ro(p) + tri(p), then they yield the leaves of the
desired foliation.

Recall that for eacly, M;.“ can be obtained fronR x [—7x/2, /2] by identifying
the points(r, ¢) with (r +1(3Q}), ¢), wherel(d Q;) denotes the perimeter of the simple
closed curved Q ;. Therefore, we can regalitz!;r as the fundamental domaif, /(3 Q0 ;)) x
[—7/2,7/2]). Thus, it is easy to see from the argument above that we can fiM}ﬁp\
(Ui#j D1(ji)) by K-decreasing curves so that the resulting foliation can be a Lipschitz con-
tinuous extension af on M.

In what follows, thek -stable foliation” means the foliation obtained by such an exten-
sion procedure, and thE€-stable foliationF is assumed to be the foliation supported on the
whole of M whose restriction t@; satisfies the Assertions in Theorem 2.6 unless otherwise
stated.
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3. Reduction to a one-dimensional expanding map. In this section we introduce a
one-dimensional expanding map and reduce the analysis of our zeta functions to that of the
zeta functions associated with the one-dimensional map.

First, foreachj = 1, 2, ..., J, choose a point(j) € 21 with wo(x(j)) = j and set
y(j) = y*(x(j)). y(j) is aK-increasing curve joining;.r ande‘ passing through each of
D1(ji) with i #£ j. Itis easy to see that we can choose a base gaint so thaty () and
(J — 1) domainsD1(ji), i # j, can be identified with a curve and domains itrap)-plane
P;, in terms of the correspondin(g, ¢)-coordinates. From now on we also fix such a choice
of base points. Unless otherwise stated, we employ such an identification in what follows.
This enables us to carry out our investigation ag(f) andD1(ji) with i # j are lying
in the (r, p)-plane P;. Recall thatD; N M;F = Ui:i#j D1(ji). Let D(j) be the minimal
quadrilateral inM;.r among all quadrilaterals containirdy N M;F such that two of their four
sides are parallel to the-axis. Note that one of the other sides®¢;) is necessarily the
right-hand side of>1(jk) which is located in the right end @ (), and the other is the left-
hand side ofD1(j/) which is located in the left end @?(;j) for somek and! (see Figure 4).
As mentioned in Remark 2.7, we consider &estable foliation supported on the whole of
M. For any subset of M™, we denote the foliation restricted to the sety F N A.
SetD = Ujj-le(j). Lety andy be increasing curves iM;F such that any leaf of that
intersectsy also intersecty. Then we can definea map; ; : y N F — p N F so that
IT; ;x is the unique point iy N F(x). IT; ; is called the holonomy map (or the canonical
projection) fromy to y along the leaf ofF. Note that/7; ; depends on the choice &f but
IT; 5700+ does not.

In the sequel, we use the following notation. Eory in the same connected component
of M™, I(x, y) denotes the Euclidean length between the poirdsid y with respect to the
(r, p)-coordinates. For positive numbarsb andc with ¢ > 1, we writea € [c¢7L, c]b if
¢ b < a < ch holds.

The following fact will be used frequently in what follows.

y(1) = y"g(1)

|

@ =

Y]

D1(12) Di(13)

4

90:—5

FIGURE 4. This illustrates the case when= 3 andj = 1. D(1) is the quadrilateral with a black border.
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LEMMA 3.1. Let F be the K-stable foliation as above. For j € Wi, consider two
increasing curves ¥ and  in M;r such that any leaf of F that intersects y also intersects y.
Thenthere exists a positivenumber C4 > 1 dependingonly on Q suchthati(1T; ;x, IT; ;) €
[C;l, C4]l(x, y) holdsfor any x, y € y. Inparticular, both y and 7 are K -increasing, there
exists Cs > 1 such that for any segments$ C 7, wehave © (IT; ;5) € [C5?, C510(5), where
©® (y) denotes the variation of ¢-coordinate along the curve y (see (2.1)).

PROOF The second Assertion is an easy consequence of the first. Thus, we just prove
the first Assertion. Without loss of generality, we may assumerthat< r(y).

First we consider the special case whers a curve parallel to the-axis and passing
throughx. This meanst = I1; ;x. Let z be the point where the line passing through
which is perpendicular t¢r intersectsy. Note thatx < z < IT; ;y. Since the leafF(y) is
K-decreasing, we easily see that

[(x,y) < |r(x) —r(M|+ o) — eyl
= A+ Kmad r(T; py) —r(0)] = A+ Kmadl ([T px, IT; 5 y) -

On the other hand, if(y) — r(x) > (1/2(r(T;3y) — r(x)), we havel(x,y) >
(1/2)(r(I1; py) — r(x)) and ifr(y) — r(x) < (1/2)(r(I1; 3y) — r(x)), we havel(x, y) >
e() —@(x) = kmin(r (y) —7(2)) = kmin(1/2)(r (IT; ;y) —r(x)), sinceF(y) is K -decreasing.
Anyway, we have .

l(x,y) > wl(ﬂf’px, I1; ;).
Therefore, we have proved the Assertion in this case.

Next we consider the case when bgtlandy are parallel to the-axis. In virtue of the
Lipschitz continuity, we see that there exists a constant 1 depending only on the domain
Q such that

r(y) —rx) e [CH, Cl(r(I1; py) —r(I1; yx)) .
Sincel(x, y) = r(y) — r(x) andl(IT; yx, IT; 3 y) = r(I1; 3 y) — r(IT; ;x) in this case, we
have
I(x,y) € [CTY, ClUT; 3x, T; 5 y) .
Combining the results in both cases, we arrive at the desired Assertion. O

Foreachj =1, 2,..., J,letZ(j) bey(j) ND(j). In other wordsZ(j) is the minimal
curve segment of (j) containingy (j) N (Ui#j D1(ji)). Next, for each admissible word
wow1 -+ wy, n > 1, we define a curve segmeAtwows - - - wy,) as follows. Choose any
y € 27 satisfyingw_, ())w_u—1)(y) -~ wo(y) = wows1---w,. Then the curve segment
IL,ucr-ny) ywo) T " Iy (). (n Z (wy) I Z(wo) is independent of the choice of sucly &
virtue of Condition (£.3). Now we set

Z(U)owl e wn) = Hy”(T*"y),y(wo)Tﬁnny(wn),y”(y)z(wn) .
By definition, it is obvious that

I rigy o T Z(wows -+ wy) = Z(wi -+ - wy)
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holds foranyi = 0, 1,...,n and anyx € Z(wow1 ---wy,), Wherey*(y) denotes the local
unstable curve containing
Taking this fact into consideration, we define a one-dimensional localSnapX =

Uj—1Z() by
Sx = Myuryy),ywpTx i x € Z(wo) N Dr(wows) .

Itis clear that ifx € Z(wg) N D, (wow1 - - - wy), thenS”x can be defined as well &'x can
and

S"x = Iyu(rny),y ) T"x

holds. Now we notice that the holonomy maR«(rx),, (w,(x)) iN the above is determined by
the information ofx only. Therefore, even if we simply writ§x = ITTx, one can easily
recognize thall meansiT, «(7x),y wy(x)) from the context.

