LINEAR TOPOLOGICAL SPACES AND ITS PSEUDO-NORMS.*)

By Noboru Matsuyama.

Linear topological spaces were studied by A. Kolmogoroff,¹⁾ J. v. Neumann,²⁾ H. Hyers³⁾ and many other authers. Concerning relations among these investigations, J. V. Wehausen⁴⁾ proved the equivalency of linear topological spaces of Neumann and Kolmogonoff, and Hyers gave a new defintion of linear topological spaces equivalent to them. After him to any linear topological space we can associate a cernain directed system. When we examine this directed system, we see that the directed system can be replaced by a semi-join-lattice, and the linear topological space is characterized by the family of new topologies which form a semi-join-lattice (§ 2). In § 3 we show that this semi-lattice can be replaced by the semi-meetattice. The norm of the convex linear topological space satisfies the triangular inequality. But the "Norm" of § 3 does not necessarily satisfy it. In § 4 we consider that the "Norm" satisfying the triangular inequality actually characterizes the convex linear topological space.

1. **Definitions. Kolmogoroff's Definition (Definition K).** Let L be a linear Hausdorff space. If the vector operations x+y and $t \cdot x$ are continuous with respect to this topology, then L is said to be a linear topological space.

Neumann's Definition (**Definition** N). Let L be a linear space. If L has family A of subsets U in L satisfying the following conditions, it is said to be a linear topological space, and is denoted by L(A). A and U are said to be the neighbourhood system and neighbourhood, respectively.

^{*)} Received Oct. 23rd, 1943.

¹⁾ Kolmogoroff, Zur Normierbarkeit Eines Allgemeinen Topologischen Linear Raumes (Studia Math., Tom. V).

²⁾ von Neumann, On complete Topological spaces (Trans. Amer. Math. Soc. XXXVII (1935)).

³⁾ Hyers, Pseudo-normal Linear Space and Abelian Groups (Duke Math. Journ. Vol. 5 (1939)).

⁴⁾ Wehausen, Transformations in Linear Topological space (Duke Math. Journ. Vol. 4 (1938)).

- (N. 1) Only common point of all U is θ .
- (N. 2) For any U_1 and U_2 there exists U_3 such that

$$U_3 \subset (U_1, U_2).$$

(N. 3) For any U_3 and numerical t (but $|t| \le 1$) there exists

$$U_1$$
 such as $tU_1 \subset U$.

- (N. 4) For any U there exists U_1 such as $U_1+U\subset U$.
- (N. 5) For any point $x \in L$ and U there exists numerical value t such that $x \in U$.

Hyers' Definition (Definition H). Let L be a linear spece and D a directed system. When there exists a real valued function $|x|_a$ (called pseudonorm) on the domain $L \times D$ satisfying the following conditions, L is said to be a linear topological space, and is denoted by L(D).

- (H. 1) $|x|_a \ge 0$, if $|x|_a = 0$ for all $d \in D$ then $x = \theta$.
- (H. 2) $|tx|_a = |t| \cdot |x|_a$.
- (H, 3) For $\varepsilon > 0$ and $d \in D$ there exist $\delta > 0$ and $e \in D$ such that

$$|x|_e < \delta$$
 and $|y|_e < \delta$ imply $|x+y|_a < \varepsilon$.

(H. 4) If d > e then $|x|_a = |x|_e$.

Definition 1. Let S be a subset of the linear space L. Then two real valued functions $\|x\|_S$ and $\|x\|_S$ are defined by

$$|x| = \operatorname{gr. l. b. } \lambda,$$

and

$$||x||_S = \text{gr. 1. b.} \sum_{k=1}^n |x_{k-1} - x_k|_S,$$

where $\gamma(x)$ is a finite set such as $\gamma(x) = \{\theta = x_0, x_1, \dots, x_n = x\}$.

Theorem 1. If $S \subset T \subset L$, then

- $(1) |x|_S \ge |x|_T,$
- $(2) ||x||_S \ge ||x||_T,$
- (3) $||x||_S \leq |x|_T$.

