NOTE ON DIRICHLET SERIES (D
ON THE SINGULARITIES OF DIRICHLET SERIES (ID

CHult TANAKA

(Received August 3, 1951)

1. Fundamental theorem I. Put

(L1)  Fls)= 2 anexp(—as) (s =0 +it, 0 <M< <+ < N> + ).
n=1

Let (1.1) be simply convergent for o >0. In this present Note, by the
systematic method based upon A. Ostrowski’s criterion of singularities, we
shall study the relation between singularities of (1.1) and coefficients {a,}.
We begin with some definitions.

DerFNITION 1. Let {a.} be real. We say that the sign-change occurs be-
tween {@u,-1, @}, provided that '

(i) @y, %0, an,—1 =0 and a,-a..-,<0.
or
(ii) Ay, =0, @y = Ungmy = Q3 = -+ = Qppps1. =0

and @y, *@n,-» < 0.

DeriNiTION II. We call that the sequence of coefficients {a,} has the
normal sign-change, provided that the sign-change occurs between {a,, -1,
ank} (k=1,2,----) with hm O\mk - 7\4nk-1) > 0.

k>eo

DEerFINITION III. We say that the sequence of coefficients {a,} has the
normal sign-change in the sequence of intervals {[;} (L.I; =0, £ = j),
provided that the subsequence {a,,} ( = 1, 2, ----), whose exponent \,, belongs
to {L;}(k =1, 2, ----), has the normal sign-change in the sense of Definition 2.

Our fundamental theorem states as follows.

FunpaMENTAL THEOREM 1. Let (1.1) be simply convergent for > 0. Then
s = 0 is the singular point for (1.1), provided that there exist two sequences
{%:} (0 < 2 N ), {v&} (x:7eal) such that

(a) lim 1/, - log

koo

> R(@neexp(—iv)| = 0,0

(@RISA, <z

b) gm /(%] = 0, where o: the number of sign-changes of R (a, exp(—ivyy)),
ME L4l —w), (%IA+ )] (0<w<1),

(¢) the sequence R(a, exp ( —iy)) A\n € {Ii}) has the normal sign-change
in{li} (k=1,2----).

2. Lemmas. For its proof, we need some lemmas.

13 {«] is the greatest integer contained in x:
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singular point, provided that there exist two sequences {%.}, {vv} (vy: 7real)
such that

(a) lim1/%.+log| >  a, I =0,
WEa (rR)=Ap <vg
(b) R(asexp( —iy) 20 for €[]0 ~w)[%I1+w)] (=12----)
0< w<1),
(c¢) lim Lcos{arg (a, exp ( — iry;)} A = 1.

Ap€ ((.r,_j;;z;(k:l,z, =)
Proor. The assumptions (b) and (¢) of the Fundamental Theorem 1 are
evidently satisfied. Hence, it is sufficient to prove that

= 0.

6.1 A=1lim1/x,-log| > R(a,exp(—iv)
k->00

(rpISA, <7g

By T. Kojima’s theorem,

A<lim1l/x.log| > a,| <lim1/x-

fioyee (riI=A, <ax e

> a,,] =0,

C)=Ap <t
so that

6.2) A<O.

On other hand, by (b) we have

2 R(a, exp ( — i’yl,)‘ = l/x,.:-log{ 2 |aa|cos (6, — ')’l:)}'

(RIS, <y R)EAn <2

1/x.+log

=1/x,log {cos (O, — V) 2 Ia.nl} (On = arg a,),

l CRIsSA, <2g

where cos (6x, — vi) = Min [cos (8. —v;)]. Hence, by (@) and (c),

(3=, <x
A= Pm N/ % + 1/ Ay, » 10g {COS (B, — 1)} + 1}? 1z log| > au| =0,
i e (RIS <Tp
so that
(6.3) A=0.
By (6.2) and (6.3), A = 0. q.e. d.

Putting ,=0 (¢ =1,2, ----) in Theorem 2, we get

COROLLARY III. Let (1.1) be simply convergent for ¢ >0. Then, s=0 is
the singular point, provided that there exist two sequences {x.}, {7y} such
that

2 anl =0,

(rR)Shy <ty
(b) R(a)=0for €[l —w) 1A +w0)i(k=12---0< 0<1),
(c¢) lim [cos{arg (@)} = 1.

N->ec0
An€ (), g )(R=1,2,--)

(a) {i'rTml/xk. log
im
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CoroLLARY IV (C.Biggeri, [5.] pp. 979-980). ZLet (1.1) be simply con-
vergent for o >0. If R(a,)=0 for n=N and lim [cos{arg a,} "= =1,

1t-yoo
then s =0 is the singular point.

