NOTE ON DIRICHLET SERIES (I)
 ON THE SINGULARITIES OF DIRICHLET SERIES (I)

Chuji Tanaka

(Received August 3, 1951)

1. Fundamental theorem I. Put

$$
\begin{equation*}
F(s)=\sum_{n=1}^{\infty} a_{n} \exp \left(-\lambda_{n} s\right) \quad\left(s=\sigma+i t, 0 \leqq \lambda_{1}<\lambda_{2}<\cdots<\lambda_{n} \rightarrow+\infty\right) . \tag{1.1}
\end{equation*}
$$

Let (1.1) be simply convergent for $\sigma>0$. In this present Note, by the systematic method based upon A. Ostrowski's criterion of singularities, we shall study the relation between singularities of (1.1) and coefficients $\left\{a_{n}\right\}$. We begin with some definitions.

Definition I. Let $\left\{a_{n}\right\}$ be real. We say that the sign-change occurs between $\left\{a_{n_{n_{k}}-1}, a_{n_{k}}\right\}$, provided that

$$
\begin{equation*}
a_{n_{k}} \neq 0, \quad a_{n_{k}-1} \neq 0 \quad \text { and } \quad a_{n_{k}} \cdot a_{n_{k}-1}<0 \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{n_{k}} \neq 0, \quad a_{n_{k}-1}=a_{n_{k}-2}=a_{i_{k_{k}}-3}=\cdots=a_{n_{k_{k}-\nu+1}}=0 \tag{ii}
\end{equation*}
$$

and $a_{n_{k}} \cdot a_{n_{k}-\nu}<0$.
Definition II. We call that the sequence of coefficients $\left\{a_{n}\right\}$ has the normal sign-change, provided that the sign-change occurs between $\left\{a_{n_{k}-1}\right.$, $\left.a_{n_{k}}\right\}(k=1,2, \cdots)$ with $\lim _{k \rightarrow \infty}\left(\lambda_{n_{k}}-\lambda_{n_{k}-1}\right)>0$.

Definition III. We say that the sequence of coefficients $\left\{a_{n}\right\}$ has the normal sign-change in the sequence of intervals $\left\{I_{k}\right\}\left(I_{i} \cdot I_{j}=0, i \neq j\right)$, provided that the subsequence $\left\{a_{n_{i}}\right\}(i=1,2, \cdots)$, whose exponent $\lambda_{n_{i}}$ belongs to $\left\{I_{k}\right\}(k=1,2, \cdots)$, has the normal sign-change in the sense of Definition 2.

Our fundamental theorem states as follows.
Fundamental Theorem I. Let (1.1) be simply convergent for $\sigma>0$. Then $s=0$ is the singular point for (1.1), provided that there exist two sequences $\left\{x_{k}\right\}\left(0<x_{k} \uparrow \infty\right),\left\{\gamma_{k}\right\}\left(\gamma_{k}:\right.$ real $)$ such that
(a) $\quad \varlimsup_{k \rightarrow \infty} 1 / x_{k} \cdot \log \left|\sum_{\left(x_{k}\right) \leq \lambda_{n}<x_{k}} \Re\left(a_{n} \cdot \exp \left(-i \gamma_{k}\right)\right)\right|=0,{ }^{1)}$
(b) $\lim _{k \rightarrow \infty} \sigma_{k} /\left[x_{k}\right]=0$, where σ_{k} : the number of sign-changes of $\mathfrak{R}\left(a_{n} \exp \left(-i \gamma_{k}\right)\right)$, $\lambda_{n} \in I_{k}\left[\left[x_{k}\right](1-\omega),\left[x_{k}\right](1+\omega)\right](0<\omega<1)$,
(c) the sequence $\Re\left(a_{n} \exp \left(-i \gamma_{k}\right)\right)\left(\lambda_{n} \in\left\{I_{k}\right\}\right)$ has the normal sign-change in $\left\{I_{k}\right\}(k=1,2, \cdots)$.
2. Lemmas. For its proof, we need some lemmas.