Proof. There exists a suitable sequence $\mathcal{E}_n(\mathcal{E}_n\downarrow 0)$ such that

$$x \in (|x|_S + \varepsilon_n)$$
 S for $n = 1, 2, \dots$

Hence $x \in (|x|_S + \varepsilon_n) S \subset (|x|_S + \varepsilon_n) T$ for $n=1, 2, \dots$

This implies (1), (2) and (3) are evident by

$$||x||_S = \text{gr. 1. } \mathbf{b.} \ \sum |x_k - x_{k-1}|_S \ge \text{gr. 1. b. } \sum |x_k - x_{k-1}|_T = ||x||_T$$

and

$$||x||_S = \text{gr. 1. b. } \sum |x_k - x_{k-1}|_S \leq \sum |x|_S = |x|_S.$$

2. Characterization of the linear topological space L(A) depends on the semi-join-lattice.

Let A' be a class of all U' such that

$$U'=U(U,\alpha) \equiv \{tx; x \in U, |t| \leq \alpha\},$$

where $U \in A$ and α is a positive number. B is a class of all V such that

$$V = D_{i=1}^{n} U', U' \in A', n=1, 2, \dots$$

In this B if $V_1 \supset V_2$ we write $V_1 < V_2$ and if $V_1 > V_2 > V_1$ then write $V_1 \equiv V_2$. By this classification of B we have a new set (B), whose point is (V) having V as a representation.

Evidently
$$(V_1) \vee (V_2) = (D(V_1, V_2)).$$

Theorem 2. For any linear topological space L(A) there exists a semijoin-lattice (B) and A is topologically equivalent⁵⁾ to B.

Proof. The first part of the theorem is evident. Let $V \in B$, $V = \bigcup_{i=1}^n U_i$ and $U'_i = U'_i(U_i, \alpha_i)$, then there exists a U such as $U \subset D$ U'_i . If we take $\alpha = \min(\alpha_1 \alpha_2 \cdots \alpha_n)$, then $U' = U'(U,\alpha) \subset V$ and $U' \in A'$. Since A' < B, A' is topologically equivalent to B. Consequently A is topologically equivalent to B.

Theorem 3. B satisfies the following conditions.

- (1) If $V \in B$ and $\beta \neq 0$ then $\beta V \in B$.
- (2) If $|\beta| \le 1$ then $\beta V < V$.
- (3) V = -V
- (4) B satisfies (N. 1),..., (N. 5).

Proof is easy.

Theorem 4. If $V=D(U_1', U_2')$ then $|x|_V = \max(|x|_{U_1}, |x|_{U_2})$.

Proof. Let $|x|_{U_1} \le |x|_{U_2}$. Then there exists a sequence $\{\mathcal{E}_n\}$ such that $\mathcal{E}_n > 0$ and $x \in (|x|_{U_1} + \mathcal{E}_n)$ U_2 for $n = 1, 2, \ldots$. Again by theorem 3 (2) there is $\mathcal{E}' > 0$ such that

$$|x|_{U'1} + \varepsilon' \leq |x|_{U'2} + \varepsilon_n$$
 and $x \in (|x|_{U'1} + \varepsilon')U'_1$.

Consequently

$$x \in (|x|_{U'1} + \mathcal{E}')_{U'2} \subset (|x|_{U'2} + \mathcal{E}_n) U_1'$$

and

$$x \in D[(|x|_{U'2} + \mathcal{E}_n)_{U'1}, (|x|_{U'2} + \mathcal{E}_n)_{U'2}]$$

and then

$$=(|x|_{U'2}+\varepsilon_n) D(U'_1, U'_2)=(|x|_{U'2}+\varepsilon_n) V, |x|_V \leq |x|_{U'2}.$$

On the other hand we have $|x|_V \ge |x|_{U,2}$ evidently.

Corollary. If $V = D \cup U'$, then $|x|_V = \max(|x|_{U'_1}, \dots, |x|_{U'_n})$. Since $|x|_V$ takes the same value for all $V \in (V)$ we define by $|x|_V$.

Theorem 5. If (V_1) , $(V_2) \in (B)$, then $|x|_{(V_1) \cup (V_2)} = \max(|x|_{(V_1)}, |x|_{(V_2)})$. Proof is easy from above corollary and the definition.

Theorem 6. Each linear topological space L(A) is characterized by the

real valued function $|x|_{l}$ on the domain $L \times L_{1}$ where L_{1} is a semi-join-lattice, satisfying the following conditions.

