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Following C.E.Rickart [7], a Banach algebra R over complex numbers

having a principal unit 1 is called a star~algebra if it has an operation *•*

satisfying

1° (Xx + μy)* = λ* x* 4- A O * »

2° (xy)* = j * x*,

3° *•**== ΛΓ,

4° \χχ*\ = ixj2.

It is reported by the American literatures, although the original paper of

I. Gelfand and ML Neumirk [3] is not yet available in this country, that they

have proved in 1943 that a commutative star-algebra is isometrically isomorphic

with the algebra of all complex-valued functions on a compact Hausdorff

space. Recently, R. Arens [1] simplified and clarified the proof of this theorem.

In the general case, it is also reported, they have proved that the algebra is

isometrically ismorphic with a ring of operators on a certain Hubert space

under an additional assumption, which states that 1 -f xx* has an inverse in R

for any x.

The purpose of the present note is to show, that the later theorem is also

t ue when the above condition is replaced by another one, and that the

theorem is proved in a similar manner as in that of I. E. Sagal [8]. In the

below, to save the spice, it is assumed that the teaders are familiar with the

stir-algebras, and so we will only describe the outline of the proofs when

they are already known.

1. In this section, we may prove some geneneral properties of star

algebras. The essential materials are taken from,I. E Segal [8].

DEFINITION 1. A linear functional / on R is said to be positivj, sym-

bolically f> 0, if f(xx*) Ξ> 0 for any x of R. A positive linear functional is

*) Received October 25, 1949.
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called a state if / (1) = 1 holds, and a state is called pure if it can not be
expressed by a convex combination of other two states.

LEMMA 1. The set Z of all states forms a convex weakly* compact set in the
conjugate space of R, and the ret P of all pure states i* the set of all extreme
points of Z* If Z is total then P it total*

PROOF: The convexity of Z is obvious. It is somewhat easily proved that
a state has the norm at most unity, whence it is a weakly* totally bounded
set in the conjugate spice by a corollary of the Tychonoff theorem (Con-
erning on this point, cf. for example, Kakutani [4]). Suppose that the fΛ

converge weakly* to /. Then f» (xx*) > 0 and fΛ ( ;) = 1 imply / (xxΫ) > 0 and
f(V; = 1, that is, / is a state and Z is closed in the weak* topology. This
proves the first half of the lemma since P is the set of all extreme points of
Z by Definition 1. Now, let us suppose that Z is total. Then by a theorem
of Krein-Milman [5] (cf.also Yosida-Fukamiya [9]) P is non-void and the weak
closure of its convex hull is coincides with Z. Hence the totality of Z
implies that of P. This completes the proof.

LEMMA 2. Iff is a state, then the set M of all elements x with f(xx*) = 0
forms a closed right'ideal of R. Moreover, if we put f(xy%) = (x,y) for x and y
of RIM ivhich contains x andy respecively, then it gives an inner product of RIM,
whence there exists a Hilbert space H containing R/M as a dense subset* Con*
sequently, R is represented continuously and homomorphically as a ring of operators
on H-

PROOF : Let A be the star-subalgebra of R generated^ by 1 and xv*..
Then A is commutative, hence by the Galfand-Neumark-Arens Theorem it is
isometrically isomorphic with a certain C (S). Hence \χ\2 — xx* corresponds
to a positive function on S, and so there exists an element Z in A such as
\x\2 - ΛΓX* = ZZ*- A n d consequently, it holds / (ytζ^y*) = \x\2f (yy*) -

f{yxx*y*) ^ 0 for any γ in R. This inequality and the positive linearity imply
the first and the second statements of the lemma as usual calculations. More-
over, the inequality implies that R forms an operator-doimin of the continuous
endomorphisms of H if we deine the multiplication by xa = ~xa. The norm
II a\\ as operators does not exceeds the norm \a\ of the algebra, since {jx^x)
= I*I 2 (> y) holds for any x and y. By this definition the conjugate element

1) A subalgebra A of a star algebra R is called "genaratecL by a set S of elements
of R" HA is the smallest self-adjoint, matrically closed suaalgebra containing
S.
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<z* of a c o r r e s p o n d s t o t h e adjoint o p e r a t i o n of a, s ince we have (xa, j) =

f(xay*) s=f(x(ya*)*) = (^j/tf*). This proves the remainder of the lemma.

