NOTES ON FOURIER ANALYSIS (X):
ABSOLUTE CESARO SUMMABILITY OF FOURIER SERIES.®

By
Noboru Matsuyama.

§ 1. Introduction. Concerning the absolute convergence of the Fourier
series of function in the Lip(d, p) class, Hardy and Littlewood proved the
following theorem:

Theorem AV. It f ¢ Lip‘(a, p), where

0<a<l, 15p=<2, ap>1,
then the Fourier series of f(x) converges absolutely. Further
S en[P<oo,
where ¢, is the n-th Fourier_ cofficient of the Fourier series (of the complex
form) of f(x) and
B>p/(p+ap—1).
Theorem B?. If f(x) € Lip(1/p,p) and f(x) ¢ Lip a, where
0<asl, 1sp<2,
then the Fourier series of f(a) converges absolutely.

Concerning the absolute Cesaro summability of the Fourier series of
functions in the Lip(«a,p) class, we will prove the following theorems.

Theorem 1. If f ¢ Lip (a,p), where

0<a=<11=p=2, ap=l,

then the Fourier series of f(x) is summable |C, L —a+&| almost everywhere,

& being any positive number. s

Theorem 2. If f ¢ Lip (a,p), where

0<agl, ap>1,

then the Fourier series of f (1) is summable |C,i+€ [

If f éLip «, then f ¢ Lip (a,2), and theorem 1 implies.

Theorem 3. If f & Lip @, 0<a<1/2, then the Fourier series of f(x) is
summable |C, 1/2—a+€]|.

This is due to Hyslop?®.

Functions in Lip(1.1) are equivalent to functions of bounded variation.

*) Received July 4th, 1947.



ABSOLUTE CESARO SUMMABIL:TY 41

Putting a=p=1 in Theorem 1, we get

Theorem 4. If f(z) is of bounded variation, then the Fourier series of
f(z) is summable | C, €], € being any positive number.

This is due to Bosanquet.

In the proof of these theorems we used the complex method due to
Hardy and Littlewood. Therefore the proof is quitely different from that of
Bosanquet and Hyslop.

§ 2. Lemmas. Let f ¢ Lip («, p), O<asxl, p=1, and
¢H) f @)~ e =3,

Let the power series componént of (1) be
F(e®)~3 cueim®, F(e)~ S cat™,
. 0 —co
which are boundary functions of
oo -1
F (o= % cn2®, Fy(2) = Scn2”,

regular in |z| <1.
It is known that _
Lemma 1. It f ¢ Lip (a,p), then F;(e®) ¢ Lip (a,p) and

([1F@I"as)"=0(a-n"")
where i=1, 2, a.;ld z=re".
If we put z=pe®* and
2(2)=F(ze*)= g;c,.z"em = % Ciz",
then we have |

(fllg(ei(“h))—g(eit)]pdt)ll::(fﬂlp"(euunw))

- | \1—
.__F(el(fv"'l))I’]dt) »

which is O(k*) by Lemma 1. Thus we get
Lemma 2. If /' ¢ Lip (a,p), then g(e'*) ¢ Lip (a,p).
Further we have:
Lemma 3. If g(a) ¢ Lip (a,p), then g(¢)= _fl'g(H-i)dl ¢ Lip (a, p).

For

<£”1g1<t+h)~g1(t)l ?’dt)Lp:: (f!dt] _f:[g(:H—t—l—h)

-
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——g(x—i—t)jdxl")%
<Af dt(f gla+t+h)— g(x—i—t)lpdx)"

= Af, dth*< Ah®.
Lemma 4. If we denote by o) and 7, the r-th Cesiaro mean of Su, and
{ un”} respectively, then
Cus1— =T,/ N
From above lemmas we see that, in proving Theorem 1 and 2, we can

suppose that the Fourier series of f (1), is of power series type and it is
sufficient to prove that 3|r}|/n<oco for required 7.

§ 3. Proof of Theorem 1. We will distiguish two cases. Firstly we will
exclude the case p=1. By T, we denote the r_-th Cesaro sum of {#nc,,|, which
is given by the expansion coefficient of zg'(z)/(1—2z)".

‘Thus

©)) T,.,= —21?2.fﬂzg"(z)/(l—z)rz"+2 dt (z=pe't)

___2”pn fg’(pe“)e"““/(l pe“)’dt

e—mt

Tpi1 = Zﬂp"f A=pe®)" g (peit)dy,

Let us put, for the sake of simplicity,

Tn= TnI]’
H(t)y=H(pe*)=1/(1—pei)",
G(H=GCoe") =g (o),
By Lemma 1
fwl g'(peit)ll’dt——-O((l—p)(w—lw ),
and then

1) ( JGoeenat) = dtl f g’(pe““"))dxl")

< dx( £ | & (ot dt>7’=0((1—p)”‘1).