- (1) $|x|_{l} \geq 0$ and if $|x|_{l} = 0$ for all $l \in L_{1}$ then $x = \theta$.
- $(2) ||tx||_{t} = |t| \cdot |x||_{t}.$
- (3) For $\varepsilon > 0$ and $l \in L_1$ there exist $\delta > 0$ and $l \in L$ such that $|x|_{l_2} < \delta$ and $|y|_{l_2} < \delta$ imply $|x+y|_{l_1} < \varepsilon$.
- (4) $|x|_{l_1 \cup l_2} = \max (|x|_{l_1}, |x|_{l_2}).$

Proof. Evidently the function $|A|_{(V)}$ satisfies (1)-(4), conversely in $L(L_1)$ if we put

$$U=U(l,\varepsilon) \equiv \{ x \mid x \mid l < \varepsilon \}.$$

Then the class of all U satisfies (N. 1)(N. 5). Again the neighbourhood system A of L(A) is topologically equivalent to the class $\{U(V), \varepsilon\}$. For if $0<\varepsilon_1<\varepsilon$, $\varepsilon_1 V< U((V), \varepsilon)$ and $U((V), 1)\subset V$. Hence B is topologically equivalent A as well as $\{U(V), \mathcal{E}\}\$.

By this Theorem we can understand the linear topological space in the following space. Let L be the linear space and L_1 be the semi-join-lattice. Then to each element l of L_1 there corresponds a norm topology of Lsafisfying (1)-(3), which we call (1)-togology and if we order these (1)topologies by their implication, it becomes a semi-join-lattice, homeomorphic to L_1 .

3. Characterization of the linear topological space L(A) depends on the semi-meet-lattice.

Let B be the class of all W such that

$$W = \stackrel{n}{S} U_i', \ U_i' \in A' \ n = 1, 2, \dots$$

 $W = \int_{i=1}^{n} U_i', \ U_i' \in A' \ n = 1, 2, \dots$ If (W) is a set of all (W) which is analogous to (V) of (B),

$$(W_1) \wedge (W_2) = (S(W_1, W_2)).$$

Theorem 7. To each linear topological space L(A) there corresponds a semi-meet-lattice (B) and A is topologically equivalent to L.

Theorem 8. B satisfies the conditions (1)-(3) of theorem 3.

Proof of these two theorems are analogous to those of B.

Theorem 9. If W=S (U_1', U_2') , then $|x|_W=\min(|x|_{U(1)}, |x|_{U(2)})$.

Proof. Let $|u|_{U'_1} \leq |a|_{U'_2}$. For some positive sequence $\{\mathcal{E}_n\}$ converging to 0,

$$x^{\varepsilon} (|x|_{W}+\varepsilon_{n}) W=(|x|_{W}+\varepsilon_{n}) \otimes (U'_{1}, U'_{2})$$

$$=S ((|x|_{W}+\varepsilon_{n}) U'_{1}, (|x|_{W}+\varepsilon_{n}) U'_{2}) (n=1,2,\ldots).$$

Firstly, if $x \in (|x|_W + \mathcal{E}_n)U'_1$, then $|x|_{U'_1} \leq |x|_W$, and secondly if

$$x \in (|x|_W + \mathcal{E}_n)U'_2$$
, then $|x|_{U'_1} \le |x|_{U'_2} \le |x|_W$. Consequently

$$|x|_W \geq |x|_{U'1}.$$

On the otherhand, $|x|_W \le |x|_{U'_1}$ is evident. Hence we have

$$|x|_W = |x|_{U'1} = \min (|x|_{U'1}, |x|_{U'2}).$$

$$|x|_{W} = |x|_{U'1} = \min \ (|x|_{U'1}, \ |x|_{U'2}).$$
 Corollary. If $W = \sum_{j=0}^{n} |x|_{W} = \min \ (|x|_{W'1}, \ |x|_{U'2}, \dots, |x|_{U'n}).$

Since $|x|_{W}$ takes the same value for all $W \in (W)$ we define $|x|_{W}$ by $|x|_{W}$. This definitions is analogous to the case of (B).

