ON THE STRUCTURE OF SPACES WITH NORMAL
PROJECTIVE CONNEXIONS WHOSE GROUPS OF HOLONOMY
FIX A HYPERQUADRIC OR A QUADRIC OF (N-2)-DIMENSION.®

By

Shigeo Sasaki and Kentaro Yano.

Several years ago, we have studied the spaces with normal conformal
connexions whose groups of holonomy fix a point or a hypersphere.() The
most fundamental theorem that we have found is the following: If the
group of holonomy ef a space C, with a normal conformal connexion is a
subgroup of the Mobius® group which fixes a point (or a hypersphere), the
' C, is a space with a normal conformal connexion corresponding to the class
of Riemann spaces conformal to each other including an Einstein space with
a vanishing (or non vanishing) scalar curvature. The ccnverse is also true.
Making use of the fact that a subgroup of the Mdobius’ group which fixes a
hypersphere is in a close relation with the Poincaré’s representation of non-
Euclidean geometry, we could further generalize the Poincaré’s representation
of non-Euclidean geometry to Einstein spaces.

In the present paper, we shall apply that idea to spaces with normal
projective connexions. In Klein’s representation of non-Euclidean geometry
the fundamental group of the space is the subgroup of all projective
transformations which fix a hyperquadric. Hence we are led to consider
those spaces with normal projective connexions whose groups of holonomy
fix a hyperquadric. In connection with this, we also consider those spacés
with normal projective connexions whose groups of holonomy fix an (#—2)
dimensional quadric in a hyperplane.
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§ 1. The structure of spaces with normal projective
connexions whose groups of holonomy fix a
hyperquadric.
Let there be given a space with a projective connexion P,. If we take
repéres semi-naturel (R, R;J, the projective connexion of the space is given
by the following formulae:

(1.1) ]( dRy=Piidx'Ry+ dx'R;,

. AdR; = wda* Ry+ oy sudx*R;.
‘We shall call
(1.2 = 'y=v}—8; pr,

the parameters of the projective connexion. If P, is normal, T} is deter-
mined, by means of I'j, as follows:

< 1
(1.3) 15‘,l i (nR;x+ Rij)s
where we have put
Ry =Ry,
N F‘ 'S P i . i ald
ijL: —aa—x‘l]fkf—gat'l]ﬁ[’ +P]:,L ‘Iik'_‘Fhk 1 }l .

If we apply to the repére a transformation of the hyperplane at infinity
(1- 4) FUZR(L- R}:Rj‘f‘ ‘f).iRo,
the parameters of the projective connexion will change in the following way:
D =T+ 8ibr+ Siy,
’F?kﬂ‘.f‘ﬁ %E-L —Ibi—b; dr,
(1.5), is the so-called projective change of affine connexions.
Now, the covariant differential of a projective contravariant vetor X* (i,
py=012...... , ) is given by
{DXOZdXU“}"X(i]k X’ dx*+X° PrdxF,
DX =dX'+vj, X' dab+ X0 dx'.

(1.5)

(1.6)

If the group of holonomy A of the given space fixes a hyperquadric
Qu-iz ay, X Xr=0
of the tangent projective space P}, d(a\, X* X») must vanish for every point
of @.-; (that is d (@, X*X*) must be proportional to (a,,X*X*) in virtue of
the relation DX*=0. The converse is also true.
The last condition is easily reduced to the following relations:
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0. 2= (it 2pe),
(1.7) gZ‘,’} =T, an—awl—an=ay (Tx+2pr),
oaij

\_axT—P?‘"’* d;,j—l_vj"k Qi — Qi P}]h;—a[]j MN.=a; (Tk+2Pk)-
In this paper we shall confine ourselves only to the domain where ay,
does not vanish. Hence we can put
(1.8) aw=¢  (e==x1).
Then (1.7), shows us
Tr + 2k = —28ak.
For the sake of simplicity, let us put #w=ax, and denote by a comma the.
covariant differentiation with respect to I',. Then (1.7),; reduce to the
following relations: '
aj,x— e —aj= —2¢a;ar,
(1.9 {a;;fk—a?kl‘fkiaj 11(,')kv={—28akaij.
Now, if we define - .
(1.10) a;=gi+taa;,
(1.9) reduces to
(1.11) {“"”““d‘?k“g”“:;mj“’“ .
Zieteaipasteaag, v—a; ')y —a; Iy = —2¢éa; »(gj+ eaiay).
Solving (1.11), with respect to «; and putting into (1. 11),, we get
Gij, v+ Gk a5+ egix @i +-28gi5 ar=0.
If we put :
(1.12)  Tip=Tj—edja—eSuu;,
the last relation becomes

@13y -2 T g, T gu=0.

