NOTES ON FOURIER ANALYSIS (XV)
ON THE ABSOLUTE CONVERGENCE OF
TRIGONOMETRICAL SERIES.®?"

By
Shigeki Yano.

I. Let us conder the trigonometrical series

¢)) :221 pn COS (nx—aty)
where p,=0 (#=12,.....) and
2 él pn=00
We have proved that if
€)) pn=0(1/n),

then the set of points where the series (1) converges absolutely is of
a-caqacity zero (0<a<1)?.
We can now prove more precise result;

Theorem® If p»=0(1/%) and 21 pn=00, then we have
n=

- nE pr| cos (kx—atz) |
4 lim £=L =2/mr

n=>w s
S px
k=lp

>

except a set of a-capacity zero (0<g<1).
II. We shall firstly prove the following lemma.

Lemma. If (y,) is a sequence of complex quanfities such that

oo

S [yn) =00, and |yn|=0(1/m),

n=1

then we have

*) Received May 5th, 1946.

1) Read before the afniiuvg} meeting of the Mathematical Society at May, 1946.

2) T. Tsuchikura and #, Yano, Notes on Fourier Analysis (V): Absolute
convergence of trigonometrical series, under'the press.

3) cf. R. Salem, The absolute convergence of trigonometrical series, Duke Math.
Journ., 8 (1941).
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5 et
(5) Ru(x)="— >0
3 il

except a set of a-capacity zero.

Proof. Let E be the set of x such as R,(x) does not tend to zero. If
we suppose that E is of a-capacity positive, then there is a positive
distribution u which concentrates on E and belongs to Lip a®. If we denote
the Fourier-Stieltjes series of u(x) by

du(x)~1/2m+ §] (an cos nx+b, sin nx),
then we have
(6) S |+ [ba fn<co.

Now we have

2%,
P S o o i,
fZﬂJR (] dp—27r__-§;1 K +zf(, sy €97
0 (il"}’kl)z (kE:]"Yk")z

Since

27
[ pe-vedu1 < o) o) el + 1811,

0

we have

n 27
E-f Vi €0 du |

J#l 0

<% 1wl ImlQar] +162D=0 1%,
by (6) and ,=0(1/n). Hence

[ 1Rao 1 < Mo

0
M being a constant.
If we take a suquence of integers (#,) such that

P3|yl <GALY,

o 2% o
then the series 3 f | R(x) | %*du converges and then 3, R, (x)|? converges
k=1 0 ) ; 1

V=

4) R, Salem and A. Zygﬁlund, Capacity of sets and Fourier series, Trans.
Amer. Math. Soc., 59 (1945), p- 23—41. Especially see the corollary of Theorem 1.
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expect a set N of uy-measure zero.
In particular
for x ¢ N. For n such as #,<n<#n,.., we have

ny wr+l

an(x)Z [y —R,v(f) ‘ Joyxl < 3 Joyel,

=iy

hence
nv+1
l k| = x|
R, (x) — R ()| bt
. V l%l ill ¥ |
S o)
Y& o
~% 1~1<(mjf) ~1=u(1)
Vi

which proves that R.(x)—0 in E N. This contradicts the definition of E.
Thus the lemma is proved.

III. We will now prove the theorem.

Since

jcos x| = im c,,em (c=2/m)

with |¢ | =0(r~%), we have

) + &
Jcos (nx—at,) = 3 ¢, e%n g
k= -
and
k
kE} or|cos (kx—ar)| .
- n . 2 cr (%),
P
where

2 oy ¢~ hav gikve
Qi u()= "
: E:Pv

val
By the lemma we have, for each k=0,

D lim Qi (x)%0
no>w
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except a set E; of p-measure zero. Hence there is a set E of y-measure
zero such that (7) holds good for any integer k2+0 expect x in E. Since
[ @r,u (x)| are uniformly bounded and |c:|=0(1/k*), we can easily see that
S ok l cos (kx—ay) |
kel - —a=2/7

p P
k=1

except x in E. This proves the theorem.

Tohoku University, Sendai.