Theorem 10. If (W_1) , $(W_2) \in (W)$ then $|x|_{(W_1) \cap (W_2)} = \min(|x|_{(W_1)}, |x|_{(W_2)})$.

Lemma 1.
$$|tx|_{W} = |t| \cdot |x|_{W}.$$

Proof. If $W = \int_{1}^{\infty} U'_{1}$ then we have

$$|tx|_{w}=\min (|tx|_{U'1}, \ldots, |tx|_{U'n})$$

$$= |t| \min (|x|_{U'1}, \ldots, |x|_{U'n})$$

$$= |t| \cdot |x|_{w}.$$

Theorem 11. Each linear topological space L(A) is characterized by the real valued function $|x|_l$ on the domain $L \times L_2$, where L_2 is a semi-meetlattice and is also a directed system satisfying the following conditions.

- (1) $|x|_l \ge 0$ and if $|x|_l = 0$ for all $l \in L_2$ then x = 0.
- $(2) |tx|_l = |t| \cdot |x|_l.$
- (3) For $\varepsilon > 0$ and $l_1 \in L_2$ there exist $\delta > 0$ and $l_2 \in L_2$ such that $|x|_{i_2} < \delta$ and $|y|_{i_2} < \delta$ imply $|x+y|_{i_1} < \varepsilon$.
- (4) $|x|_{l_1 \wedge l_2} = \min (|x|_{l_1}, |x|_{l_2}).$

Proof. By the construction we can easily see that (W) determined by L(A) and $|x|_{(II')}$ astisfies the conditions (1)-(4). Conversely, in $L\times L_2$ the class of all U = U $(l, \varepsilon) = (:|x| \le \varepsilon)$ satisfies (N.1) = (N.5), and moreover A is topologically equivalent to $\{U(W), \mathcal{E}\}$.

Corollary. In Theorem 11, we can replace the word "directed system" by the condition:

- (5) For any x and l_1 , $l_2 \in L_2$ there exists $l \in L_2$ such that $\max (|x|_{l_1}, |x|_{l_2}) < |x|_{l_1}.$
- 4. Convex linear topological space.

In definition N, if any neighbourhood U satisfies the following condition

(N. 6)
$$U+U\subset 2U$$
,

then L is said to be convex.

In Definition K if for any neighbourhood U_{θ} there exists a convex neighbourhood V_{θ} such that $V_{\theta} \subset U_{\theta}$, then L is said to be locally convex.⁵⁾

Two neighbourhood-systems B and Z are called topologically equivalent if for any UEA there exists $V \in B$ such that $V \subseteq U$ and converse.

In Definition H, of the Pseuedo-norms $|x|_a$ satisfies the following condition (H. 5) $|x+y|_a \le |x|_a + |y|_a$ for all $d \in D$.

We say that the pseudo-norm satisfies the triangular inequality. It is well-known that these three notions are mutually equivalent.

If L(A) is a convex linear topological space, then $|x|_{(F)}$ satisfies the triangular inequality⁶⁾, but $|x|_{(F)}$ does not.

We will now replace $|x|_w$ by an equivalent $|x|_w$ satisfying the triangular inequality.

We will put

$$\|x\|_{W} = \operatorname{gr. 1. b. } \sum \|x - x_{k-1}\|_{W},$$

where gr. l. b. is taken for all chain $\{\theta, x_1, x_2, \dots, x_n = x_n\}$.

Then we have

Lemma 2.
$$||tx||_{W} = |t| \cdot ||x||_{W}$$
.
Proof. Let $\gamma(x) = \{\theta, x_{1}, \dots, x_{n} = x\}, \gamma'(tx) = \{\theta, x'_{1}, \dots, x'_{m} = tx\}$.
 $||tx||_{W} = \text{gr. 1. b } \sum |x'_{k} - x'_{k-1}|_{W} \leq \text{gr. 1. b. } \sum |t| \cdot |x_{k} - x_{k-1}|_{W}$

$$= |t| \text{ gr. 1. b. } \sum |x_{k} - x_{k-1}|_{W} = |t| \cdot ||x||_{W}$$

 $= |t| \text{ gr. 1 b. } \sum |x_k - x_{k-1}|_{W} = |t| \cdot ||x||_{W}.$ If we replace x and t by tx and $\frac{1}{t}$, we get

