ON THE COMPUTATIONS OF THE INDICES OF
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By
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1. Let K be a relatively cyclic algebraic number field over % of degree
n and s be a generating substitution of the Galois group of K/k. And we
assume that the prime ideal p in £ resolves in K as p=T°, where P'="%.

The computation of the norm residue index in the class field theory
is, as$ it is well known, reduced to the proof of the following equality in
the above case;

(a:ayNgiA) = e,
i.e., under the group a/a, of residue classes modulo p*, for sufficiently
large M, the index of the subgroup of classes represented by the norms of
numbers A of K is equal to e.

In the computation of this paper we introduce, for simplicity, the p-
adic number field as usual, but we do not employ the logarithm, nor the
group of n-th powers of numbers.

We can take n numbers 5,0 (i=1,2, .. ;n) in the P-adic field Ky which
are conjugate with respect to k,, and are linearly independent in %, In
the sequel we use such numbers s'®, which are known as normal basis of
Ky/ky.

2. Without loss of generality we may assume that the numbers s$®
which constitute the normal basis are integers in Ky and that the trace
of ® is an element of the prime ideal b, namely

SpO = >0 =0 € p. (1)

If x>2 and B be an integer in k,, we can take an integer v in %,

such that
1+6+8=NA and A =1+ 6'y0, (2)
where NA is the norm of a number A in Ky/k,.

Proor. If we denote the m-th elementary symmetric function of n
numbers $® with 6,, from the equation
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1+ 68 = N(1+ 6¢9),
L+ 68 =14 690+ (07)6, + .. + (6)",,

we have

that is,

Oy + 07 %0,(0y)* + 62-30;(0y)® + ... + O"-A-"g (Oy)™ = 65.
This is an algebraic equation in 6y of degree n with integral coefficients
in k, where the coefficient of @y is unity. Solving formally we get

Oy = 08 — 626,(68)* + ..,

which is an infinite series of 68 with integral coefficients in k,. Since
fcp, the infinite series converges as a p-adic number, and the sum is an
element of the ideal (6) in k,, so that we can take an integer v in %,
which satisfies the relation (2).

As far as the relation (2) is concerned, the integers s$'® need not
constitute a normal basis, but they need only satisfy the relation (1).

In general let us represent the units in Ky and £, (the integers which
are prime to p) by A and a respectively. By a, we understand the units
a which satisfy the congruence a=1 (p‘), where p‘c(6®). Then from
(2) we have, as groups of numbers, {a,}C{NA}. Hence we have, as an
index relation,

(a:a,NA) = (a:NA). (3)

3. As in the preceding section we take the fixed set of normal basis

§'®, and we represent the set of numbers

I'=>Bs0 (4)
i=1
by {I'}, where B’s run through integers in k,. {I'} is a subgroup of the
additive group {B} of whole integers in Ky, and I"€{I'}. Here we have
Bre{T'} and BI=>Bs'®c {I'}, where B represents an integer in k.

If (1—s)I'=0, then we have I'=230, (5)
and if SpI'e (6*), then we have
T = (1— )" + 680, (6)

where A>1 and I is a number of {I'}.
Proor oF (5). From (4) we have

1-s8)I'= Z:(Bt — B;1)8'0, where 8, = B,.
As n numbers §'® are linearly independent in %, and 2(31— B.1)§®=0
by the assumption, we have B;=p8,_;(i=1,2,..,n. Hence we can put
B,=8 and then from (4) we have I'=>850@=40).
Proor oF (6). From (4) we have Sp I'=>8,6, and by the assumption

>B.bc (6"). Hence we have >B,=018. If we put By=R,=0 and
Bi+B:+... +B:=8Bi (i<n), we have B;=8—8_, (1=1,2,..,n—1) and
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Bo=B,+ B+ B+ ... +Bno1—Brn= —/8;5—14‘2:35 =08 —B =B — B+
6 '8 since B,=0. Therefore we have
I'= >(B; — Bi.1)s'® + 01850
— (1= 5)I" + 0180,

where I":Z,Bgs@é {I'}, because By=48;.