By T.iKojima’s theorem, the simple convergence-abscissa of (1.'1) is
determined by

Z a,| = 0.

(BT <2
Hence, there exists at least one sequence {x.} such that

> a, l = 0.
(@RISEN <Tg
Taking this sequence {x;}, the assumptions of Corollary 3 are all satisfied,
so that Corollary 4 follows immediately from Corollary 3.

CoroLLARY V (M. Fekete, (3] p. 81). Let (1.1) be simply convergent for
o >0. If|larg ay| <0< 7/2 for n= N, then s =0 is the singular point.

lim 1/x. log
W—poo

If;n l/xy ].Og
E->o0

By | arg @, | <4< =/2, we have evidently
R (@) =0, cosf@ <cos{arg(a,)}) <1 for n=N,
so that
lim [cos {arg a,}1/» = 1.
N->eoo
Hence, we obtain Corollary 5 from Corollary 4.

7. Theorem III. In this section, we shall prove some theorems of
Fabry’s type concerning the singularities of Dirichlet series, by virtue of
Fundamental Theorem 2 established in the previous Note ([17]). Put

1.1) F(s)=2¢z,.exp(—7xns) (s=oc+1i 0= M< A< r <Ay > 0).

n=1

First we shall prove

TueoreM III, Let (1.1) be simply convergent for o >0. Then o =0 is
the natural boundary for (1.1), provided that there exists a subsequnce {\n. )
(k=1,2,----) such that

(a) }cl_)ﬁ 1/ - log |an | =0,
(b) lim s;/A, = 0, where s, : the number of a, =+ 0,
k->oo

(c) lim Ans1 — ) > 0.

/\m)\n-l-lne;)lce(ok:lv’z-“"‘)
Proor. Putting v, = arg (a,,) (k= 1,2,-:--), by (a) we get
(7.2) ;fg 1/Amy, + log | R (@n, exp ( — iyi))| = 0.
Denote by o) the number of sign-change of R(a, exp ( — iyi) A€ &). Since
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0 < 04/LYn,] < So/Lyni ), by (B) we have
(7.3) lkl_gn 3/hnd = 0.

By (c), the sign-change of R(a,exp( — ivy)) (Ax € L) is evidently normal.
Thus, all the assumptions of Fundamental Theorem 2 are satisfied. Hence
s = 0 is the singular point for (1.1). By the transformation s = s’ + it and
the same arguments as above, s = it is singular for (1.1). This proves
our theorem,

As a consequence of Theorem 1, we can prove

CoroLLARY VI (F. Carlson-E. Landau, O. Szasz, [6], [7], [3] p.p.140-
141). Let (1.1) be simply convergent for o >0. If im (Ausy — Aa) >0 and

N—>o0
lim n/Ax= 0, then o = 0 is the natural boundary.
N->0n

Proor. Since evidently hm log #/A. = 0, by G. Valiron’s theorem ([4] p.4)
the simple convergence- absc1ssa of (1.1) is determined by 11m 1/\,-logla,| =0.

Denoting by N (7) the number of Ax’s contained in [0, r], by lim #/x, =0
H—>00
we have
N(r) = o(\vimy) = o(r).
Hence,
0 = sll/[kn] = N([)\,nj (1+ ("))/[)\mj (1 + w) . (1 + (0) >0
as n -» oo, where s,: the number of @; £ 0, M€ L [ A.J(1 — @), (Al (1 + @)
Thus, all assumptions of the theorem are satisfied, so that ¢ =0 is the na-
tural boundary. q.e.d.
8. Theorem IV. Here we shall prove

THEOREM IV. Let (1. 1) be simply convergent for o >0. Then, s=0
is the singular point, provided that there exists a subsequence {An,} (k =1,
--) such that

(@) 1m1/Ag, - log|au] = 0,
h=>00
( b) lim (Pray — Pn) = 0,
Ai::‘\u+]5';l._;)(:=1,2o"“)
where 9, = arg(a,), and L{A,J(1 —®),[A 11+ @)] (k=12 ---),
( c) lim (7\,u+1 - 7\.n) > 0.