For each non-negative integerput

Po={Zw);w e W,11} and X, = ] Z.
zZeP,
Obviously,Xo = X. Forn > 1, X,, is the definition domain 0", and?, can be considered
as a partition of the definition domain 6f. ForZ € P,, we denotel'"|z andS"|z by T
ands?’, respectively. The inverse @f; : Z — T7Z and that ofS’, : Z — S’ Z are denoted
by 7" andS;", respectively.
We can verify that the mags; are quite similar to those studied in [8] and [15].

LEMMA 3.2. Foranyn > landforany Z € Py, letr = r(p) and r, = r, (¢, (¢)),
a < ¢ < B, betherepresentations of Z and T} Z as K -increasing curves, respectively. Then
we have the following.

(1) (C2?-regular) ¢, can be extended to a C? function in some open interval in the
p-axiscontaining [«, B].

(2) (Uniformly expanding)

d

. . ©n
inf inf %(go(x))

ZeP, xeZ

2 67}1

holds.
(3) (Finite distortion (Rényi condition).) There exists a positive number Cg depend-
ing only on Q such that

sup su%dz"’”( (x))H(d‘””( (x)>)2
sep, xez] dg? g 7

-1
< Cg.

(4) Thereisa positive number C7 > 1 depending only on Q such that

don - -1
(d ((P(x))> € [C;7, C7]10(2)
%

holdsfor any x € Z.
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PROOF. Since itis easy to see thatr/2 < o < 8 < /2, Assertion (1) follows from
Theorem 2.5. Assertion (2) is an easy consequence of Lemma 2.2.

Next we denote by (n) the left-hand side of Assertion (3). In virtue of Lemma 2.2 and
Theorem 2.5, we can easily see by the chain rule 8@ < R(1) + 6 R(n — 1) holds for
eachn > 2. Therefore, Assertion (3) is valid.

Finally, we prove Assertion (4). Since

ITyu ),y (wox)) (V" (X) N D(wo(x))) = Z(wo(x))
holds for anyx € 2+, Lemma 3.1 implies that
O(y"(x) N D(wo(x))) € [C5_1, Cs5]0 (Z(wo(x))) -
Thus, we have
A= inf @@"(x)ND(wo(x))) > 0.
xet
In addition, we have

don don
dp < su
g ¢ =< % g (p(x))

xeZ

B
A<O(T}Z) =/ OZ),

o

since®(Z) = B — a.
On the other hand, we have

Bld
7> O(TLZ) :/ d“’”

o

do > inf
(p_er

don
7 (w(x))‘@(z).
@

Hence, we obtain the result in Assertion (4) by chooging= max(z, A™1}. O

The following lemma plays a crucial role in extending our zeta function meromorphically
to the domain containing the half-plane Re 0.

LEMMA 3.3. Thereexist numbersk € (0, 1) and Cg > 0 depending only on Q such

that
Z O(Z) < Cgk" .
ZeP,

PrROOF. Consider an admissible woidyws - - - w, of lengthn + 1. The totality of the
elements irP,,1 contained inZ(wowy - - - wy) € Py is {Z(wowy -+ wuj)}j£w,. We com-
pare® (Z(wow1 - - - wy)) With Z#wn O(Z(wow1---wyj)). To this end, first we compare
O(T"Z(wow1 -+ - wy)) With Zj#wn O(T"Z(wow1---wyj)). From the definition of
Z(wow1 - -+ wy), T"Z(wow1 - - - wy,) is the minimal segment of* (7" x) containingy (7" x)

N (Ui#wn(x) D1(wy(x)])), wherex is a point inZ (wows - - - wy,). In particular, we have

ILurnyy,ywn T" Z(wowy - - - wy,) = Z(w,) and
Iyu(rnyy,y ) T" Z(wow1 - - - wy j) = Z(woj) .
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Therefore, in virtue of the Lipschitz continuity of the foliatidfiin Theorem 2.6, we find a
numberkg € (0, 1) depending only or@ such that

> O Z(wows -+ wyj)) < k0O (T" Z(wows -+ - wy)) -
JFwn
Now, letting Z(wow1 - --w,) be expressed as = r(p) and applying Assertion (4) in
Lemma 3.2 to it, we have
O(A) O(T"A)
®(B) O(T"B)
for any measurable set§, B C Z(wow1---w,). Apply this inequality to the case when
A = Z(wow1 -+ -wy) \ Uj#wo Z(wow1 -+ - wyj) andB = Z(wows - - - wy), We have

O@) _
o) > C7%(1— ko).

€ [C72, 2

Hence, we have
iz O(Z(wow1- - wyj)) O(A
Z]#]n nl] — 1_ ( ) < 1_ C7_2(1— KO) )
O(Z(wowy - - - wy)) O(B)
Settingc = 1 — C7%(1 — ko), we have
Z eZ) = Z Z eZ) <« Z eZ).
ZePyt1 7'€Py Z€Ppy1,.ZCZ’ Z'eP,
Hence, we can reach the desired inequality Wigh= J . O

Now we introduce the one-dimensional mamn the parameter space @f Each local
unstable curver* has an expression= r(p), —7/2 < ¢ < /2, as aK-increasing curve.
Thus, we employ th@-coordinate as a natural parameter (a local coordinatey*forin
terms of such a parametrizatiop¥ is identified with the interval (y*) (= [—7/2, 7/2]).
Therefore, it will be convenient to reduce our investigation of the siap that of a map of
the interval.

Foreachj =1, 2,...,J, letI(j) be the subinterval of (y (j)) = I(y"(x(j))) corre-
sponding taZ(j). Define a mapd : Uf=1y(j) — |_|]1:ll(y(j)) by

(3.1 D(x) =) if x=(wolx), rx),px)) €y,

where|_| means the direct sum of sets. For anyy € y(j), l(x, y) denotes the Euclidean
distance with respect to the, ¢)-coordinates as before. Then we have

(3.2) | (x) = @] =l(x,y) = Co|P(x) = P(y)|

with Cg = \/1 + k-2, sincey (j) is K -increasing.

Recall thatX = U;zl Z(j). Puty = |_|]1=11(j) = @(X). Then we can define a
local mapo : Y — qﬁ(UJJ.:ly(j)) = |_|jj.:11(y(j)) so thato (@x) = @ (Sx) holds for any
x € X. Itis easy to see that" is defined at> (x) if and only if S” is defined atk. Clearly,

(3.3) " (Px) = D(S"x)
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is valid if 0" x is defined. Note that(j) = @ Z(j) for j =1, 2,..., J. For a positive integer
n, set

I(w)y=®Z(w) for weW,;1 and 9, ={I(w); w € Wy41}.