4. If we take any integer B in Ky, then B and s'® are linearly
dependent. Hence we have a linear relation of integral coefficients in ky ;

BB + >B,50 = 0.
Since '@ are linearly independent, 80, so that we can take some power
0" of 0 such that 6°/8 is an integer, for #€p in p-adic number field. Hence
0'B=—(6"/B) - 2BsOciT'}. Let 6 be the highest power of 6 among
the corresponding 6”, when B represents each element of the absolute basis
of the integers in Ky with respect to the field of rational p-adic numbers.
Then we have 6'B€ {I'} for all integers B in Ky, and hence, for ideals in
Ky we have
(0) < {I'} < (1). (7)

If we put A,=1+6*B for each integer A, the set of numbers {A,} is
the multiplicative group of the units A of Ky such that A=1 (mod. (6*)),
and as sets of numbers we have

fAnd 0T C A}

In the following we put K:1+0*I‘=1+0"z,3¢si® for a fized integer
A=t+2, then we have -
B {AnjCiAudciAlciALg.
{A} is o multiplicative group and A€ {A}.

Proor. The product of two numbers of {A} is also a number of
§A} as follows;

(14 0T)(1 + 6M7) =1 + XTI + IV + 6M'TV) € {A},

because O\ I'T" € (6*) < (6') c{I'}.

If for A=1+46'T we put A’=1—6T" and A”=(AA’)", we have

A — (1 _ 03)\1'\2)-1 = {Az,\} cC {X}, A1 — ATAM c {WA} .

’

thus the inverse of any number of {A} is also the number of {A}.
5. Let us put A=a if A'*=1, and put A=A* if NA=1, then, as-
groups of numbers, we have

fa} = {NAY, (8)

and {A*} = {A, (9)
Proor. Let us put a=1+6T. As a'~*=1, a=a' and (1—s)a=0,
we have (1—s)I'=0, so that from (5) we have I'=86 and a=146.89,
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thus from (2) we get a=NA, A=1+6yOc {14+6''}={A}. Therefore wo
have the relation a€ {NA}. Conversely, as (NA)'"*=1 and NA=II(s'A)
€{A}, NAc{a}, so that the relation (8) is proved.

Now let us put A*=1+6". As1=NA*=1+6"Sp I+ (6*), we have.
Spl'e (0*), so that from (6) we have

T = (1— )" + 6180,
Here let us put A’=1+6" and A¥A”-'=A, then
A= (14 6T)(1 4+ 617y
= (1+6T)(1— 81— 5)) ((6")

=1+ gx(r\ _ (1 _ s)F') ((0‘2,\))
=1+ 6180 =1, ((6%7),
Al+s+“.+s = 1 ((02)‘_1)).

n-2

Next let us put
B=0 + As® 4 A*5$0 4 .. 4 At " Tge1@)

where s'® are the normal basis, then we get B'A=B, because Alesra
— NA=N(A¥A"-1) =1,
From B-0=B—-0 -0 50— .. —'0

= (A —=1)s0 + (A —1)$O + ...

c (32;\—1) c (67\+1+t) cC {0A+11";
(because A=¢+2 and by (7)), we can.put B—=0*T"" and A”=B/f=
1+6T"€{A}, so that we have A"~*=B*=A=A%A""1 A*=(A"A’)"'€
{A’-*}. On the contrary, as N(A™")=1 and A'-*€{A}, A'*€{A*}, so
that the relation (9) is proved. |

6. Let us represent the units in Kj (integers in Ky which are

prime to p) by A in general, and put A=A* if NA=1, then we have the
relation of the index

-1

(A*: A7) = (10)