1) $[x]$ is the greatest integer contained in x :
singular point, provided that there exist two sequences $\left\{x_{k}\right\},\left\{\gamma_{k}\right\}\left(\gamma_{k}\right.$: real, such that
(a)

$$
\lim _{k \rightarrow \infty} 1 / x_{k} \cdot \log \left|\sum_{\left(x_{k}\right) \leq \lambda_{n}<x_{k}} a_{n}\right|=0,
$$

(b) $\quad \Re\left(a_{n} \exp \left(-i \gamma_{k}\right)\right) \geqq 0$ for $\lambda_{n} \in\left[\left[\left(x_{n}\right](1-\omega),\left[x_{i}\right](1+\omega)\right] \quad(k=1,2, \cdots)\right.$

$$
(0<\omega<1)
$$

$$
\begin{equation*}
\lim _{\substack{\left.i \rightarrow \infty \\ \lambda_{n} \in\left(r_{k, k},\right\}, x_{k}\right)(k=1,2, \cdots)}}\left[\cos \left\{\arg \left(a_{n} \exp \left(-i \gamma_{k}\right)\right\}\right]^{1 / \lambda_{n}}=1 .\right. \tag{c}
\end{equation*}
$$

Proof. The assumptions (b) and (c) of the Fundamental Theorem 1 are evidently satisfied. Hence, it is sufficient to prove that

$$
\begin{equation*}
\Delta=\varlimsup_{k \rightarrow \infty} 1 / x_{k} \cdot \log \left|\sum_{\left(r_{k}\right) j \leqslant \lambda_{n}\left\langle x_{k}\right.} \Re\left(a_{n} \exp \left(-i \gamma_{k}\right)\right)\right|=0 . \tag{6.1}
\end{equation*}
$$

By T. Kojima's theorem,

$$
\Delta \leqq \lim _{k \rightarrow \infty} 1 / x_{k} \cdot \log \left|\sum_{\left(x_{k}\right) \leq \lambda_{n}<x_{k}} a_{n}\right| \leqq \varlimsup_{x \rightarrow \infty} 1 / x \cdot\left|\sum_{(x) \leq \lambda_{n}<x} a_{n}\right|=0,
$$

so that

$$
\Delta \leqq 0
$$

On other hand, by (b) we have

$$
\begin{array}{r}
1 /\left.x_{k} \cdot \log \right|_{\left(x_{k}\right) \leq \lambda_{n}<x_{x_{k}}} \Re\left(a_{n} \exp \left(-i \gamma_{k}\right) \mid=1 / x_{k} \cdot \log \left\{\sum_{\left(r_{k}\right) \leq \lambda_{n}<x_{k}}\left|a_{n}\right| \cos \left(\theta_{n}-\gamma_{k}\right)\right\}\right. \\
\geqq 1 / x_{k} \cdot \log \left\{\cos \left(\theta_{n_{k}}-\gamma_{k}\right) \sum_{\left(\tilde{x}_{k}\right) \leq \lambda_{n}<x_{k}}\left|a_{n}\right|\right\} \quad\left(\theta_{n}=\arg a_{n}\right),
\end{array}
$$

where $\cos \left(\theta_{n_{k}}-\gamma_{k}\right)=\operatorname{Min}_{\left(r_{k} \leq \lambda_{n}\left\langle x_{k}\right.\right.}\left[\cos \left(\theta_{n}-\gamma_{k}\right)\right]$. Hence, by (a) and (c),

$$
\Delta \geqq \lim _{k \rightarrow \infty} \lambda_{n_{k}} / x_{k_{k}} \cdot 1 / \lambda_{n_{k}} \cdot \log \left\{\cos \left(\theta_{n_{k}}-\gamma_{k}\right)\right\}+\varlimsup_{k \rightarrow \infty} 1 / x_{k} \cdot \log \left|\sum_{\left\{x_{k}\right)} \sum_{\lambda_{n}<x_{k}} a_{n}\right|=0,
$$

so that
(6.3)

$$
\Delta \geqq 0 .
$$

By (6.2) and (6.3), $\Delta=0$.
q. e.d.

Putting $\gamma_{k} \equiv 0(k=1,2, \cdots)$ in Theorem 2, we get
Corollary III. Let (1.1) be simply convergent for $\sigma>0$. Then, $s=0$ is the singular point, provided that there exist two sequences $\left\{x_{k}\right\},\left\{\gamma_{k}\right\}$ such that
(a) $\varlimsup_{k \rightarrow \infty} 1 / x_{k} . \log \left|\sum_{\left(r_{k}\right) \leq \lambda_{n}<r_{n}} a_{n}\right|=0$,
(b) $\Re\left(\boldsymbol{a}_{n}\right) \geqq 0$ for $\lambda_{n} \in\left[\left[x_{k}\right](1-\omega),\left[x_{k i}\right](1+\omega)\right](k=1,2, \cdots ; 0<\omega<1)$,
(c) $\lim _{\substack{\left.n \rightarrow \infty \\ \lambda_{n} \in\left\{\left(x_{k}\right\}, x_{n}\right)\right\}(h=1,2, \cdots)}}\left[\cos \left\{\arg \left(a_{n}\right)\right\}\right]^{1 / \lambda_{n}}=1$.