Obviously,o, 1(j), I(w) and Q, play the roles ofS, Z(;), Z(w) andP,, respectively. In
particular,Q, is a partition of the definition domaitj, = @ X,, of o”. As in the case 0§",
for eachl € Q,, o} denotes”|; and its inverséo)~1 : o' I — I is denoted by, .

Before studying the function ok which plays the role oV on X, we introduce the
following metricsdx anddy to X andY = @ X. Forx € y (i) andy € y(j), set

l if i=7j dx — P if i=j
D W=y @r ey = PO

1 if i %] 1 if i #]

Let Lip(X) and Lip(Y) be the totality of complex-valued Lipschitz continuous functions with
respect to the metriéy anddy, respectively. For functiong € Lip(X) andg € Lip(Y), we
set

dx(x,y) =:

I f1X,00 = SU}I?If(X)I, l9lly.co = SUP[g(@)],
xe

peY
) = F)I o lg(p) — g(¥)|
[f]X,] —E:F l(x,y) ’ [g]Y,] wsszpp |(P—1ﬁ| s

[flx = max[flx,;, lgly = maxlgly,;,
1<j=<J 1<j<J
Ifllx = I1fllxco +[flx, llglly = lIglly,co + [gly -

Then Lip(X) and Lip(Y) become Banach spaces with nofm|| x and| - ||y, respectively. In
virtue of the inequality (3.2), Lif¥) > g — g o & € Lip(X) gives an isomorphism with

(3.4) lgo@lx < liglly = Collgo ®lx,

whereCy is the same constant as in (3.2).

Now we define the functio/ € Lip(Y) corresponding to the given functidn on 2+
satisfying Assumptions (A.1), (A.2) and (A.3). First we note that on thesetthe Lipschitz
continuity with respect to the Euclidean distance in the usual coordigates is equivalent
to that with respect to the Euclidean distance inh&)-coordinates. This follows from the
fact that for somepg € (0, 7/2) cosp > cosggp holds for anyx = (r, ¢) € 27 in virtue of
Condition (H.2). Thus, we carry out our argument using the Euclidean distance induced by the
(r, p)-coordinates in the sequel. Consider the restriciidp+nx . In virtue of Kirszbraun’s
theorem (see [6, p. 201]), we obtain a Lipschitz continuous extension with the same Lipschitz
constantV of V on X with respect taly. Define a functior/ : ¥ — RbyU = V o @1,

Then we have the following lemma.

LEMMA 3.4. UisanelementinLip(Y) with[Uly < [V]x andiseventually positive
with respect to o in the following sense. There exist positive constants ¢ = a(U) and b =
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b(U) such that
n—1

(3.5) Y U'y)=an—b
i=0

holdsfor anyn > 1 and ¢ € Y whenever "¢ is defined.

PrROOF. The first Assertion is an easy consequence of the definition. We verify the
second Assertion. For anyin Z € P, and anyy in Z N 27, we obtain

V() = V) < [VIxl(x, y) < [VIxCol@(x) — ®(y)| < [VIxCon6",

in virtue of the inequality (3.2) and Assertion (2) of Lemma 3.2. Thus, we conclude that
n—1 o n—1 o

DoV = V(S’y)‘

i=0 i=0

n—1
- C C
= Y V(") = TS VI = Y VT = 7o Vix.
i=0 i=0

n—

1 n—1
D VS =) VST -
i=0

=0
-1

= o~

Note that we have used Assumption (A.3) ¥rin the last equality. Now it is immediate that
the second Assertion follows from the eventual positivity (A.2)\an |

Finally, we verify that the zeta functiogy (s) can be expressed in terms®fand U.
Recall thatzy (s) is formally defined by

1
tv(s) = exp(Z -
n=1

Letx € X be a point wher@” is defined and lep = ®x. Then by the definition of§”, o”
and the identity (3.3) we have

Z exp( - SZX:;V(T]‘)C)>> )

x:Thx=x

U(o"p) = V(§"x) = VIIT"x).
In addition, ifx € 2, we have
V(IIT"x) = VIT"x) = V(T"x),

in virtue of Assumption (A.3) of¥ . Moreover,7"x = x, $"x = x ando”"¢ = ¢ are mutually
equivalent by definition. Thus, we arrive at the identity

n—1 n—1
Z exp(—sZV(Tix)) = Z exp(—sZU(ai¢)>
x:T"x=x i=0 Qo x=x i=0
for eachn. Hence, we have

1
Cv(S)=§U(S)=eXp<Z; Z exp(—s

n=1 " g@:oc"p=¢p

n—1

ZU(afgo))).

i=0
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4. Transfer operators. In this section, we keep the notatiéq;), Q,, Y ando from
the previous section. Since we work only on the spaemd Lip(Y), we write[-], || - [loo, || - |l
instead ofl-ly, || - llv.c0, || - |ly @nd so on.

First we introduce a family of transfer operators associated to the one-dimensional dy-
namical systenw. Let U and f be functions defined oi. We defineL(s) = Ly (s) with
s € Chy

o1 _
L fo)= Y. V9o )
lEQ]_I(T]l:[(j)
if ¢ € I(j). Itis clear that ifU is continuous, thed. (s) becomes a bounded linear operator

on the Banach space of all continuous functi6ii¥) endowed with supremum norm for each
s. We can easily see that(s)" is given by

n—1
Lorfe= Y en( -5 ue o) o)
IeQn:o;’l=1(j) i=0

if ¢ € I1(j). For later convenience, we set
G(s)(p) =exp(—sU(9)),

4.1 =
@ Gu(9)(p) = G(5)(@)G(s)(o@) -+ G(s)(0" 1) = eXp( -5y U(G’¢)> :

=0
Then we can write

(4.2) LE)'f@)= Y. Gu)o o) f(0;"9)
IEQn:U;l[:l(j)
if @ € 1()).
For each element € Q,,, we choose @&; € I. For afunctionf onY, we define a family
of operatorsK, (s) with s € C by

(4.3) Ko@) f =Y foDLE$) xr,
1€Q,
wherey 4 denotes the indicator function of the sefas usual.
In the rest of the section, we consider an eventually positive funéfienLip(Y) satis-
fying the inequality (3.5). For € C, put

exp((—Res)a) if Res>0,

(4.4) p(s) = py(s) = :||G(s)||oo = |exp((—Res)U)|» if Res <0,

wherea = a(U) is the constant appearing in (3.5). If we slightly modify arguments in [1],
we can show the following.

LEMMA 4.1. Assumethat U is an eventually positive function in Lip(Y). Then L(s)
defines an analytic family of bounded operators on the Banach space Lip(Y) satisfying the
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inequality
(4.5) IL(s)" — Kp ()| < C(s)(p(s)k)"

for some positive number C(s) depending only on s, U and Q. In particular, C(s) can be
chosen to be continuous on s.

Lemma 4.1 follows from Lemmas 4.2 and 4.3 below. For the sake of simplicity, we drop
the letters in the sequel. So we write = L(s), K, = K, (s), G, = G, (s), p = p(s) and so
on.

