LINEAR. TOPOLOGICAL SPACES
AND ITS PSEUDO-NORMS.®

By

Noboru Matsuyama.

Linear topological spaces were studied by A. Kolmogoroff,? J. v. Neu-
mann,® H. Hyers® and rhany other authers. Concerning relations among
these investigations, J. V. Wehausen® proved the equivalency of linear
topological spaces of Neumann and Kolmogonoff, and Hyers gave a new
defintion of linear topological spaces equivalent to them. After him to any
linear topological space we can associate a cernain directed system. When
we examine this directed system, we see that the directed system can be
replaced by a semi-join-lattice, and the linear topological space is characte-
rized by the family of new topologies which form a semi-join-lattice (§ 2).
In § 3 we show that this semi-lattice can be replaced by the semi-meet-
attice. The norm of the convex linear topological space satisfies the
triangular inequality. But the ‘“Norm” of § 3 does not necessarily satisfy
it. In § 4 we consider that the “Norm” satisfying the triangular inequality
actually characterizes the convex linear topological space.

1. Definitions. Kolmogoroff’s Definition (Definition K). Let L be a
linear Hausdorff space. If the vector operations x+y.and te x are continuous
with respect to this topology, then L is said to be a linear topological
space.

Nenmann’s Definition (Definition N).Let Lbe a linear space. If L has
family A of subsets U in L satisfying the following conditions, it is said to
be a linear topological space, and is denoted by L(A). A and U are said to
be the neighbourhood system and neighbourhood, respectively.
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Only common point of all U is 4.
For any U, and U, there exists U; such that
UsC (U, Us).
For any U; and numerical ¢ (but [#{<1) there exists
U; such as tU,CU.
For any U there exists U, such as U,+UCU.
For any point x<L and U there exists numerical value / such

Hyers’ Definition (Definition H). Let L be a linear spece and D a direc-
ted system. When there exists a real valued function |x|,(called pseudo-
norm) on the domam L xD satisfying the following conditions, L is said to
be a linear topological space, and is denoted by L(D).

(H. 1)
(H. 2)
'(H, 3)

(H. 4)

|%]a=0, if |x|,=0 for all deD-then x=4.

(ia= 1]+ [l

For &>0 and d<D there exist §>0 and e:D such that
|x[.<d and [y|.<8 imply [x+y|.<E&.

If d>e then [x|s =[],

Definition 1. Let S be a subset of the linear space L. Then two real
valued functions |x|s and ||x|s are defined by

|| s=gr. L b. A,

A> U, TeAS
and
n
L]
Jxlls =gr. L b-z |%k-1— ks,
y(z) k=1
where (x) is a finite set such as y(x)={0=x, %, - - -Xu=x).

Theorem 1. If SCTCL, then

Proof.

(1) Jx|s=|x|n
2) Jx[s= x|z,
3 fafs=]x|r
There exists a suitable sequence &, (&,40) such that
xe (Jx|s+ &) S for n=1, 2,....

Hence =ze¢ (Jx|s + &)SC(x|s+ &) T for n=1, 2,....
This implies (1), (2) and (3) are evident by

and

[]xng =gr. L b. Elxk—xk—l,s__z_ gr. 1. b. ijk—é\’x:—llz‘ = "x“ 7
Yy ®) Y )

[x]s = gr. L b. 3|tu—%-1]s = 3|x]s = [%]s.
¥ @)
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2. Characterization of the linear topological space L(4) depends
on the semi-join-lattice.
Let A’ be a.class of all I such that
U=UUa) = {ix; U, |t|Za},
where U:A and « is a positive number. B is a class of all V such that

n

V=D U, U<, n=1,2,...

i=1
In this B if VDV, we write V,<V, and if V;>V,>V, then write V,=V..
By this classification of B we have a new set (B), whose point is ( V) having
V as a representation.
Evidently (V; IV (V) = (D(Vy,Ve)).
' 'l‘he(n -em 2. For any linear topological space L(A) there exists a semi-
join- lattlce (B) and A is topologlcally equivalent” to B.

Proof. The first part of the theorem is ev1dent Let VeB, V= l)U’ and
U's=U(Ui, a),then there exists a U such as U:D Us. If we take a=min
(ahy- .- .ay), then U=U (Ua) V and U < A'. Sincé A'<B,VA' is topoldgically
equivalent to B. Conséqnently A is topologically equivalent to B.

Theorem 3. B satisfies the following conditions.

(1) If VeB and B8+0 then BV-B.
(2) If |B|=1 then BV V.

3 V==V

(4) B satisfies (N. 1),...., (N. 5).

Proof is easy.

Theorem 4. If V=D (U/, U,) then |x|, =max (|z]rn, |%|vr)-

Proof. Let |%1=|x|v Thenthere existsaseguence {&:} such that &,>0

and ze([x]r2t+&) U for n=1, 2...... Again by theorem 3 (2) there is &>0
such that .
|2 a4+ & < | ¥ 2t Eand ac(|%lpn+ENUL.