Mk s 16T0CR=1,2, =
From this theorem immediately follows
CoroLLARY VII. Let (1. 1) be simply convergent for o > 0. If im (Ap+1—An)>0

n—>eo

and lgn (Pra1 — Pu) = 0, Pn = arg(aa), then s =0 is the singular point.
In fact, by G.Valiron’s theorem, we have lim 1/, - log |@.| = 0. Hence,

N->c0

all hypotheses of Theorem 4 are satisfied, so that we get Corollary 7 by
Theorem 4. In the case of Taylor series, Theorem 4 was proved by E.Fabry
({47 p. 84).
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Proor oF TueorREM 4. Taking account of the Fundamental Theorem 2,
it is sufficient to prove the existence of the sequence {v;} (v, : real) such that

{im 1/An, « log |N(a,, exp(— ive) | =0, lLim /T, 1= 0,

o e

where o, : the number of sign-changes of R (@, exp( —ivy), A € L[\,
(1 — ), D11+ w)](k= 1,2, --). By hypothesis (b), there exists a positive
integer w(k) such that

(8 1) Max Iq)n+l - (/Jﬂl = l/nu'(k)v E}m w(k) = oo,

Ay An+ 164y
Let us divide the periphery of the unit-circle into 4u(k) equal parts in such
manner that each dividing point does not coincide with exp (i®,) (A € Ip).
Since 27 /4 > 1/u, each arc (exp (i®), €xp (iPn+1)) An An+ € I) contains at
most one dividing point. By (c) there exists k2 such that

Ans1 — A >R >0 for A Ans1 € I (F=1,2 ----).
Hence, the number of arcs (exp (i%»), €xp (iPns1)) Ans An+: € I;) is at most
8.2) 20 [hn, 3/ b
Since p X 2[An, 1}/ uth > 20 Ay, 1/h, by (8. 2) among wu(k) quadrates we have
one quadrate R;, whose summits touch at most 2\, J/uhk arcs (exp (i?,),
exp (iPn+1)) An» Ans1 € I;). Then we can choose a suitable summit exp (iy;)
such that
8.3) [P, — v | = /4.
Denoting by o the number of sign-changes of R (a, exp ( — iv) (A € [), We
have evidently
0 Sor = 2£7\/nk]/#'(k) h.
Therefore, by (8.1)
3\.1_)1'2 0'1.-/[7\4:%.] =0.

On the other hand, by (8.3)
R, €xp ( — iyp)) = |G| COS (Puy — vi) = 1/8/2 «|an,l,

so that
8.4) 17‘1_>r-n; 1/ Ay » log | M(an, exp ( — dyp)| = lzin:l/)\nk - log |a,,| = 0.
By |N(an, exp ( — iyy)) | < |an,|, We get evidently

}Llll 1/ N, © log | M@, exp ( — i) | < }Lror} 1/An, - log la.,| = 0.
Hence, by (8.4)

IAI.,IE 1/ Ay, » log | (@, exp ( — dy)) | = 0.

Thus, {y.} is the desired one. q.e.d.
(to be continued)
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UNIFORM CONVERGENCE OF FOURIER SERIES
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1. G. H. Hardy and J. E. Littlewood [1] proved that

THEOREM A. If
@1 fix+ )= 15) = of1[log 7)) (> 0)
and the n-th Fourier coefficients of f(t) are of order n~® (0 < 8§ < 1), then the
Fourier series of f(t) converges at t = x.

Recently O. Szasz [4] proved that

THEOREM B. If f(t) is even (or odd) and continuous, and if

An

1.2) lim lim sup 2 (la] —a,) =0,

a, being the n-th Fourier cosine (or sine) coefficient of f(t), then the Fourier
series of f(t) converges uniformly at t = x. Especially if a, is of order w7},
then (1,2) is valid.

In the assumption of these theorems, the first is the continuity condition
and the second is the Tauberian condition. We shall prove that the assump-
tion of Theorem A is not sufficient to the uniform convergence of the
Fourier series of f(t) at + = x. Further, even if (1.1) is replaced by the
condition
(1.3) Ax+ 1) —flx) = O(|¢]) (2>0)
in the assumption of Theorem A, the Fourier series of f(¢) does not converge
uniformly at £ = x in general. But we can prove that, if, instead of (1.1)

(1.4) fit) ~ 1ty = o(110g B 1 t’l> t>x t >
or, if
1.5) 18) = 1t) = o(1/logur—57) ¢ > % ¢ >

and the n-th Fourier coefficients of f(¢) is of order (log »n)*/n (a >0), then
the Fourier series of f(¢) converges uniformly at + = x. The condition (1.4)
is the type of Dini-Lipschitz test, and (1.5) links Theorem B and this test.

To prove the negative theorem, we construct an example of the type
used by one of the authors [2]. For the proof of the positive theorem we
use the method due to H. Lebesgue and R. Salem [3].

On the other hand, we can prove that Young’s convergence test implies
the uniform convergence of Fourier series at a point. This is a dual of