For the proof of Theorem 1 it is sufficient to prove that

S| Tw|] wti<oo, ae.
1
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or [ S pral pr+rdn<co.
1

-

Since we can suppose » <1/p, we have by the Hausdorff-Young theorem
) (Slralt o |sinnhl?y n< AC | H (t+ BYGC+h)
—H{—I)GG—h) [*diytI»
<A IH+ BPIGE+ hy—Get—my| rdty v+ A [ | Ht+ by
" _HG—mIGa—hyr ™, -

where 1/p+1/g=1. We Will denote by P, and P, the integrals on the
right hand side.

Then we have.

[PoxsafT1Ha+ B [T Ig ooy —g ool dadt
<A |Ha+hy { [ 1g ooy vax
+ L " g (et | ”dx},dt
SAQ—py 0 [T HGt+ by [Pt

- " dt-
SA 1—p)@-1)» )
=Aad=e f {A=p)*+p(E+h) {7

§A(I—P)(a— ! )pi

and

[Prax<af"(Ha+my—~He—hy|» [71g oo raxat

0 .4 *
<AQ—py- v ([ [y Het+ iy~ Het—hy | vat,
e %
where the second integral on the right hand side is

f (Gt Ry~ Ht—m)| vde= [ ™ | H (t+2h)— H(t) | vdt

-
h z—h

[+ =e+q.

-n 13

say. Firstly
h *h
=Af"|Ht+mira+Af |HW vdt

—h —h

dt -
< hl rp
"‘Af (t+2)1’h7+A‘/,: tw~—A( ).

-h
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Q.zg_Af |H (t+2h)— H(t) | 7dt
h

1 1
éAf ] (A= pei @2y (1—peit)yr (rdt

<A.hf (1__ eig)(r+1)p —_Ahf t(r+1)2) _Ahl—m

h
Summing up above estimations

f PgdxéA(l——p)(w—l)phl_,.p.
Putting 1—p=#%, we have

" T
f P{deéAh(u— 1)10’ f PgdxéAh(m—l W+A-rP)

-7

Substituting these into (4) we get
o p'q
f ‘[2[’7‘" [ pm[sin nh [,} <Ah®-1p
N
consequently
"3 vl :
f { 3 [7alt o™ (sin nh)"} <Ap@-1%,
-7 ' N|2

Let ==z /2N, then p"=1—h)"=1—n/2N)"'>c>0(N/2=<n=N).
Thus we have

plq
[ S [ral?) SAN--1,

-t N[2

Putting N=2 and summing up by »

f p3 |~r,,]/n1+"dx=f p )E o1 |Tnl In?+" dx
-7 1 - v=1 n=2 +1

® s ,:‘ 2, 1 1
< 3 f Cra)dx (S (1P )?
= k4 v-1

2 41

=4 22"(” ” O(f (E |7Tn] ")”"’dx)"<A 2 —v(@-Ler)

x u—1 v=1

which is convergent for »>1/p—a. Thus we get the theorem.

We will now consider the second case p=1. In this ease (4) is replaced
by
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f ]Tnp%‘ sin nhldx§Af iG(t+h)~—G(t'—h)ldxf | H(t+h) |dt

-

+Af lH(t—l—h)~H(t—h)!dxf VlG(t——h)ldt

<AQ—p)* '+ A(A—p)**=AA—p)*~
as in the former case. Putting hEn /2N,

f E ]7. l/n¢+1<A22v(l @-7) <OO

- 1 v=1

§ 4. Proof of Theorem 2. Using the notation of the proof of Theorem
1, we get

» 1 N-L €0 M.
Tnfl—_zﬂp” —”(1._4pelt)'re dt,

IT,,,I< (f;lg’@e“)["dt)% (fﬂ ’1,_‘%‘3””)%

, ([ di 7
<A(1—p) l(f_ﬂ(miﬁﬁfzsﬁy’

where the integral on the right hand side is

f (- p)"+4p8m‘t/2)"'=f - p)‘+4pt‘/7r‘)”'

dt . 2
<Af A=y prym SA0=p) f ey
<AQA—p)r-m,

provided that »g<1. Hence we have, putting p=1-—1/#,

IT il <A (l—p)L-T—%SA/nm—T—l/p’

2; +1’<A2

n=1

Thus the theorem is proved.

< oo,

n¢+1
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