LEMMA 4.2. Assumethat U isan eventually positive functionin Lip (Y) asabove. For
any I € Q, witho/'I = I(j), we have

C
Sup [Gu(o; ") < ”lp" and [Gy(o;")]; < pe@HYIDM 5[]
eel(j) -
where Cs and b = b(U) are the constants appeared in Lemma 3.1 and the inequality (3.5),
respectively.

1-6°

ProOFE If Res > 0, we have

n—1

Gn(@)| = exp((—Res) > U(a"w)) < exp((—Res)(an — b)) < p"e"l.
i=0

On the other hand, if Re < 0, clearly we have

|Gn(@)| < p" < p"e?ll.

Thus, we obtain the first Assertion.
To see the second Assertion, first we show

[G] < pe U5 (U],
This is shown as follows. Ip, ¢ € I(j) for somej, we have
|e—SU(§0) _ e—SU(¢)| < |e—SU(§0)|e|SHU(<ﬂ)—U(II/)|||s||U((p) —U®W)|
< pe U5 (U] — vl .

Here we used an inequality® — e®| < |e?|e %[z — w].
Now we have

|Gn(0;’1¢) - Gn(afilw)|
n_l . . .
=Y Gi(o;"9)(G(0'0;"9) = G0 o, "Y)G i1 (0" o ")
i=0

n—1
< pn—1€2b|5\[G] Z |O’idl_n(p _ O’io’l_nl//|
i=0
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p"e @Y ”>‘3'|s|w]Z|a'a,‘"¢—oa, v

n—1
pne(3b+[U]n)\S||s|[U]C529"7%0 — ¥l
i=0
n @b+HUm)s| Cs
<ple I —gle =¥l

Here the first inequality follows from the first Assertion of the lemma. The second inequality
is a consequence of the inequality @#]. Lemma 3.1 and the inequality (2) in Lemma 3.2
are used to obtain the third inequality. Hence, we have the second Assertion of the IBmma.

From Lemma 4.2, it is easy to see thats) is an analytic family of bounded linear
operators on LipY). If I € Q,, we haveL" x; = x;(jyGn(o; ") forsomej =1, 2,...,J
Thus, from Lemma 4.2, we have

IL" x1lloo < p"e 9

Therefore,L" x; € Lip(Y) for eachl € Q,. ConsequentlyK, is an operator on Ligy) of
finite rank.
To estimate the norm df” — K,,, we need the following.

LEMMA 4.3. Assume that U is an eventually positive function in Lip(Y) as above.
Then we have

D L = F@ XD lloo < Cae?tlp k[ f]
1€9,
and

DL — flen)xn] <
1€Q,

where Cs, C7 and Cg are the same as before.

<e(3b+[U]7r)SI|S|[ ]

T + c7e”'5>c5c8p” "Lf1.

PROOF. By definition we have

L"((f = fle)xn) = x1()Gn(o ") (f (o) = fle1)
if o/ I =1(j). By Lemma 4.2, we have

(4.6) IL"((f = FlenxDlles < p"e"M LA,
where|I| denote the one-dimensional Lebesgue measure of thie &gt the other hand, for
anyg andy in 1(j)
L"((f — fle)x) (@) — L"((f = fle)x) (W)
= (Gu(o; ") = Gu(o " YN (f (o, "9) — f(@1) + Gulo; ") (f (o, "p) — f(o;"¥))
=A+B,
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whereA and B denote, respectively, the first and the second terms in the second line in the
above. By Lemma 4.2 we obtain

, C
4.7) Al = p"e @I 0] =

gl — VILAT

Next, using Lemmas 3.2(4) and 4.2, we have
1B < p" Pl flleT, " T 0 — 0T, " T o1y
(4.8) d -1
< "I £1Cs su%( i (sa(x)))
xezI\ dg

whereZ = ®~1I. Combining (4.6) with Lemma 3.3, we obtain the first inequality in the
lemma. Combining (4.7), (4.8) and Lemma 4.2, we see the second inequality. m|

lo — vl < p"eBI[F1CsCo1T g — ¥l

It is clear that the inequality (4.5) follows from Lemma 4.3. Now the proof of Lemma
4.1 is completed.

In the rest of this section, we prove another inequality that plays an important role in the
meromorphic continuation of our zeta functions.

For eachl € Q,, we select); € I. DefineY; by

y {LnXI_G(I//I)L"_lxal, it n>2.
] =

4.9
(4.9) Ly, if n=1.

Itis easily verified that
n—1
(4.10) L1 =Y Gi(yDY,i;
i=0
holds.
LEMMA 4.4. Assume that U is a non-negative valued function in Lip(Y). Then
{Yr; I € Q,} satisfies the following inequalities
Y 1¥illoo < IsI[U1e@HUIEI C5Cgpm i
1€Q,

and
O+ UIm)Is| Is|[U]

Y vl < e<3b“U1”>'S|s|[U]<C7 7

1€Q,
ProoF. Note that

>C5Cgp”/<” .

(G(o]"9) = GW1)Gu1(0," Do), if n=>2,

Y =

1) {G(a,—l<p), if =1,

if ¢ € o'I by definition. Therefore, we havy; s < pe’!if n = 1, and
1Y/ llso < [G1Cs|110" ! < p"|s|[U1e @ VIMI ) 1|

if n > 2. Here we used the inequalifg] < pe®*VIMIsl|g|[U] and the first inequality in
Lemma 4.2. This yields the first inequality.
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Next, if » > 2, we have
Yi(p) = Yi(¢) < (G(O’]_n(p) — G(O’]_nw))Gn—l(O';](nil)(p)

+(G(o;"Y) — G Gn-1(0, " Vo) = Guo1(o, " Vo))
=A+B

for any ¢ andv in o1, whereA and B denote the first and the second terms in the above
inequality, respectively. Thus, we have

< pe P g (Up" LI C5C7| 1| — Y|
= @HUIDIS| 5|01 CsC7l @ — V]

by Lemmas 3.1 and 3.2(4) in the same way as in (4.8). In addition,

, C
|B] < [GIl1]p" e UM s u] - 59 o — vl
Cs
I —
11— 9I llp — ¥l
in virtue of Lemma 4.2. Therefore, we reach the inequality

CHUImIs1 | 51[U]
e S
- " IC n I
10 > 50" ]
if n > 2. The estimate fot = 1 is just same as that fédrabove. Consequently, we obtain the
second inequality. |

S pne(4b+2[U]T[)|S\ (|S|[U])2

[Y/] < e<3”+[U]”>'S|s|[U]<C7 +

5. Meromorphic extensions of zeta functions. The purpose of this section is to
prove our main result Theorem 1.1. In virtue of the reduction made in Section 3, it suffices to
prove the following.

THEOREM 5.1. Leto :Y — |_|]1=ll(y(j)) be the same asin Section 3 and let U be
an functionin Lip(Y) which is eventually positive in the sense of (3.5). Consider the formally
defined zeta function

(U(S)=exp(2% > exp(—s

n=1 g@:0"p=¢

n—1

;U(a"@)).