On the other hand, we get from (1. 10)
det | gyl = |a—ewiqs] = |ai;] — SaiazAij.
(where A;; means the confactor of the element a; in the det |@;|) and
& A Gy ...y

a, ap Qe Q| = 5]@;‘]‘2_(11' as Aij.
. ; h . b

l (.ln ﬂ"nx ll;zz ------ énn
Therefore, if the hyperquadric Q._; is non-degenerate, i. e. if det |@r.] %0,
then det |g;|+0. Hereafter we assume that the hyperquadric Q.. is non-
degenerate. Then we see from (1. 13) that I'y’s are the Christoffel’s symbols
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constructed from gj.
Now, comparing the projective change of affine connexions (1.12) with
(15) we get
F;k = P}k—eajk—ajak.
We see from (1.11) that the following relation holds good:

(1.14) = —&gy,
As Ti’s are Christoffel’s symbols, Ry is the Ricci’s tensor of the Riemann
space g, and hence they are symmetric with respect to j and k.
Therefore, we get from (1. 3)

I I
(1.15) _;k = 1 e
Comparing this with the last equation we get finally
" (1.16) Ry = (n—1) e gy

Accordingly we obtain the following theorem.

Theorem 1. If the group of holonomy of a space with a normal projective
connexion P, is a subgroup of the group of all projective transformations
in P, which fix a non.degenerate hyperquadric @,_;, the P, is a space with
a normal projective connexion corresponding to the class of affinely
connected spaces with corresponding paths including an Einstein space with
non-vanishing scalar curvature, in other word, the P, is projective to an
Einstein space with non-vanishing scalar curvature. The converse is also true.

Hereafter we shall denote the space with a normal projective connexion
having the same system of paths with a given affinely connected space A4,
by P, (A4u).

Let E, be an Einstein space with non vanishing scalar curvature R. If
we perform the trivial conformal transformation

(1.17) gy=Cgy, c‘-’:-—s—(gjlj ER>0,
then the Riemann space E,(g,) is an Einstein space with scalar curvature
(n—1). Both Einstein spaces have the same system of paths. We can easily
see from (1.11) that the hyperquadric
& (X% 4+ g X' X)=0r
is invariant under the transformations of :the holonomy group of the space
‘with normal projective connexion P, (E,).- - "

§ 2. Relations between the Klein’s representation of Non-Euclidean
geometry and the metrics of Einstein spaces with non vanishing scalar
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curvature.

Let E,. be an Einstein space with positive definite fundamental tensor
and of non vanishing scalar curvature.

By Theorem 1, the group of holonomy of the space with the normal
projective connexion P, (E,) fixes a hyperquadric @,-.. We shall study the
relation between the Non-Euclidean geometry with @,_: as the absolute, figure
and the metric of the Einstein space E,.

The Case where R<0. In this case,applying the given space E, an appro-
priate trivial conformal transformation, we can obtain Einstein ‘space E,
with sca!ar curvature—(»n—1). Both Einstein spaces have the same system
of geodesics. Consider geodesics in E,. As we consider only development of
tangent spaces along a curve, we can assume without any loss of generality
that p;=0. Hence the connexion of the space with the normal projective
connexion P, (E,) is expressible by the following equation:
dRy=d«'R;,
dR ;=g dxiRy+{};} dx* R..

Denoting by s the arc length of a geodesic g in E., we develop the geodesic

2.

in the tangent space at the point s=0. Then we get
2.2) Ry ()= Ry (0) + R/ (0)s + Ry (0) S5 + ...

While, geodesics are characteriged by the differential equatibns
2.3) 2+ Yk =0,
hence we get
Ry =4"R,
R/ =" Ri+x" (g™ Ri+{ix} ¥* R)
=R,
R)” =%"R;,
Ry =R,.

Accordingly, we obtain

2.9 R, (s) =coshs R(0) + sinhs R'(0).
Now, the hyperquadric Q,_; invariant under the group of holonomy of the
space P, (E,) is given by

(2.5) —(x9)*+ g X7 X*=0.
We .can easily see that the points of intersection Y, Z of this hyperquadric
€1 and the straight line g* which is the image of the geodesic ‘are given
by AR, (0)+uR',(0) where A\*=u*. Hence, the value of the double ratio
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d=(Ry(0) R\(s), Y Z)
.is immediately calculated, giving

d=e*.
Accordingly, we get the relation
1
§= 5 log d.

In the general case where R<0 and +=—(n—1), we get also
(2.6) s= \/ _:‘ (Z;f_l)f log d.

The case where R>0. In this case we can transform the given Einstein
space E, to an Einstein space E,, with scalar curvature (z—1) by a trivial
conformal transformation. E, and E, have the same system of geodeéics. As
we develop the tangent spaces of E, only along curves, we can assume
without any loss of generality that the connexion of E, is given by the
following equation
{ ng=dJ§iRi, ,

dRj=—gndx*Ry+{}; }dx" E..
Hence, along a geodesic of E, we can easily see that
R/=x'R, R’y=—R,

Accordingly, the straight line g* which is the image of the geodesic g in the
tangent space at a point s=0 is given by

2.8 R, (s)=coss. Ry(0)+sins R';(0).
The points of intersection Y, Z of this straight line and the invariant
hyperquadric @,., of the group of holonomy

2.9 (X2 4- g X' X*=0 .
are given by AR,(0)+urR'(0), where )\*4u*=0. Theref.ore the value of the
double ratio d=(R,(0)R,(s),YZ) is e,
Accordingly we get

2.7)

1
§= g log d.
In the general case where R>0, we get
_ 1 1T
(2.10) $=— N 4R log d.

