A NOTE ON GENERAL TOPOLOGICAL SPACES.*)

By

Noboru Matsuyama.

- 1. If for any subset A of the fundamental set S we can assign a "closure" A satisfying some proper conditions, then the set S is said to be a space. In general there are two methods defining the closure, that is;
- (I) When there corresponds a family "neighbourhoods" V_x to every point x in S, $x \in A$ is, by definition, that no $V_x \cap A$ is vacuous.
- (II) When there is a family of "sequences" $\{x_a\}$ in $S^{(1)}$ for which it is always decided that $\{x_a\}$ converge to x or not, $x \in \overline{A}$ is by definition, that there is a sequence in A convergent to x.

S is said to be a neighbourhood space or convergent space according as it is topologized by a system of neighbourhoods or a family of convergent sequences. When convergence of sequences are suitably defined by means of system of neibourhoods, the neighbourhood space becomes a convergence space. For example, if in a neighbourhood space S convergency of the sequence S is defined by

(III) $\{x_a\}$ converges to x if and only if for each neighbourhood V_x of x, there exists an $\alpha_0 = \alpha_0(V_x)$ such that $\alpha > \alpha_0$ implies $x_a \in V_x$, then S becomes a convergence space.

In this paper we intoduce the notion of " φ -closure" (in Definition 2), by which neighbourhood space turns to the space with " φ -topology". Main results concerning φ -topology are cotained in Theorem 4.

But if we consider some set A such as $\{x_a\}\subset A\subset S$, we obtain many interesting results, for instance, all convergence topologies defined in S is a Boolean algebra⁽²⁾ by some order relation.

- 2. Let φ be a set-function on 2^s (=family of all subsets in S) such that
 - (2, 1) for any subset A in S, $A \subset \varphi(A)$,
 - (2, 2) $A \subset B$ implies $\varphi(A) \subset \varphi(B)$.

And let ϕ be the class of all such φ .

^{*} Received July 12th, 1943,

⁽¹⁾ For any finite or infinite directed set.

⁽²⁾ G. Birkhoff, Fund Math., XXVI(1936).

For any φ_1 and φ_2 in ϕ , we write $\varphi_1 < \varphi_2$ if and only if $\varphi_1(A) \subset \varphi_2(A)$

for all subsets A of S. φ is a partially ordered system, that is,

- (2, 3) $\varphi_1 < \varphi_2 < \varphi_3$ implies $\varphi_1 < \varphi_3$,
- (2, 4) $\varphi_1 < \varphi_2 < \varphi_1$ implies $\varphi_1 = \varphi_2$.

Further ϕ is a lattice, and

- $(2, 5) \quad (\varphi_1 \wedge \varphi_2) \quad A = \varphi_1(A) \cap \varphi_2(A),$
- $(2, 6) \quad (\varphi_1 \vee \varphi_2) \quad A = \varphi_1(A) \cup \varphi_2(A).$

If we define O and I by

- (2,7) $O(A) \equiv A$ for all subsets A of S,
- (2, 8) $I(A) \equiv S$ for all subsets A of S_i

then ϕ becomes a Boolean algebra.

- 3. Closure with respect to φ . Let S be a neighbourhood space and denote its points by x, y, \dots . Suppose that for each x in S there corresponds at least one "neighbourhood" V_x of x such that
 - (N. 1) for each $x \in S$, V_x contains x_i .
- (N. 2) if U_x and V_x are neighbourhoods of x, $W_x = U_x \cap V_x$ is also a neighbourhood of x.

We shall now introduce an equivalent sequencial topology and weaker ones into . The convergence of the sequence in S is defined by

Definition 1. If a sequence $\{x_a\}$ is contained in a certain fixed set A, and for each neighbourhood V_x of x containing A^c there exists an $\alpha_0 = \alpha_v(V_x)$ such that $\alpha > \alpha_0$ implies $x_a \in V_x$, then $\{x_a\}$ is said to be *convergent to* x with respect to A and denote it by

$$x_a \longrightarrow x (A)^{(3)}$$
.

In this definition if we take = 3, then $x \longrightarrow x()$ coincides with ordinary convergence in (III). As easily may be seen by example, $x_a \longrightarrow x(A)$ does not imply $x \longrightarrow x(B)$ in general if A = B.

Lemma 1. If $\{x_i\}$ converges to x with respect to A and $\{x_i\}$ is a cofinal subsequence $o^*\{x_i\}$, then $\{x_i\}$ converges to x with respect to A.

Proof is easy.

Lemma 2. If $\{x_a\} \subset B \subset A$ and $x \longrightarrow x$ (A), then $x_a \longrightarrow x$ (B).

Proof. Each neighbourhood V_x of x containing B^c is that of x containing A^c . Since $x_a \longrightarrow x$ (A) for any neighbourhood V_x containing B^c , there exists an $\alpha_0 = \alpha_0(V_x)$ such that $\alpha > \alpha_0$ implies $x_a \in V_x$, that is, $x_a \longrightarrow x$ (B).

Definition 2. Let $\varphi \mathcal{E} \phi$. If there exists at least one sequence $\{x_n\}$ of

⁽³⁾ If such neighbourhood does not exist, {va} converges to a with respect to A

points in A such as $x_x \longrightarrow x$ ($\varphi(A)$), then we say that x is a *limiting point* of A with respect to φ -topology and denote it by $x \in A^{\varphi}$. And A^{φ} is said to be φ -closure of A.⁽⁴⁾

Specially if $\varphi \equiv I$, it coincides with (III).