Then there are positive constants oy and By satisfying the following.

(&) The series in the definition of ¢y is absolutely convergent in the half-plane
Res > ay and defines an analytic function without zero.

(b) ¢y has a meromorphic extension without zero in a domain containing the closed
half-plane Res > «y . In particular, s = ay isa simple pole.

(c) Moreover, ¢y has a meromorphic extension without zero in the half-plane
Res > —By.
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As noticed just after the statement of Theorem 1.1, Assertions (a) and (b) are conse-
quences of the general theory of thermodynamic formalism. In particular, the positivity of
ay follows from the condition thal/ is eventually positive. Therefore, we may assume their
validity and we devote ourselves to the proof of Assertion (c).

For each/ € Q,, we takey; so thaty; is a unique fixed point of; on 7 if o1 D I.

Then we can easily see that

n—1
(5.1) > exp(—sZU(a"go)> = Y (L) XD,
i=0

piolp=¢ 1€Q,
whereL(s) = Ly (s) is the transfer operator defined in Section 4. Assume for a while that
so € Csatisfieso(so)x < 1. By Lemma 4.1 (see also [13]), for suchsane C with p(so)x <
1, the transfer operatdi(sg) is quasicompact and the spectrumih > p(sp)x consists of
eigenvalues with finite multiplicity. Seleet > p(sg)x such that there is no eigenvalue of
modulusr. From the general spectral theory for linear operators (see [5, Chapter VII]), there
exists an open dis®(sg) C C centered akg such thatZ(s) does not have eigenvalues of
modulusr for anys € D(so). Thus, we can define the following projections by using the
Dunford integral,

R(s,r) = (zI — L(s))"tdz,

1
2 /—1 lz|=r
1 -1
P =I1—R = — I—-L d
(s, 1) (s,r) 277\/__1</|z=f /|z=r>(z (8))""dz,

wherer is any number greater than SUB(sp) IL() I In particular,P (s, r) andR(s, r) de-
pend analytically or in D(sg). SinceP(s,r)L(s) = L(s)P(s,r) : Lip(Y) — Lip(Y)is an
operator of finite rank, the trace éf(s)" P (s, r) is given by the spectral trace

(5.2)

trL(s)"P(s,r) = Z AT

AA|>r

On the other hand, the determinantiof L(s) P(s, r) is given by

detl — L(s)P(s,r)) = ]_[ 1—2).
rr|>r
In the above, the suy, ;|- and the producf], ;. are taken over all eigenvalugsof
L(s) with |A| > r. If Res is large enough (precisely, Re> ay), the spectral radius df (s)
is less than 1. Therefore, we have the formula

o]

(5.3 det/ — L(s)P(s,r)) = exp( — E }tr(L(s)"P(s, r))) for Res > ay.
n
n=1

Note that the left-hand side of (5.3) is defined without assuming Re«y and depends
analytically ons in a neighborhooV (sg, r) C C of sg.
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Combining (5.1) with (5.3), we can write at least formally

Cy(s)ydetl — L(s)P(s.r))
C 1 n n
(5.4) = exp(Z ;( D L) x)(@r) — tr(L(s)" P(s, r)))) :
n=1 1€9Q,
Inspired by the above observation, we can prove the following lemma.

LEMMA 5.2. sg and r are as above. Then there exist a neighborhood W (sg, r) C C
of sp and a positive number C (so, r) depending only on the domain Q, the function U and sg
such that

< C(so, r)r"

D (L) x) (@) — tr(L(s)" P(s, 1))
IEQn
holdsfor any s € W(so, r).

PROOF We prove that there exist a neighborhoddso, r) and positive numbers
C1(so, r) andCa(so, r) such that

(5.5 Z (P(s,r)L(s)" x1)(@r) — tr(L(s)" P(s,r))| < C1(s0, r)r"
IEQn
and
(5.6) Z (R(s,r)L(s)" x1)(pr)| < Ca(s0, r)r"
1€Q,
hold.
We choose a neighborhodd(sg, r) so that the following hold for any € W (so, r):
() LI <7

(i) |P(s,r) = P(so, )|l < min(|| P(s, )[4, 1 P(so, 1))

(iii) the spectral radius oR(s, r)L(s) is less thanr; for some positive numbet < r
independent of € W (so, r).
From the general perturbation theory (see [5, Section VII-6]), Bimr)Lip(Y) =
dim P (so, r) Lip(Y), sayd = dim P(so, r) Lip(Y). We proceed with our argument by fix-
ings € W(so, r). So we drop the letterandr and writeL, P, R, etc., instead of.(s), P(s),
R(s), etc., for the sake of simplicity.

ProoF oF(5.5). First we notice that we can choose a basis. ., e; of P Lip(Y)
and the element,, ..., ¢ in Lip(Y)* such that

(5.7) leill =1, &l <2? and é(e;) =3

for1 <i, j <d, wheres;; denotes the Kronecker delta.
Indeed, we can choose a basis. . ., e; of P Lip(Y) satisfying

lle;l =1 for i >1 and distejt1,[e1,...,¢])>1 for 1<i<d-1
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in virtue of the finite-dimensional Riesz lemma, whitg . . ., ¢;] denotes the linear subspace
spanned by, ..., e;. If we take elements;, ..., e/, in P Lip(Y)* satisfyinge;(e;) = §;;,
then it is not hard to see thig; || < 24 Thus, in virtue of the Hahn-Banach theorem, we can
extend them to bounded linear functionals on(ltipwithout changing their norms.
We can write
d
(5.8) trPL" = &i(PL"e;).
i=1
On the other hand, sindL" x; € P Lip(Y) forany!l € Q,, we have

d
PL"x; =) &(PL"x)ei.
i=1
Therefore, we have
d

(5.9) PL"x1(pr) =Y &i(PL"(ei(p) x1)) -
i=1

Then (5.8) and (5.9) imply that

d
Y (PL X)) (@) —tr(L"P) =Y >~ &(PL"(ei(¢1) — e)x1)) -

IEQn i=1 IEQn

In virtue of (5.7) and Lemma 4.3, we have

d
D0 lePL  (ei(er) — edx)l <d2Y [P D IIL" (Cei(gr) — e xn)
i=11€Q, 1€Q,

< C3(s0)p"k" ,

whereCs(sp) is a positive number depending only on the dom@irthe function and the
neighborhoodV (so, 7). O

PROOF OF(5.6). Foreachy =1, 2,...,J, choosew(j) € I(j) and definey; by
o, "w(j) if of I = I(j). By definition we havesr’y; = v, foranyl € Q, and any
i=12 ...,n-1