Hence we obtain the following

Theorem 2. The group of holonomy of the space with a normal ;ﬁrojective
connexion P, corresponding to Einstein space E, with positive definite
fundamental tensor and of non vanishing scalar curvature fixes an real
(oval) or imaginary (nullteilig) hyperquadric according as the scalar
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curvature R is negative or positive respectively. The arc length of a
geodesic segment PQ in E, is expressible by (2.6) or (2.10) making use of
the double ratio of four points P, @ and the points of intersection of 'the
straight line (image of the geodesic PQ) and the invariant hyperquadric.

§ 3. The structure of spaces with normal projective connexions whose
groups of holonomy fix an (x#-2) dimensional quadric in a hyperplane.
In §1 we have studied the structure of spaces with normal projective
connexions whose groups of holonomy fix a hyperquadric. They are spaces
with normal projective connexions corresponding to the classes of affinely
connected spaces characterized by the property that they iuclude at least
an Einstein space with non vanishing scalar curvature. The converse is also
true. At that time, there did not appear Einstein spaces with vanishing
scalar curvature. The fact that the group of holomomy fixes a hyperquadric
is non-Euclidean type, hence, if we consider invariant figures of Euclidean
type. that is a hyperplane and an (#—2) dimensional quadric in it there will
appear Einstein spaces with wvanishing scalar curvature. Being led by such
conjecture, we shall study on the structure of spaces with normal projective
gonnexions whose groups of holonomy fix an (#—2) dimensional quadric in
a hyperplane. )
Now, we suppose that the invariant (z—2) dimensional quadric of . the
group of holoﬁorny be given by the intersection of a hyperplane
T X =0
and a hypercone
K: g;XX'=0.
We assume that K is non-degenerate, that is
det|g;| + 0.
In order that tnhe hyperplane = be invariant by transformations of the
group of holonomy d(e,X*) be proportional to «,X* under the condition
DX*=0. This condition is reducible to

%‘;5 — ax = (te+px) ay,

37‘:; —Tja — D)y ay=(rit-pr)-ay,

G.1D

where 7:dx* is the proportionality factor. We consider in this paper only
the domain where a,+0, hence there is no loss of generality even if we put
ay=1. If we put @,=1, then (3.1), tells us
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‘Thtpr=—dr
and hence (3.1), becomes
3.2) . ayu—1"%=—a;ar,
where, denotes the formal covariant derivative with respect to I',.

In the next place, as the intersection .. of the hyperplane 7 and the
hyperéone‘ K is invariant under the transformations of the group of
holonomy,

d (g5 X' XD=gim di"X' X' —2g; dx' X' X°
must be proportional to g;X'X’ when we put X°=—a,X'. If we denote the
proportionélity factor by ywdzx®, the condition *educes to

3.3 Gt Grai+ Gin@i= Vg
If we put

(3- 4) - f;kZP}Ek—S; ax:—&"{aj,

(3' 5) qr :Zalt'l"\l"lr,

then (3.3) can be written as
3.6)  gup = qugy,
where ; denotes the covariant differentiation with respect to T. (3.2) and
(3.6) are the necessary and sufficient condition that the (#—2) dimensional
quadric .-, is invariant under the group of holonomy. As we suppose thaj
|@s] £0, equation (3.6) shows that the affinely connected space "/ is a
Weyl space with the fundamental tensor g; and with a linear from gid=*.
The -equations (34) means geometrically that the transformations of
the hyperplane at infinity, that is the plane where all R/’s lie, and usually
called as the projective change of affine connexions. When the projective
change of dffine connexions (3.4) is performed, it is well known that T')

of the projective connexion is transformed as follows:

(3. 7) F‘?E:I‘;k—ajyk—‘aj ar.
Comparing the last equation with (3.2), we find
(3.8) ' =0. o

Now, as the projective connexion in consideratioﬁ is normal, I is
expressible by the contracted curvature tensor Ry of the aﬁir{e connexion
I‘,':;-, as follows:

B9 = — n‘f!’:l——l (n Ru+Ri).
Accordingly, we see from (3. 8) that the following relation holds good:
(3.10)  Ru=0. '
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If ¢»=0, it is evident that the Weyl space in consideration is no other
than an Einstein space with vanishing scalar curvature. More generally, if

q: is a gradient ie. ¢ = ologo , then putting

S
(3.11) =07 gj,

we can easily see that (3. 6) becomes
(3.12) : g*ix=0.

Hence, the affinely connected space T, is also an Einstein space with
vanishing scalar curvature.

Consequently wn get the following theorem:

Theorem 3. If the group of holonomy of a space with a normal projective
connexion P, fixes an (#—2) dimensional quadratic @.-, in an hyperplane
7, there exists at least a Weyl space such that R;=0 (in particular,
Einstein spaces with vanishing scalar curvature are remarkable example of
them) in the class of affinely connected spaces having the same system of
paths with P,. The converse is also true.
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