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ABSOLUTE (ESARO SUMMABILITY OF FOURIER SERIES.*
}

By

Noboru Matsuyama.

§ 1* Introduction. Concerning the absolute convergence of the Fourier

series of function in the Lip(α, p) class, Hardy and Littlewood proved the

following theorem:

Theorem A° It f ε Lip (a, p), where

then the Fourier series of /GO converges absolutely. Further

where cn is the n-th Fourier cofficienΐ of the Fourier series (of the complex

form) of /GO and

β>p/(p+ap-l).

Theorem B2VK/GO « U^a/PΦ) and/(*) ε Lip a, where

then the Fourier series of /GO converges absolutely.

Concerning the absolute CesΓiro summability of the Fourier series of

functions in the Lip(a,p) class, we will prove the following theorems.

Theorem 1. If / « Lip (<*,/>), where

then the Fourier series of /GO is summable |C, .—-#+£ I almost everywhere,

£ being any positive number.

Theorem 2. If / ε Lip (α,/>), where
0 < α ^ l , ap>l,

then the Fourier series of/(Λ) is summable |C, \-£\.

1 iIf / έLip α, then / ε Lip (α:,2), and theorem 1 implies.

Theorem 3. If f ε Lip α, 0<α<l/2, then the Fourier series of fix) is

summable \C, 1/2—α+£|.

This is due to Hyslop3>.

Functions in Lip(1.1) are equivalent to functions of bounded variation.

*} Received July 4th, 1947.
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Putting a-p-1 in Theorem 1, we get

Theorem 4. If / ( Λ ) is of bounded variation, then the Fourier series of

fix) is summable | C, £ |, £ being any positive number.

This is due to Bosanquet.

In the proof of these theorems we used the complex method due to

Hardy and Littlewood. Therefore the proof is quitely different from that of

Bosanquet and Hyslop.

§ 2. Lemmas. L e t / ε Lip (α, p), 0<a^l, P^\, and

(1)
— 0 0 — 00

Let the power series component of (1) be t

0

which are boundary functions of

F ( 2 ) = Σ cMΛF2(2) =
0 . - o o

regular in \z\ < 1 .

It is known that

Lemma l.ltfε Up(aφ), then Ft(eix) ε Lip(a,p) and

( / \Fί(zϊ\- dx) = O ( ( l - r ) )
V-* / V /

where i = l, 2, and z=reix.

If we put z~peu and

g(z) = F(zeix) =. Σ Cn2w^ίwa; = Σ Cnz",
0 0

then we have

which is OC/ϊα) by Lemma 1. Thus we get

Lemma 2. If / <? Lip (a,p), then ^(e«) s Lip («,/>.).

Further we have

Lemma 3. If £ ( A ) ε Lip (#,£), then ^ ( O - J^g(x+Odt ε Lip (α,

For

(/ l/
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»dxf

= AJ dth«<:Ah«.
— It

Lemma 4. If we denote by σ-;; and τΊ

n the r-th Cesaro mean of Xun and

respectively, then

From above lemmas we see that, in proving Theorem 1 and 2, we can

suppose that the Fourier series of fix), is of power series type and it is

sufficient to prove that Σ|.τ£|/»<oo for required r.

§ 3. Proof of Theorem 1. We will distiguish two cases. Firstly we will

exclude the case p-1. By Tr

n we denote the r-th Cesaro sum of \ncn,\, which

is given by the expansion coefficient of zgiz)ji\—zy.

Thus

(2) T^-~J\giz)li\-zYz^ dt

Let us put, for the sake of simplicity,

By Lemma 1

and then
.IIP

(3) ( f'lGipe^dt)ltP=(f*dt\ f*^ipe^+x>)dx \A

For the proof of Theorem 1 it is sufficient to prove that

£ |7V|/Λ r + 1<oo, a.e*



ABSOLUTE GESARO SϋMMABILITY 43

or J* £ \Tn\lnr+ιdx<oo. .

Since we can suppose r <l/p, we have by the Hausdorff-Young theorem

("4) (Σ|τn | 7 pm\sinnh\q]

where 1/^+1/^ = 1. We will denote by Pj and P> the integrals on the

right hand side.

Then we have

f^ J7" \g

+f"\gXpeM-":')\''dΛdt

)

and

p p I H(t+h)-H(t-h) | ^

—x 0

where the second integral on the right hand side is

\H(t+2h)-H(O\pdt

-r+r •«
- / < . ft

say. Firstly
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Q,<AΪ \H(t+2h)-Hϋ)\pdt
J h

Γ i

Summing up above estimations

Γ
Putting l—p = h, we have

Substituting these into (4) we get

f JΣ|τ4V7isin nApl™

consequently

\ \ Σ jτn\q pnq (sin nhy\

Leth=τr/2N, then P

m^a-h)m^Cl-π

Thus we have

/

N

CΣ M
-7Γ 2V/2

Putting N=2U and summing up by v

Σ Σ\ Σ }τn\/n1+rdx

^ Σ I CΣτ.

S^4 Σ 2V (5" r"1 Y Γ (Σ I τ n
2

^A Σ -Γ

which is convergent for r>l/p—a. Thus we get the theorem.

We will now consider the second case p=l. In this ease (4) is replaced

by



ABSOLUTE CESARO SU MM ABILITY 45

Γ \mpn sin nh|dx<,A ί \G(t+h^G(t-h)\dx[ \H(t+k)\dt

\G(t-h)\dt

as in the former case. Putting h = πf2N,

Σ \τn\lnr+' •^A1l2"(-l-a-<-> <oo.

—π 1 v 1

§ 4. Proof of Theorem 2. Using the notation of the proof of Theorem

1, we get

r _ 1 ' [* X^£

where the integral on the right hand side is

J _Jt(i-py+ipsaaHl2y-J
_π (O—py+4pt*/**y>

provided that ^ < 1 . Hence we have, putting psl—

Thus the theorem is proved.
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