$$||tx||_{W} \geq |t| \cdot ||x||_{W}.$$

Hence

$$||tx||_{w} = |t| \cdot ||x||_{w}.$$
Lemma 3.
$$||x+y||_{w} \le ||x||_{w} + ||y||_{w}.$$
Proof. Let $\gamma(x) = \{\theta, x_{1}, x_{2}, \dots, x_{k}, \dots, x_{m} = x\},$
$$\gamma(y) = \{\theta, y_{1}, \dots, y_{l}, \dots, y_{n}\}$$

and $y'_{i} = x + y_{i}$. We have

$$\|x\|_{W} + \|y\|_{W} = \operatorname{gr}_{r}(1, \mathbf{b}, \sum_{i} |x_{k} - x_{k-1}|_{W} + \operatorname{gr}_{r}(1, \mathbf{b}, \sum_{i} |y_{i} - y_{i-k}|_{W})$$

$$= \operatorname{gr}_{r}(1, \mathbf{b}, \sum_{i} |x_{k} - x_{k-1}|_{W} + \operatorname{gr}_{r}(1, \mathbf{b}, \sum_{i} |y'_{i} - y'_{i-1}|_{W})$$

$$\geq \operatorname{gr}_{r}(1, \mathbf{b}, \sum_{i} |x_{k} - x_{k-1}|_{W} + \operatorname{gr}_{r}(1, \mathbf{b}, \sum_{i} |y''_{i} - y''_{i-1}|_{W})$$

$$\geq \operatorname{gr}_{r}(1, \mathbf{b}, \sum_{i} |x_{i} - x_{k-1}|_{W} + \operatorname{gr}_{r}(1, \mathbf{b}, \sum_{i} |y''_{i} - y''_{i-1}|_{W})$$

$$\geq \operatorname{gr}_{r}(1, \mathbf{b}, \sum_{i} |x_{i} - x_{i-1}|_{W} + \|x_{i} - x_{i}\|_{W})$$

(7) If we put $V = D U'_i$, then

$$|x+y|_{(v)} = |x+y|_{v} = \max (|x+y|_{v'_{1}}, \dots |x+y|_{v'_{n}})$$

$$\leq \max (|x|_{v'_{1}} + |v|_{v'_{1}}, \dots, |x|_{v'_{n}} + |y|_{v'_{n}}), \text{ On the other hand }$$

$$|x|_{v'_{1}} + |y|_{v'_{1}} \leq \max (|x|_{v'_{1}}, \dots, |x|_{v'_{n}}) + \max (y_{v'_{1}}, \dots, |y|_{v'_{n}})$$

$$= |x|_{v} + |y|_{v} \qquad (i=1, 2, \dots, n).$$
Hence
$$|x+y|_{v} \leq |x|_{(v)} + |y|_{(v)}.$$

⁶⁾ Tychenoff, Ein F.xpunktsatz (Math. Ann., Vol. 111 (1935)).

Lemma 4. $||x||_{U_{\ell}} = |x|_{U_{\ell}}$.

Proof. $||x||_{U'} \leq |x|_{U'}$ is evident.

Conversely $|x|_{U'} \leq \operatorname{gr}, 1, b, \sum |x_k - x_{k-1}|_{U'} = ||x||_{U'}.$

Hence $\|\mathbf{z}\|_{U^{r}} = \|\mathbf{z}\|_{U^{r}}$.

Theorem 12. $||x||_{w} = ||x||_{w^{conv}}$.

Proof. Since $W' \subset W^{conv}$, $||x||_{W} \ge ||x||_{W^{conv}}$ is easy. Let $W = \sum_{i=1}^{n} U'_{i}$, then there exists a sequence $\{\mathcal{E}_{n}\}$ such that $\mathcal{E}_{n}\downarrow 0$ and $x \in (||x||_{W^{conv}} + \mathcal{E}_{m})$.

 $W^{conv} = \alpha_m \ W^{conv} \ (m=1, 2 \dots), \text{ where } \alpha_m = \|\mathbf{x}\|_{W^{conv}} + \mathcal{E}_m.$

Hence we have a finite sequence of positive numbers $\{t_i\}$ and $x_{i^k}U_{i'}$ such that

$$\sum t_i = 1$$
 and $x = \alpha_m (t_1 x_1 + \cdots + t_n x_n)$.