Using the identity (4.10), we can write

> RL"Xi(er)
1€Q,

n—1
= > Y Gi(¥nRY,i (1)
1€Q, i=0
n—1 n—1
=Y > GiWDRY i (1) — RY,i (W) + D Y Gi(WDRY i (Y1)

i=017eQ, i=017eQ,
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n—1
=33 Y GiWDRY,i (91 — RY,i, (1)

i=01'€Q,_; I€Q,:0iI=I

n—1
+Z Z Z Gi(Y)RY i (Y1)

i=01'€eQ,_; I1€Q,:0i I=I'
=A+B,

where A and B denote the first and the second quantities in the last equality, respectively.
First, from Lemma 4.4, we have

n—1
AL<>S >0 > PRI

i=01'€Q,_;1€Q,:ciI=I

(5.10) n-1
<Cas0) ) o' D [Vl
i=0 I'eQp_;

< Cs(s0)p" k",

whereCy(sg) andCs(sp) are positive numbers depending only @nU and W (sg, r).
Next, we see from the choice ¢f; that

n—1
B=Y) Y @LRYNW.

i=0 I/Eani

Therefore, by Lemma 4.4 and the choicé®(so, ), we obtain

n—1
|B| < Cs(sory Y Y IIRYy|
i=01'eQ,_;
(5.11) n—1
< Cr(so)rf Y p" "
i=0
< Cg(so)rf ,

whereCg(so), C7(so) andCg(so) are positive numbers depending only@nU andW (so, r).
The desired inequality (5.6) follows from (5.10) and (5.11). O

Now we are in a position to prove Assertion (c) in Theorem 5.1.

PROOF OF THEOREM 5.1(c). LetU be the function satisfying the Assumptions in
Theorem 5.1.
Set
logx
Ul

Bu =
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Recall the definition (4.4) of (s). If Res > 0, obviously we have (s) < 1andif 0> Res >
—Bu, we have

p(s)k < exp(—(Res) Ul +logk) < exp(BullU |l + logk) = 1.

Therefore, we have(s)x < 1 whenever Re s> —By, consequentlyL(s) : Lip(Y) —
Lip(Y) is quasicompact.

Let Do denote the half-plane Re> — gy . In virtue of Lemma 5.2, we see the following.
For anysg € Do, and for anyr > p(so)x such that there is no eigenvalue of modutyusve
can find a neighborhooW (so, r) of sg such that

det/ — L(s)P(s,r))

and
o0

1 n n
ne(s) = exp(z ;( D (L) x1)(@r) —tr(L(s)" P(s, r))))
n=1 1€Q,
are analytic functions im € W (so, 7). In particular,n, does not have zero.
Let D be the maximal subdomain @i with the following propertieszy has a mero-
morphic extension such that for eaghe D, it is given by

(5.12) ny(s)detd — L(s)P(s,r)) "t

in the neighborhoodV (so, ), wherer is any number greater thar(so)x such that there is
no eigenvalue of.(sg) of modulusr.

Now we prove thaD coincides withDg. It is clear that this fact completes the proof. By
Assertion (a), the half-plane Re> «y is contained inD. Thus, D is not empty. From the
connectedness dby, it suffices to show thab is open and closed ibg. Clearly D is open.
So it remains to show the closedness.

Lets, be a sequence i® ands, — so € Dg asn — oo. Then we can find >
p(so)x and a neighborhood aof such thaty, (s) is analytic and has no zero W (so, r),
and det/ — L(s) P (s, r)) is analytic. Thus, the function defined by (5.12) is meromorphic in
W (so, r) without zero. On the other hand,sifis sufficiently larges, is an interior point in
W (so, r). For the same, there is a neighborhoo’ (s,,, r) of s, in which ¢y (s) is given by
(5.12). ThereforeD must contairW (sg, r). Thus,D is closed inDyg. O

6. Construction of functions satisfying the Assumptionsin Theorem 1.1. In this
section, we show that one can construct a functiogatisfying Assumptions (A.1) and (A.3),
starting with any Lipschitz continuous functighon 2. We give two constructions. Both
of them are the same in principle, because we define the va(ug¢ by taking a sort of
average of values af along the local stable curye’ (x). These constructions guarantee that
if F is positive valued, then so 8. Therefore, starting with any positive-valued Lipschitz
continuous function o2, we can obtain a function satisfying Assumptions (A.1), (A.2) and
(A.3) by such averaging methods.
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Since the Euclidean metric in tlig, v)-coordinates and that in tl{e, ¢)-coordinates are
equivalent on the se®+, we may assume thdt is Lipschitz continuous with respect to the
latter metric.

Let F be any positive-valued Lipschitz continuous function @1. Note that the
Lipschitz continuity here means the Lipschitz continuity in the Euclidean distance with re-
spect to ther, p)-coordinates.

CoNSTRUCTION 1. Assume that for each local stable cupve a probability measure
ys supported ory* N 2+ is assigned. Further we assume that the family {1} is a
transverse measure for the unstable laminationZdrin the following sense. Let andy’
be local stable curves contained in the same connected componért.éfhen we have

py (T3, B) = 1y (B)

for any Borel subset of, where the unstable lamination f&@* means that consisting of all
local unstable curves, ariﬁl)(/f‘))// denotes the holonomy map fropnn 2+ to y’ N 21 along
the local unstable lamination.

Define a functiorV,, on 2 by

(61) Vl/-(x) :/ ( )F()’) ,uy“(x)(dy)~
yi(x

ThenV,, satisfies Assumptions (A.1), (A.2) and (A.3).

CONSTRUCTION 2. We can extend to a Lipschitz continuous functioff on M+ in
virtue of Kirszbraun's theorem. Definé by ' = max(F, min,co+ F(x)).

Note that any local stable curve ikadecreasing curve expressed-as r(¢), —n/2 <
¢ <m/2andyp = ¢(r), a <r < b, wherea = r(n/2) andb = r(—m/2). Forx € 27,
defineVi(x) andVa(x) by

. /2 . b . d(p
Vi(x) = / Fdp = / F(r(p),p)dep = —/ F(r, w(r))d—dr,
Y5 (x) r

—1/2 a
(6.2) A b 2 "
Vo(x) = —/ Fdr = / F(r,o(r))dr = —/ F(r(p),p)—de.
) a /2 do

Clearly, V,,, V1 and V, satisfy Assumptions (A.3) in Theorem 1.1. In additionFifis
positive, then they are also positive valued and, hence, satisfy Assumption (A.2). So, in the
rest of this section we show the validity of (A.1).

Invirtue of Kirszbraun’s theorem, we may assume thiself is Lipschitz continuous on
M. We prove the Lipschitz continuity of the functiob’s, V1 andV> on 2+ by substituting
F for F in (6.1) and forF in (6.2).