Proor. By Hilbert’s lemma, for each A* we can take a number B
in Ky such that A*=B'*. If we take an integer Il in Ky such that the
exponential P-adic value O(IT)=1, E=II""* is an unit in Ky and NE=1,
so that E€ {A*}. If O(B)=m (positive or negative rational integer or
zero), A=BII"™ is an unit, so that B=II"A, A*=B'"*=E™A'"’ hence
A*c {E™A-*}.  Conversely E™A'-*€ {A*} so that we have

(A*: A7) = (E™A5: A9),

It is thus sufficient to show that the condition E™e {A'-*} is equivalent to
the divisibility of-m by e. In fact, if II™*-9=Em=A"* then (II"/A)'"*
=1,1I™/A is a number in k, so that m=O0(II"/A) is divisible by e,
because p=P° in Ky/k,. Conversely, if m is divisible by e, we can take
a number p in ky such that O(p)=m. Then A=II"/p is an unit in Ky,
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s0 that Em=II"0-9=Al-*
Y. From (3) we can see that the index
(a: NA)=(a:a,NA)=a
is a finite number. From (10) we have
(A*:A%) e

(a:NA) o’
N(A™*)=(NA)"*=1, A=A* if and only if NA=1 and A=a if and only
if A'=*=1, so that we can apply Herbrand’s lemma in (11). In place of
the group {A} of units, we take its subgroup {A}, then, since {A,,.}cC
{A}c{A} and so the index (A:A)=<(A:A,,,) is finite, we have
| (A*: A7) e

(a:NA) a
Now, from (8) and (9) we have (a:NA)=1 and (A*: A™*)=1 respect-
ively, so that a=e. Thus, for the index of the group of the norm residues,
it is proved in Ky/k, that .

(a:a,NA) = (a: NA) =e.

8. Now let us compute the index of the group of power residues.
Let n be a natural number and p be a prime ideal in an algebraic number
field k. It is also well known that, under the group of residue classes of
numbers in k¥ modulo p', for sufficiently large A, the index of the subgroup
of those which are represented by the n-th powers of numbers in £, that
is, the index of the group of residues of n-th powers, is

(a:v) =n"NJp, n <n'" <n;
where p* is the p-component of n, and the number of the n-th roots of
unity in % is #/, (and the number of those in the p-adic number field %,
is n'').

By the computation of this index, we introduce the p-adic number
field k£, as usual, but we do not employ the logarithm this time too.

Let a denote the numbers in k, which are prime to p and let {a} be
their multiplicative group. Let us put a=a, if a=1 (n*p), where M\ is
any natural number. If a,=1+#"8, B8 is a number in p, and

(1 + »*8)" = 1(n*p),
so that we have arc{a,,;}. Conversely if a,,,=1+n»"!8, 8 is a number
in p, and we can take a number vy in p such that

1+ n""lB — (1 + n"'y)",
so that we have a,,,€{a?}. Therefore, as groups of numbers, we have
fant ={a,.i.
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If ¢ be a primitive n-th root of unity,
(1—£) (A=) ... (1= =0 (n'p),
so that unity is the only n-th root of unity which is included in the group
fa,}.

By the correspondence of numbers a—a”, those which correspond to
unity are the n-th roots of unity in k,, and their number is »n”, while
only one of them is included in {a,}, so that we have the relations between
the indices of groups

(@) = @ria) = (@ ) = (),
where (a:a,)=@(n') and (a:d,,;)=@(n'p-p')=@(n*p) Np* are finite
numbers. Hence we have
(a:a™) = n" N

Let us now put a=a* if a=1 (p*), where A\=>2t+1. As a*=1(n?),

a*eia,} ={at}c{a™}, so that we have in £,

(a:v) = (a:a*a™) = (a:a™).
This is the ratio of the number (a:a*)=@(p*) of the cosets of {a*} to
the number (a"a*:a*) of those which are represented by the n-th powers
of numbers in %, so that this index in % is the same as in £,. Therefors
the index of the group of the residues of n-th powers in % modulo p*

(A=2¢t+1) is obtained’;
(a:v) =n"Ny.
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