\ NOTE ON GENERAL TOPOLOGICAL SPACES®

By
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1. If for any subset A of-the fundamental set S we'can assign a
“closure” A satisfying some proper’conditions, then the set S is said to be a
space. In general there are two methods defining the closure, that is;

(I) When there corresponds a family “neighbourhoods” V, to every
point  in S, 2€A is, by definition, that no V, [} A is vacuous.

(II) When there is a family of ‘“sequences” {sz,} in S® for which it is
always decided that {x,} converge to z or not, 2EA is by definition, that
there is a sequence in A convergent to .

S is said to be a neighbourhood space or convergent space according as
it is topologized by a system of neighbourhoods or a family of cohvergent
sequences. When convergence of sequences are suitably defined by means
of system of neibourhoods, the neighbourhood space becomes a convergence
space. For example, if in a neighbourhood space S convergency of the
sequence {z,} is defined by

(III) {x,} converges to z if and only if for each neighbourhood V, of :,
there exists an a,=a,(V,) such that a>a, implies 1.6V, then S becomes
a convergence space.

In this paper we intoduce the notion of “g-closure” (in Definition 2),
by which neighbourhood space turns to the space with “g-topology”’. Main
results concerning ¢-topology are cotained in Theorem 4.

But if we consider some set A such as {1, }CACS, we obtain many
interesting results, for instance, all convergence topologies defined in S is a
Boolean algebra®® by some order relation.

2, Let @ be a set-function on 2% (=family of all subsets in S) such that

(2, 1) for any subset A in S, ACy(.1),
(2, 2) ACB implies ¢(A)C¥(B).
And let ¢ be the class of all such ¢.
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-For any @, and ®, in ¢, we write @, <@, if and only if
P (A) C (A}
for all subsets 4 of S. ¥ is a partially ordered system, that is,
(2, 3) P<P.<P; implies P;<P;,
2, 4) @ <P, <@, implies @, =P,.
Further ¢ is a lattice, and A
(2,5) (PAP) A=p(ANP(A),
2, 6) (PP A=9,(A)UP(A).
If we define O and I by -
(2,7 O(A)=A for all subsets 4 of S,
(2, 8) I(A)=S for all subsets A of S,
then ¢ becomes a Boolean algebra.

3. Closure with respect to @. Let S be a neighbourhood space and
denote its points by z, ¥,--..... Suppose that for each x in S there corresponds
at least one “neighbourhood” V', of x such that

(N. 1) for each x&S, V, contains zx;-
(N. 2) if U, and V, are neighbourhoods of x, W,=0,\V, is also a
neighbourhood of zx.

We shall now introduce an equivalent sequencial topology and weaker
ones into . The convergence of the sequence in S is defined by

Definition 1. If a sequence {1} is contained in a certain fixed set A, and
for each neighbourhood V', of x containing A¢ there exists an a,=a, (V)
such that a>a, implies 1,8V, then {x,} is said to be converg:nt to x with
respect to A and denote it by ‘

Za—>1 (A)D,

In this definition if we take . =5, then x.—x( ) coincides -with ordinary
convergence in (III).. As easily may be seen by example, z,—>x (A) does
not imply x.——x (B) in general if 4 =+ B.

Lemma 1. If {x.} corwerges to x with respect to A and {: } is « cofinal
subsequence o {x.}, then {x } coawvzrges to x with respect to A®

Proof is easy.

Lemma 2. If {2, YCT5CA and x——x (A), then x5—x (B).

Proof. Each neighbourhood V', of ‘x containing B¢is that of x containing
Ac. Since y,—>1 (A.) for any neighbourhood !/, containing B¢, there exists an
rx“_(zu(V ») such that a>a, implies 1.1V 4, that is, x> (B).

l)(‘hnlimll 2. Let @&¢. If thcre exists at least one bequence {xa}" Of
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points in A such as z,—>1 (®(A)), then we say that x is a limiting point
of A with respect to #-topology and denote it by 26A4¢. And A¢ is said to
be @-closure of 4.

Specially if =1, it coincides with (III).

Corollary. If > and 1EA®, then xEAY'.

Proof. By the hypothesis there exists'a sequence {x,} in A, snch as
2a—2(P(A)). Since {2, })CACP'(A)ZP(A), we have x;—>2 (#'(A)) by
Lemma 2.

From this Cor. we see that if ®>¢’, then ¢/-topology is not weaker
than @-topology. ' '

4. Fundamental theorems.

Theorem 1. For ‘any subsets A and B in S,

(AUB)?CA”UB’. @

Proof. Let {x,} be a seqi,lence of points in A{JB such that y,——x(®(4
UB)). Then at least one of {1,}(1 4 and {x,}.B must be a cofinal subsequence
of {4}

If {agr={2tN 4
is so, Lemma 1 and 2 show that z3—2 (P(AUB)) and 23—z (¥(4)) for
{2g}yTACP(A)CP(AYB). Thus the theorem is proved.

As easily may be seen by example, equality (1) does not hold in
general.

Theorem 2. A set V is a neighbourhood of x if and only if 2 (V°)¥,
Jor any ¥ in ¢.

Proof. It is sufficient to show, by Cor. of Definition 2, a€ (V¢)% If we
suppose that 2¢(V¢)?, then for some {i,} in V¢, {14} converges to z with
respect to (}7¢)=V"*. Since V"=V is a neighbourhood of x containing V¢=1V,
there exists an a,=a,(V') such that a>a«, implies x,£1”. On the other hand
all points of {x,} are contained in V°. Thus we have a contradiction.
Conversely let x&(V¢), then there exists at least one neighbourhood U
containing V. For, if such neighbourhood U, does not exist, every sequence
{#4} in V* must converges to x with respect to ¥, which contradicts to
2€(V*)’. From all such U, we can select a set {1y} consisting of points such
that x,&U,( V. Since all neighbourhoods of containing V form a directed
system concerning set-implication, {xy} is a sequence. By the construction
of {xv)} it converges.to x with*reépéét to V¢, which contradicts to 2E(VE)0,

(4) This concept 'may' be considered as a generalization of closure notion. Therefore
we may 3ay Ag a g-derived set, instead of p-closure.
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Consequently U,U*=0 and U,DV, that is, U,=V is a neighbourhood of x.
Q.E. D. '

Theorem 3. ACB implies A*C B¢ if and only if™®

(N. 3) for any neighbourhood U. of x, a set containing U, is also a
neighbourhood of s.

Proof. Let ACB and z:A¢, there exists a sequence {x,} in A such that

%,} converges to x with respect to ®(A4). By 0<®, x,>x (A), and then A°
is not a neighbourhood of x.

Since (P(B))¢C B 4¢, and by (N.3),(®(B))¢ is not a neighbourhood of x.
Moreover intersection of B with each neighbourhood V, of x containing
(®(B))¢ is not empty. As in the proof of Theorem 2 there exists a sequence
{Y7} such that Vi—x (®(B)). That is, x<B¢. Thus ACB implies A¢CB.
Conversely, if U,V then U, DV:. By the hypothesis of ®-topology, (U.°)D
(VC)‘P.’ Since x:(U,%)?, x<(V¢)¢. Consequently V is a neighbourhood of x by
Theorem 2. Q.E.D.

Summing up the above results we get:

Theorem 4. If S is a neighbourhood space satisfying (N. 1)—(N. 3), then
each topology defined by Definition 2 gatisfies the Jfollowing two conditions
concerning closure,

(AUB)*DA°UBY,
(A4UB)*DA4°UBY,
and moreover the P-topologies form a Boolean algebra.
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