Let x andy be points in2* contained in the same connected compone/of. Let
y*(x) andy*(y) denote local stable curves efandy, respectively. We denote by :

Y (x) N2t — y*(y) N2+ the holonomy map frony* (x) to y*(y) along the local unstable
lamination. Assume that®(x) is expressed as= u(¢), —7/2 < ¢ < /2, andy = 7(r),
a <r <bandy®(y)isexpressed as= v(p), —n/2 < ¢ <m/2,andp = ¥ (r),c <r <d.
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Note that the inequalities
(6.3) lu(p) — v(p)| < Cal(x,y) and I(z, T"z) < Cal(x,y)

are valid for anyp € [—7/2, 7/2] and for anyz € y*(x) N 2%, whereC4 > 1 is the same
constant as in Lemma 3.1. Indeed, if the line segmregpining x andy is increasing, the first
inequality can be obtained by applying Lemma 3.ytand any curve parallel to theaxis
and the second inequality can be obtained by applying Lemma 3.&tal the local unstable
curvey'(z). If the line segmeny is decreasing, we consider the line segmenbining x =
(u(p(x)), p(x)) andy’ = (v(p(x)), ¢(x)). If we usey’ instead ofy, we can obtain (6.3) with
y replaced by’. On the other hand, it is clear thidt, y') = |u(¢(x)) — v(p(x))| < I(x, y),
sincey®(y) is decreasing. Therefore, we obtain (6.3) even in the case wli&decreasing.
Now we have

IVM(X)—Vu(y)I=/ F(z)uysm(dz)—/ F(2) pys(y)(dz)
yi(x) iy

/ F(2) tye oy (d2) — / FUT®2) ey (d2)

yS(x) y*(x)

< / ( )IF(Z) — F(IT"2)| sy (dz) < C4[F1(x, ).
yix

Here we used the fact thatis a transverse measure to obtain the second equality. The in-
equality in the above is clearly due to (6.3).
Next, from (6.3), we have

/2
[Vix) = Vi)l = ‘/ P Fu(p), ¢) — F(v(p), p)de

/2
= IF ). ) = Fo@). 0)ldp < CalFlrl(x. ).
-/

Finally, we show the Lipschitz continuity df,. Without loss of generality we may
assume that(x) < r(y). Consider the case wheily) — r(x) < m/Kmax holds. In this case
we can easily see that< ¢ < b < d holds since/*(x) andy*(y) are K-decreasing. Then
we have

[V2(x) — Va(y)l

b d
/ F@r,t(r))dr —/ F@r, v (r)dr

c

c b d
S/ IF(V,f(V))Idr-i-/ IF(V,t(V))—F(r,lﬁ(r))ldr+/b [F(r, Y (r)ldr
=14+I11+1l.
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In virtue of (6.3), we obtain
I < |[Fllc(c —a) < [|[Flloo(b —a) < [[FlloCal(x, y),
< [|Flloo(d = D) < |Flloo(d — ¢) < | FllecCal(x, y),
and
I <[F](b-o) Tﬂé"p(r) =Y ()| < [FlrCal(x,y).
Next, consider the case whefy) — r(x) > 7/ Kmax holds. Then we have
[Va(x) — Vo)) < I Flloc (b —a +d — ¢) < 2| Flloo (7 / kmin)

Kmax Kmax

(r(y) =r(x)) = 2|[Flloo

min min
Hence, we have verified (A.1) fdf,, V1 andV>.

= 2|[Flloo

I(x,y).

7. Theorems1l.2and 1.3. In this section, we prove Theorems 1.2 and 1.3. Once we
establish Theorem 1.2, it is easy to see the formal equatior= ¢,, and hence we obtain
Theorem 1.3 in virtue of Theorem 1.1. Following the usual way in thermodynamic formalism
(see [2], [12] and [14]), a candidate of such an funcfidn Theorem 1.2 is given as follows.
For eachy € D (see Section 3), the le&f(x) of F containingx intersects (wo(x)) at exactly
one point, sayt. We also callthe ma > x — x € Ujj-zly(j) the holonomy map along
the leaf of 7 and denote it by7. We defineh by

(.¢]
h(x) =Y (T (T x) — 7 (T*Tx))
i=0
foranyx € 2*. By definition, we see that = 1" +ho T — h satisfies Assumptions (A.1) and
(A.3). However, this construction @f loses the Lipschitz continuity in general. Fortunately,
we are in a special situation. As shown latecan be represented by

r(x)
—/ singdr.
r(ITx)

Combining this fact and the Lipschitz continuity of thi&-stable foliation, we can verify
the Lipschitz continuity of:. Thus, we can arrive at Theorem 1.2. Precisely, we prove the
following theorem whose statement is slightly stronger than Theorem 1.2.

THEOREM 7.1. Let F bethe K -stable foliation. Then there exists a real-valued func-
tion g on M satisfying the following.

(g.1) gisLipschitzcontinuouson M inthe Euclidean metric with respect to the (r, ¢)
coordinates.

(g.2) There exists a positive number C1o depending only on the domain Q such that if

x isin Dy, then
n—1 n—1

> ot (r) =Y g(rh)

k=0 k=0

< Cip.
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(g.3) g isconstant along each leaf of F.
(9.4) glo+ is cohomologous to 1|+, that is, there exists a real-valued continuous
function 2 on 2+ suchthat g(x) =t (x) + h(Tx) — h(x) holdsfor any x € 2.

PROOF. Letll:D — Uf:l y(j) be the holonomy map along the leafBfas defined
above.
We first work on the seD,. Forx € Dy, we set

n(x) = suplk > 1; T**1x is defined .

Note thatifx € D, withn > 2, T*F(x) ¢ F(T*x) holds fork = 1, 2, ..., n—1 in virtue of
the property £.3). Letg = ¢(r) andgr = ¢ (ri) be the expressions of (x) and F(T*x),
respectively, where(x) denotes the-coordinate of as usual. Note thdf is constant along
the leaf of . Thus, by using Lemma 2.1, we can differentiat¢7*x) — r* (7% ITx) along
F(x) to obtain

d drt
- SR = (T () = %(x)
7.1

d . d
Z‘r“ (r(x)) — Smﬁl’k%("(x)) .

Since F(x) is in D, andT*F(x), k = 1, 2,...,n — 1, are allK-decreasing, there exists
C11 > 0 depending only o such that

= siNgg41

d
(7.2) ‘ﬁ(r(x» < Cpp6f
dr
fork =1,...,n — 1. Definex : Do — Rby
n(x)—1
u(x)= Y F(T*x) - (T Ix)) .
k=0

From (7.1) and (7.2)u(x) is convergent and of clagg! along F(x) even ifn(x) = oo.
Moreover, we have

r(x) dr(x) rx) )
/ SiNGneo — dr —/ sinpdr if n(x) < oo,
r(Ilx) r r(I1x)

ulx) =

r(x)
—/ sing dr if n(x)=o00.
r(Ilx)

Put

r(x)
v(x) = —/ sing dr .
r(Ilx)

Then, from (7.2) we can find positive numbe&rs, andC13 depending only orQ such that

(7.3) lu(x)| < C12 and |u(x) — v(x)| < C130"W) .
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Following the well-known method (see [2], [14] and [17]), it is natural to consider the
function gy : D2 — R defined by

g1(x) = 17 (0) + u(Tx) — u(x).