LEMMA 3 If R has a total set of states such that for any x with the norm
unity there exists a state f with f(xx*) = 1, then R is isometrically isomorphic
with a ring of operators of a Hubert space which is the direct sum of Hf of
Lemma 2 on the set P of all pure states*

PROOF : Let H be the direct sum of Hf on P, that is, H is the space of all
functions %(f) on P assuming the values in Hf such that Σ/0ζ(/), tζ(/)) is
bounded. Since Z is total, some tζi = 3c(/) does not vanish, where x(f)
means the residue class of R/Mf containing x. Let ^ be the residue class of
R/Mf containing 1. Then evidently x transforms ^0 into ^x in Hf, whence the
mapping from R to a ring of operators R' is one-to-one, that is, R is algebrai-
cally isomorphic with Rf. Hence it remains to show that the mapping is
norm-preserving. Since the weak* closure of the convex hull of P is Z, there
exists a convex combination Σ?=i a%f% of pure states such that

for any positive number ε. Let ^ be an element of H such that ^ (fή = af x{

(i = 1,2, •.,//) and z(f) = 0 for / Φ β (i = 1,2, •••, n) where xi = x(fή. Then

by the above inequality we have

for x a n d / such that \χ\ = 1 and f(xx^) = 1. Let furthermore ^n be an

element in H such that ^0(/*) = CΪ% ̂ O and sζo(/) = 0 otherwise where ^0 is the

residue class of R/Mf containing 1. Then evidently the norm of «ζ0 is unity

and x transforms «ζ0 into ^, whence the norm || x \\ is greater than 1 - ε.

Since ε is arbitrary, we have || x \\ = 1, which is required.

2. Before proving that R satisfies the hypothesis of Lemma 3 under an
additional condition, we make some remarks on the real linear space E of all
hermitean elements of the alegbra. Firstly, it is not difficult to prove, that R
is the direct sum E -f- iE as real Banach space and each real linear functional
of E is extensible to complex linear functional of R without increasing the
norm. Nextly, we can define the spectra of an element x of R as the set of
all λ's such that λ — x has no inverse in R, as usually. Since it is proved
by C. E. Rickart [7] that a star-subalgebra of R always contains the inverses
of its elements if they exist, the spectra of an hermitean element x is de-
termined uniquely by the commutative star-subalgabra A generated by 1 and x.
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It is a direct consequence of the Gelfand-Neumark-Arens Theorem, that the
spectra of an hermitean element are real. Hence it is possible to introduce
an order in E such that x ;> 0 if and only if the spectra of x contains no
negative number. It is also a consequence of the above theorem, that each
hermitean element of R is expressible as a difference of two non-negative
elements and the order satisfies the archimedean postulate, that is, — \χ\ ^x
^ \x\ for any x in JE. Hence to prove the theorem, it is sufficient to show
that F has sufficiently many states having the required property. After these
considerations, now we introduce a definition as follows :

DEFINITION 2. A star-algebra R is called archimedean if 2ϋ?-i x i X i * = G

implies χ% = O

LEMMA 4. By the above ordering the real linear space E of all hermitean

dements of an archimdean algebra forms an archimedean ordered limar space, and

the set N of all positive elements forms a convex cone having an inn°.r point*

PROOF : Firstly, we will prove, that y = Vf=1 xι x%* ̂  0 for any x in R.
Let us suppose the contrary and y - v — w where v and w are positive hermitean
elements of R (The existence of such v and w follows from the above remark).
Since by the Gelfand-Neumark-Arens Theorem we can choose v and w such as
vw = wv >= 0, whence it holds wyw = N^ wxix%*w% = - #Λ Since w > 0 implies
the existence of an hermitean element // whose square is w, it follows by the
" archimedean " postulate w * 0. This is a contradiction.