Consequently 26()%| 0+ v (%] ot &) UY
and weD[(faf vt End vay (1[0t En) el
and then =([x|vat&) DWWy U)=(alret&D V, [a]r = [a]ve.
On the other hand we have [x[r = |alr: evidently. ‘

Corollary. If V= D U/, then |a|r=max (|x|rr,.----- s &) ).

Since |z],- takes the same value for all V<(V) we define by |x]s.
Theorem 5. If (V)), (V.3e(B), then || ¢riyuom =max ([x [ oy, |4 o2d)-
Pronf is easy from above corollary and the definition.
Theorem 6. Each linear topological space L(A)is characterized by the
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real valued function |1|, on the domain L x L, where L, is a semi-join-lattice,
satisfying the following conditions.
(1) |x|; = 0 and if [»|,=0 for all (<L, then x=6.
(2) el =t ol
(3) For €>0 and /<L, there exist §>0 and /<L such that
[#]w<8 and |y[;.<8 imply [a+y[n<E.
(4) |elnue=max (|a]u, [aw)- |

Proof. Evidently the function |. [ satisfies (1)—(4), conversely in L(L,)

if we put

U=U(,&) = {at |x:<E&}
Then the class of all U satisfies (N. 1)-(N. 5). Again the neighbourhood
system A of L(A) is topologically equivalent to the class {UV), &. For if
0<&,<E, &EVUNY), &) and U((V), 1) CV. Hence B is topologically equi-
valent A as well as {U ((V), &)} . : ‘

By this Theorem we can understand the linear topological space in the
following space. Let L be the linear space and L, be the semi-join-lattice.
Then to each element [ of L, there corresponds a norm topology of L
safisfying (1)-(3), which we call (/)-togology and if we order these (I)-
topologies by their implication, it becomes a semi-join-lattice, homeomorphic
to L,.

3. Characterization of the linear topological space L(4) depends on
the semi-meet-lattice.

Let B be the class of all W such that

|  W=S UL, Ured =1, 2.
If (W) is a set of all (W) which is analogous to (V) of (B),
T WA (W) = (S (W, W),

Theorem 7. To each linear topological space L(A) there corresponds
a semi-meet-lattice (B) and A is topologically equivalent to L.

Theorem 8. B satisfies the conditions (1)-(3) of theorem 3.

Proof of these two theorems are analogous to those of B.
Theorem 9. If W=5 (U/, U/), then [a|w=min (|z|ye, |2|v2).
Proof. Let |+y.=|a|s». For some positive sequence {&,} converging to 0,
¢ (Jz|w+En) ‘W=(len—+€,,) o (U, U'w)
=S ((a|w+&) Uty (zlw+&) U (n=12,........ ).
Firstly, if z¢ ((z/w+ &)U 1, then [2]y1< [1|w, and secondly if
v (Ja|lw+&E)U 2, then |a|ons |2]p:< |2|w. Consequently

[alw = |3]0n.
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On the otherhand, [x[w = |i[y is evident. Hence we have
[2|w=]2|pa=min (| 1]vn, |x|ve).
Corollary. If W:.’?m then |t|w=min (|x]rn, |2z -] 2]mad-
Since | x|y takes the same value for all We (W) we define |%]ar by [%]w.

This definitions is analogous to the case of (B).

Theorem 10. If (W), (W,)« (W) then [x]|armncwy = min ([2]cw| 2] oray)-

Lemma 1. [tx|w=|t||a]n.
Proof. If W=§ UJ’, then we have
" tx|w=min ([f2]gm, oo - 162 o)
= [t| min ([z]gn, <o oo - NEIE))
= [t elx]m

Theoreéem 11. Each linear topological space L(A) is characterized by the
real valued function ||, on the domain LxL,, where L, is a semi-meet-
lattice and is also a directed system satisfying the following conditions.

(1) [x[r=0 and if |z|;=0 for all /eL. then x=0.

(2 [talr=[t[«]x].

(3) For &€>0 and [;cL, there exist >0 and /,<L, such that
[2].<é and |y|,, <0 imply |x+y|, <&

4) [1yz=min (e xl2).

Proof. By the construction we can easily see that (/#) determined by
L(A) and |x|ry astisfies the conditions ( 1)—(4). Conversely, in Lx L, the
class of all U=U ([, &)=(::|x|,<&) satisfies (N.1)=(N.5), and moreover 4
is topologically equivalent to {I/((W), &)}.