It is easy to see thag satisfies §.2), (3.3) and ¢.4) onD,. However, we cannot expect the
Lipschitz continuity. So we need the following modification. Define D> — R by

g2(x) =t (x) + v(Tx) — v(x).

We claim that the following hold.

(g2.1) g2 is Lipschitz continuous of;.

(g2.2) There exists a positive numb€i4 depending only orQ such that for any €
Do and for anyy, z € F(x),

l2(y) — g1(2)| < C146™™)

is satisfied.

(92-3) g2(x) = g1(x) foranyx € (2, D,.

Clearly, the second inequality in (7.3) implies bo#3.2) and ¢,.3). Therefore, we
prove (g2.1). To prove ¢».1) it suffices to show the Lipschitz continuity of Let x, y be
points in a connected componeé(joj1j2) of D2. Assume that the leaveS(x) and F(y)
are expressed as = ¢(r) andy = ¥ (r), respectively. Without loss of generality, we just
treat the case whet(ITx) < r(ITy) andr(x) < r(y). The other cases are treated in the same
way. Further, we consider the following cases separately.

(I) The case when(/1x) < r(x) < r(I1y) <r(y), r(x) < r(1x) < r(y) < r(y),
r(I1x) <r(x) <r(y) <r(ly)orr(x) <r(I1x) < r(Ily) < r(y) occur.

Since the absolute value of the integrand is not greater than 1, we have in this case

r(y) 7 (x)
/ siny dr —/ sing dr
r r

Ty) (ITx)

v(x) — vy =

r(ITy) r(y)
5/ 1dr+/ 1dr =|r(x) —r()| + [r(Ix) — r(ITy)]|.
r(Ilx) r(x)

In virtue of the Lipschitz continuity of the foliatiotF, we know that|r(ITx) — r(ITy)| <
Cy4l(x, y) holds (see the inequality of (6.3)). Clearly(x) — r(y)| < I(x, y). Thus, there
exists a positive numbet1s depending only orQ such thatjv(x) — v(y)| < Cisl(x, y)
holds.

(1) The case whem(x) < r(y) < r(ITx) < r(ITy) orr(I1x) < r(ITy) < r(x) <
r(y) occur.
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We just consider the former case. Then we have

r(y) r(x)
/ sinydr —/ sinedr
r r

(ITy) (Ix)
)

r(y)
< / ldr +
r(x)
r(Ilx)

=< Ir(x)—r(y)|+/ Isiny — singldr + |r(I1x) — r(ITy)|.
r(y)

From the Lipschitz continuity ofF, we know thatjp(r) — ¥ (r)| < Ca4l(x,y) holds for

r € [r(y), r(ITx)] (see the inequality (6.3)). Consequently, we can find a positive number

C16 depending only o such thatv(x) — v(y)| < Ci6l(x, y) holds. Hence,d.1) follows.
Next, we extend, to a Lipschitz functiongs on M ™ by using Kirszbraun’'s theorem.

We defineg by means of the averaging method appeared in Section 6. For any/ ™, let

r=r(p), —m/2 < ¢ < /2, be the representation of the Iafx) as aK -decreasing curve.

We defineg by

lv(x) —v(Y)| =

r(Ily)
+ / 1dr
r(I1x)

r(ITx)
/ (siny — sing)dr
-

1 /2
g(x) = —/ g3(r (@), p)de .
T J_n/2

Then the Lipschitz continuityg(1) is shown in the same way as in Construction 2 in Section 6.

Assertion §.2) can be proved as follows. It suffices to consider the case wirer,
i.e.,x € Dy. Note thatn(T*x) = n(x) —k fork = 0,...,n(x) — 1. In virtue of (32.2), we
obtain

1 /2
19(T*x) — u(T*x)| < = lg3(r (9r), @1) — 91(T*x)|dx
T J_n/2
/2 '
= — lg2(ri(@r), or) — 91(T"x)|d ek
T J_n/2

S Cl49n(x)7k

whenevelT*x € Dy, i.e..k =0, ...,n(x) — 1, wherery = ri(¢p) is the representation of the
leaf F(T*x) as aK -decreasing curve. Combining this inequality and the fact ghéias the
desired property ofd,, one can easily obtairy(2).

(g.3) is trivial. Sinceg; is constant along the led(x) andgi(x) = g2(x) = ga(x) for
anyx € (1,2, Dn, (g.4) is true. O

Finally, we give the following remark.

REMARK 7.2. In order to see the advantage of our method, we consider the case
when we apply the well-known theory of thermodynamic formalism directly to the zeta func-
tion ¢,+. Recall that the mamw(-) : 27 — X assigning the itinerary to each ¢ 27
gives a topological conjugacy between the dynamical system, 7) and the shift( X, o)

(see Theorem 2.4). If we defing : ¥ — R so thatf(w(x)) = T (x) forx € 27,
then f is dp-Lipschitz continuous and;+ = ¢y. The general theory applied to tlig
(see [14] and [16]) tells us that+(s) can be extended meromorphically to the domain
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J=6

FIGURE 5.

{s € C; P((—Res)tt)v/0 < 1}, whereP((—Res)t™) = P((—Res) f) is the topological
pressure. Therefore, we ne@d0)+/6 < 1 in order that the domain contains the half-plane
Re s > 0. Itis easy to see that(0) = log(J — 1), since it coincides with the topological
entropy of(X, o). Thus,6(J —1)2 < 1is necessary to obtain the same result as Theorem 1.3.
On the other hand, we choogeso that) = (1 + kminfmin) . Since we do not know whether
we can choose it smaller than it is, we keep on our discussion with this choice of

For example, consider a reguldrgon P, each side of which has length Label the
vertices ofP, v, ..., vy counterclockwise for our convenience. We assume that scatterers
01, ..., Qy are the discs with radius 1 centeredvat. .., vy, respectively. It is easy to see
that no eclipse condition (H.2) is satisfied if and only $in(z/J) > 2 (see Figure 5).

On the other handj(J — 1)2 < 1 yieldst > J2 — 2J in this case. However, we have

2/J 2
sin(2/J)>J ~sin(2/J)
if we apply the well-known inequality sin > (2/7)x for (0 < x < 7/2)tox = =/J. This
implies that we have a difficulty in obtaining the meromorphic extensiap:ofo the domain
containing the half-plane Re> 0 if 2/sin(r/J) <t < J? —2J.

In the above, we avoid such a difficulty by using the Lipschitz continuity ofthstable
foliation as follows. We first show the length of the intersection of any local unstable curve
andD, decays with a rate not slower thafi for some O< « < 1 (equivalently, the area of
D, inthe(r, p)-coordinates decays with a rate not slower thé&for some O< « < 1). Then
we construct a Lipschitz continuous functigrcohomologous to* and prove that the zeta
function¢, = ¢,+ can be extended meromorphically to the domfaie C; kp,4(s) < 1}.

J2—2J=(J—2)J><
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