Corollary. If $\varphi > \varphi'$ and $x \in A^{\varphi}$, then $x \in A^{\varphi'}$.

Proof. By the hypothesis there exists a sequence $\{x_a\}$ in A, such as $x_a \longrightarrow x(\varphi(A))$. Since $\{x_a\} \subset A \subset \varphi'(A) \subset \varphi(A)$, we have $x_a \longrightarrow x(\varphi'(A))$ by Lemma 2.

From this Cor. we see that if $\varphi > \varphi'$, then φ' -topology is not weaker than φ -topology.

4. Fundamental theorems.

Theorem 1. For any subsets A and B in S,

$$(A \cup B)^{\mathfrak{p}} \subset A^{\mathfrak{p}} \cup B^{\mathfrak{p}}. \tag{1}$$

Proof. Let $\{x_a\}$ be a sequence of points in $A \cup B$ such that $x_a \longrightarrow x(\mathcal{P}(A \cup B))$. Then at least one of $\{x_a\} \cap A$ and $\{x_a\} \cap B$ must be a cofinal subsequence of $\{x_a\}$.

If
$$\{x_{\beta}\} \equiv \{x_a\} \cap A$$

is so, Lemma 1 and 2 show that $x_{\beta} \longrightarrow x (\varphi(A \cup B))$ and $x_{\beta} \longrightarrow x (\varphi(A))$ for $\{x_{\beta}\} \subset A \subset \varphi(A) \subset \varphi(A \cup B)$. Thus the theorem is proved.

As easily may be seen by example, equality (1) does not hold in general.

Theorem 2. A set V is a neighbourhood of x if and only if $x \in (V^c)^{\varphi}$, for any φ in φ .

Proof. It is sufficient to show, by Cor. of Definition 2, $x \in (V^c)^2$. If we suppose that $x \in (V^c)^0$, then for some $\{x_\alpha\}$ in V^c , $\{x_\alpha\}$ converges to x with respect to $(V^c)^c = V^c$. Since $V^{cc} = V$ is a neighbourhood of x containing $V^{cc} = V$, there exists an $\alpha_0 = \alpha_0(V)$ such that $\alpha > \alpha_0$ implies $x_\alpha \in V$. On the other hand all points of $\{x_\alpha\}$ are contained in V^c . Thus we have a contradiction. Conversely let $x \in (V^c)$, then there exists at least one neighbourhood U_x containing V. For, if such neighbourhood U_x does not exist, every sequence $\{x_\alpha\}$ in V^c must converges to x with respect to V, which contradicts to $x \in (V^c)^0$. From all such U_x we can select a set $\{x_U\}$ consisting of points such that $x_U \in U_x \cap V^c$. Since all neighbourhoods of x containing V form a directed system concerning set-implication, $\{x_U\}$ is a sequence. By the construction of $\{x_U\}$ it converges to x with respect to V^c , which contradicts to $x \in (V^c)^0$.

⁽⁴⁾ This concept may be considered as a generalization of closure notion. Therefore we may say $A \varphi$ a φ -derived set, instead of φ -closure.

Consequently $U_x \cap U^c = 0$ and $U_x \supset V$, that is, $U_x = V$ is a neighbourhood of x. Q. E. D.

Theorem 3. $A \subset B$ implies $A^{\varphi} \subset B^{\varphi}$ if and only if (5)

(N. 3) for any neighbourhood U_x of x, a set containing U_x is also a neighbourhood of x.

Proof. Let $A \subset B$ and $x \in A^{\varphi}$, there exists a sequence $\{x_{\alpha}\}$ in A such that $x_{\alpha}\}$ converges to x with respect to $\mathcal{P}(A)$. By $0 < \mathcal{P}$, $x_{\alpha} \rightarrow x$ (A), and then A^{ε} is not a neighbourhood of x.

Since $(\varphi(B))^c \subset B^c \subset A^c$, and by $(N.3), (\varphi(B))^c$ is not a neighbourhood of x. Moreover intersection of B with each neighbourhood V_x of x containing $(\varphi(B))^c$ is not empty. As in the proof of Theorem 2 there exists a sequence $\{Y_F\}$ such that $Y_F \longrightarrow x \ (\varphi(B))$. That is, $x \in B^{\varphi}$. Thus $A \subset B$ implies $A^{\varphi} \subset B^{\varphi}$. Conversely, if $U_x \subset V$ then $U_x \cap V^c$. By the hypothesis of φ -topology, $(U_x \cap V^c)^{\varphi}$. Since $X \in (U_x \cap V^c)^{\varphi}$, $X \in (V^c)^{\varphi}$. Consequently V is a neighbourhood of X by Theorem 2. Q. E. D.

Summing up the above results we get:

Theorem 4. If S is a neighbourhood space satisfying (N. 1)-(N. 3), then each topology defined by Definition 2 satisfies the following two conditions concerning closure,

$$(A \cup B)^{\varphi} \supset A^{\varphi} \cup B^{\varphi},$$
$$(A \cup B)^{\varphi} \supset A^{\varphi} \cup B^{\varphi},$$

and moreover the φ -topologies form a Boolean algebra.

Math. Inst., Tôhoku Univ., Sendai.

⁽⁵⁾ Necessity was communicated by Prof. A. Komatu, to whom the author expresses his hearty thanks.