Corollary. In Theorem 11, we can replace the word “directed system”
by the condition:

(5) For any x and /,, [, <L, there exists /[, such that
max (&), [2]w) <|x/w
4. Convex linear topological space.
In definition N, if any neighbourhood (/. satisfies the following condition
(N. 6) U+ UC2U, |
then L is said to be convex. ’

In Definition K if for any neighbourhood U, there exists a convex

neighbourhood V, éuch that V4,2 7/e, then L is said to be locally convex?®

Two neighbourhood-systems B and 7 ave called topologically eqaivalent if for any
L'ed there exisis 163 such that VeU and converse. :
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In Definition H, of the Pseuedo-norms ||, satisfies the following condition
(H. 5) [2+y|a=<]ala+|yla for all d:D.
We say that the pseudo-norm satisfies the triangtilar -inequality. It is' well-
known that these three notivns are mutually .equivalent.
If L(A) is a convex linear topological space, then [af¢- watisfies the
triangular inequality®, but |x|w, does: not. t
We will now veplace [i|w by an equivalent |[af . satisfying the triangular

inequality.
We will put
Jallw=gr. L b S Ak-1]
where gr. 1. b. is taken for all chain {c’?, iy Aooe e e, Xn=Ank
Then we have
Lemma 2. Jtafw=]t] -ilxhw
Proof. Let y(a)= 0, a1,- can=a)y @) ={0, 1y, .-, A =11k

I]tx]lu_gr 1 b (2% — a's- x|n< gr. L b. 3 [#|e]ax—axo]w
=[t] gr. 1 b S ae—an-afw= [t e [lafw
If we replace sz and ¢ by fx and 5 we get
Wealiw=12] o flafiw.

Hence
[ta]w="1¢] o] 2]w
Lemma 3. fet+ylw = lla]w+ 9] w
Proof. Let-ﬂ/ R)={0, %1, Xay e oo ooy XK, -o - Am=a},

v (N =A{6, y5,-- Cesiy Yipew e yat
and y,=a+y. We have

|[;;_||],,.+||y_.{|.w=gr; L b X faw—aw ]+ 8r. 1 b X =y w
—gr(r)l b. 3 [an—ax— |w+gf 1 b. X [y 1=y w
zer. 1 b. X [m—ais |u+gr0 1“1; 1Y 0=y -] e
>gr@}y)b lz,—_zq-fi = a4y w

(7) If we put V=D U, then
1
Jx+y](r) =la+ylr=max Cx+9y|e,,---- atyem)

<max (Jx|ya+ v, oov, |2a]om+[¥[om), On the other hand
|xlei+ [y i Smax (alea, oo Jxlen) + max Qoo ool [9fa)
=[x+ ]|y|r (i=1,2,......, ).
Hence atyly <le(x> [9cv

6) Tychenoff, Ein F.xpunkisaiz (Math. Anu.. Vol. 111 (1935)).
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Lemma 4. f2llor =]

Proof. |2ijo <|2| 0 is evident.
Conversely |2 mggr,yl(,@b, S, |t —n-1] v = | 2] v.
Hence Nzl oe = |2lwe."

Theorem 12. = HW: HL“ woonv, R
Proof. Since W CWere [x||w=]| 2| wom is easy. Let W:E},‘ U,
then there exists a sequence {&,} such that &0 and ze(f|z || woono+En).
Wemv=qp,, Wemw (m=1, 2...... ), where a,, = [z worv4-Ep.
Hence we have a finite sequence of positive numbers {#;} and ;U
such that _
3t=1 and x=aun (I 2+ - +in 2a).
Thus we have
Hx"W:'am”t] Xt , i ]l w S anZ|it; -'\:"W
=St 2| wSaa3h || vl ori= QS = €.
Consequently
Jalw= (z]lwen,
and then
Ieflw =I5 wou.
Let (W3] be a class of all Weom, If we define W, oomw> W tone by W cone =
Wz””"”,k then (W) and (W) are isomorphic.
Now we say that the function |x| wonv defines We**.topology of L. If
] micow < || af wyrone.
Then we say that W,>**-topology is not weaker than We™.topology with this
order relation the class of all W*™-topology is a semi-ordered system.
Theorem 13. The class of all W“""-toéplogy and (W) are meet-
isomorphic.
Proof. For any W, and W," we have
2] wieono  greome = || S (W, W)™ = ||x]|S (W, W)
= lxffw = 2l weow (2=1, 2,..... -
If [afjwemo < [ weon (=1, 2,), then ||x]w < |2]w < |2w (=1, 2).
Hence ,
fxlw<min (z|w, [2|w) = [2]S (W), W),
bl S S fae— mosw ST | — 2o | S WL W),
”.’t ”Wg ”x" S W, W,) < [z} S (W,, W,)m = ”x” w10 Rt
Hence we see that the. correspondence .between (W) and -'Wcon”-_topgogy is
meet-isomorphic. o
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Theorem 14. Any locally convex linear topological space L(U) is
characterized by the real valued function [[x|; on the demain L xL; where
L; is a semi-meet-lattice and is also a directed system. satisfying the
following conditions.

(1) Jxf, > 0 and if x|, = 0 for all /<L, then x=6.

2) txlly = (2]« (2],

3 lx+ylle < Jal+ Iyl

(4) Meet of [/, and [,-topologies is /; A /,-topology, where the
phrase /-topology is defined by the function |x,.

Proof. If we consider L ((W)) in L(A), |z|wewre satisfies (1)—(4).
Conversely let U=U (I,€)=(x; |2]:<&). It is easy that the class of all U
satisfies (N. 1)-(N. 6), and A is topologically equivalent to {IJ (W™, &)}.
For any (W™, &), eU'CU- (W™, &) where &<¢& and U'CW. Conversely
for any U’ and 0<&<1, U (U, &) C U'.
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