From this it follows at once that ordering satisfies all the postulates of
ordered linear spaces of G. Birkhofί [2 105], and the set N of all non-negative
elements forms a convex cone in E. The remainder of the lemma follows
immediately from the Gelfand-Neumark-Arens Theorem, and we have that the
norm of an hermitean element x is the infinimum of λ's such as — λ ^ x ^ X.
This proves the lemma

LEMMA 5. If R is archimedean^ then the states are total and a state f exists

with /(AΓX*) = 1 for any x of the norm unityu

PROOF : To prove that Z is total, it suffices to show that/(x) = 0 for all
f in Z implies x = 0, where x is hermitean. Suppose that |* | = 1 (i. e. x <: 1)
and x Φ λ . Then the half line starting from 1 and passing through x
intersects at y with the frontier of JV, the positive cone, since otherwise the
interval (0, 1) of E (as an ordered space) contains the half line and a con-
tradiction.

Suppose firstly x 4= j . Since N is convex body in E as proved in Lemma 4,
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b y the w e l H α i o w n t h e o r e m of S. M a z u r [6] there exists a c o n t a c t hyperplane

F of N pathing tiirough y and not through x. Since N is a cone in E, F
contains automatically the origin withj/. Hence there exists a linear functio-
nal / on E whose vanishing points coincide with F and / (x) > 0 for all
positive x. Therefore, there exists a state/ which is a scalar multiple of /',
whence f(y) = 0 and so f(χ) Φ 0-

Suppose nextly x =~y, or more generally, suppose that x lies in the
closure of N with the norm unity. Since x ^ 1 by the assumption, 1 — x' is
non-negative and lies on the frontier of IV, because otherwise there exists
ε > 0 such that I - x situates at the center of a sphere with radius 2e being
contained in N and so 1 - x — ε is positive which contrary to the hypothesis
that the norm of x is unity. Hence by the theorem of S. Mazur, there
exists a contact hyperplane F of N passing through the origin and 1 - x, and
consequently a state/ existe with f(x) = 1. This proves the remainders of
the lemma, since x is of norm unity and so χχli is positive and its norm is
unity too.

THEOREM (Gelfand-Neumark). An archimedean algebra is isometric ally

isomorphic with a ring of eperators in a certain Hubert space*

REMARK. Firstly, lemma 4 shows, that the archimedean postulate implies
Gelfand'Neumark's condition, since xx* is positive and so has no negative
spectrum. On the other hand, it is possible to deduce that Gelfand-Neumark's
condition implies ours. Hence a star*algebra is archimedean if and only if it
satisfies Gelfand-Neumark's condition. Therefore our method does not yield
essential extention of the theorem. Secondly, it is also to be mentioned,
that in the proof of the theorem Lemtm 4 plays an essential role and neither
the " archimedean" postulate nor Gelfand-Neumark's condition do appear
explicitly* Hence, we can * replace them by another suitable condition,
which implies Lemma 4 to hold the theorem still true.

PROOF OF THE THEOREM : By Lemma 5 the existence of the set of state,

whicn satisfies the hypothesis of Lemma 3, is proved, the theorem follows

from Lemma 3 at once.

TOHOKU UNIVERSITY
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ADDENDUM (February 17,1950): After this note is presented to the Editors,
I. Kaplansky's " Normed algebras" (Duke Math. Journ., 16 (1949), 399*418)
reached our university. In his paper, I. Kaplansky proved (among many other
things) that two Banach starralgebras are isometrically isomorphic if and only
if they are algebraically isomorphic. If we employ this result, instead of
Lemma 5, we need only to prove the theorem that there exists a state / with
f(xx*) * 0 for any χ9 and Lemma 3 becomes redundant. Furthermore, he
discussed the Gelfand-Neumark Theorem under the " archimedean postulate "
(in much sharper form) with some algebraic restriction.

Also after this note is presented, the author has an oppotunity to read a
manuscript of M. Fukamiya entitled as " Normed ring with an involution",
which discusses the Gelfand-Neumark Theorem in different manner from more
general point of view. M. Fukamiya's paper will appear soon in this
Journal.