Thus we have

$$||x||_{W} = \alpha_{m}||t_{1}|_{x_{1}} + \cdots + t_{n}||t_{n}||_{W} \leq \alpha_{m} \sum ||t_{i}||_{x_{i}} + \alpha_{m} \sum t_{i}||x_{i}||_{W \in \mathcal{L}} + \alpha_{m} \sum t_{i} = \alpha_{m}.$$

Consequently

$$||x||_{W} \leq ||x||_{W}$$
 onv,

and then

$$\| \mathbf{t} \|_{\mathbf{W}} = \| \mathbf{x} \|_{\mathbf{W}^{0uv}}.$$

Let (W) be a class of all W^{conv} . If we define $W_1^{conv} > W_2^{conv}$ by $W_1^{conv} \subset W_2^{conv}$, then (W) and (W) are isomorphic.

Now we say that the function $||x||_{W^{0nv}}$ defines W^{conv} -topology of L. If

$$\|x\|_{W_1^{conv}} \leq \|x\|_{W_2^{conv}}.$$

Then we say that W_2^{conv} -topology is not weaker than W^{conv} -topology with this order relation the class of all W^{conv} -topology is a semi-ordered system.

Theorem 13. The class of all W^{conv} -topology and (W) are meetisomorphic.

Proof. For any W_1^{conv} and W_2^{conv} we have

$$||x||_{W_1^{conv} \cap W_2^{conv}} = ||x|| S(W_1, W_2)^{conv} = ||x|| S(W_1, W_2)$$

$$\leq ||x||_{W_i} = ||x||_{W_i^{conv}} (i=1, 2, \dots).$$

If $||x||_{w^{conv}} \le ||x||_{w_i^{conv}}$ (i=1, 2,), then $||x||_w \le ||x||_{w_i} \le |x|_w$ (i=1, 2). Hence

$$\begin{aligned} \|x\|_{W} &\leq \min \left(|x|_{W_{1}}, |x|_{W_{2}} \right) = |x|S(W_{1}, W_{2}), \\ \|x\|_{W} &\leq \sum_{1}^{n} \|x_{k} - x_{k-1}\|_{W} \leq \sum_{1} |x_{k} - x_{k-1}| S(W_{1}, W_{2}), \\ \|x\|_{W} &\leq \|x\| S(W_{1}, W_{2}) \leq \|x\| S(W_{1}, W_{2})^{\operatorname{conv}} = \|x\|_{W_{1}^{\operatorname{conv}} \cap W_{2}^{\operatorname{covv}}}. \end{aligned}$$

Hence we see that the correspondence between (W) and W^{conv} -topology is meet-isomorphic.

Theorem 14. Any locally convex linear topological space L(U) is characterized by the real valued function $\|x\|_l$ on the domain $L \times L_3$, where L_3 is a semi-meet-lattice and is also a directed system satisfying the following conditions.

- (1) $||x||_{\ell} > 0$ and if $||x||_{\ell} = 0$ for all $\ell \in L$, then $x = \theta$.
- (2) $||tx||_l = |t| \cdot ||x||_l$.
- $(3) ||x+y||_{l} \leq ||x||_{l} + ||y||_{l}.$
- (4) Meet of l_1 and l_2 -topologies is $l_1 \wedge l_2$ -topology, where the phrase l-topology is defined by the function $||x||_{l}$.

Proof. If we consider L ((W)) in L(A), $||x||_{W^{conv}}$ satisfies (1)-(4). Conversely let U = U (l, \mathcal{E})=(x; $||x||_{l} < \mathcal{E}$). It is easy that the class of all U satisfies (N. 1)-(N. 6), and A is topologically equivalent to {U (W^{conv} , \mathcal{E})}. For any $U(W^{conv}$, \mathcal{E}), $\mathcal{E}U' \subset U^{\perp}(W^{conv}$, \mathcal{E}) where $\mathcal{E}_1 < \mathcal{E}$ and $U' \subset W$. Conversely for any U' and $0 < \mathcal{E} < 1$, U (U', \mathcal{E}) $\subset U'$.

Math. Inst., Tohoku Univ., Sendai.