Corollary IV (C. Biggeri, [5.] pp. 979-980). Let (1.1) be simply convergent for $\sigma>0$. If: $\mathfrak{R}\left(a_{n}\right) \geqq 0$ for $n \geqq N$ and $\lim \left[\cos \left\{\arg a_{n}\right\}\right]^{1 / \lambda_{n}}=1$, then $s=0$ is the singular point.

By T. IKojima's theorem, the simple convergence-abscissa of (1.1) is determined by

$$
\lim _{x \rightarrow \infty} 1 / x \cdot \log \left|\sum_{(x) \leq x_{n}<x} a_{n}\right|=0 .
$$

Hence, there exists at least one sequence $\left\{x_{k}\right\}$ such that

$$
\varlimsup_{k \rightarrow \infty} 1 / x_{k} \cdot \log \left|\sum_{\left(x_{k}\right) \leq \lambda_{n}\left\langle x_{k}\right.} a_{n}\right|=0 .
$$

Taking this sequence $\left\{x_{k}\right\}$, the assumptions of Corollary 3 are all satisfied, so that Corollary 4 follows immediately from Corollary 3.

Corollary V (M. Fekete, [3] p. 81). Let (1.1) be simply convergent for $\sigma>0$. If $\left|\arg a_{n}\right| \leqq \theta<\pi / 2$ for $n \geqq N$, then $s=0$ is the singular point.

By $\left|\arg a_{n}\right| \leqq \theta<\pi / 2$, we have evidently

$$
\mathfrak{R}\left(a_{n}\right) \geqq 0, \quad \cos \theta \leqq \cos \left\{\arg \left(a_{n}\right)\right\} \leqq 1 \quad \text { for } n \geqq N,
$$

so that

$$
\lim _{n \rightarrow \infty}\left[\cos \left\{\arg a_{n}\right\}\right]^{1 / \lambda_{n}}=1
$$

Hence, we obtain Corollary 5 from Corollary 4.
\%. Theorem III. In this section, we shall prove some theorems of Fabry's type concerning the singularities of Dirichlet series, by virtue of Fundamental Theorem 2 established in the previous Note ([1]). Put

$$
\begin{equation*}
F(s)=\sum_{n=1}^{\infty} a_{n} \exp \left(-\lambda_{n} s\right) \quad\left(s=\sigma+i t, 0 \leqq \lambda_{1}<\lambda_{2}<\cdots<\lambda_{n} \rightarrow \infty\right) \tag{1.1}
\end{equation*}
$$

First we shall prove
Theorem III. Let (1.1) be simply convergent for $\sigma>0$. Then $\sigma=0$ is. the natural boundary for (1.1), provided that there exists a subsequnce $\left\{\lambda_{n_{k}}\right\}$, ($k=1,2, \cdots$) such that
(a) $\quad \lim _{k \rightarrow \infty} 1 / \lambda_{n_{k}} \cdot \log \left|a_{n_{k}}\right|=0$,
(b) $\quad \lim _{k \rightarrow \infty} s_{k} / \lambda_{n_{k}}=0$, where $s_{k}:$ the number of $a_{n} \neq 0$,

$$
\lambda_{n} \in I_{k}\left[\left[\lambda_{n_{k}}\right](1-\omega), \quad\left[\lambda_{n_{k}}\right](1+\omega)\right] \quad(k=1,2, \cdots ; 0<\omega<1),
$$

(c) $\lim _{\substack{n \rightarrow \infty \\ \lambda_{n}, \lambda_{n}+I_{1} E_{k}(k=1,2,-)}}\left(\lambda_{n+1}-\lambda_{n}\right)>0$.

Proof. Putting $\gamma_{k}=\arg \left(a_{n_{k}}\right)(k=1,2, \cdots \cdots)$, by (a) we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} 1 / \lambda_{n_{k}} \cdot \log \left|\Re\left(a_{n_{k}} \exp \left(-i \gamma_{k}\right)\right)\right|=0 . \tag{7.2}
\end{equation*}
$$

Denote by σ_{k} the number of sign-change of $\mathfrak{R}\left(a_{n} \exp \left(-i \gamma_{k}\right)\right)\left(\lambda_{n} \in I_{k}\right)$. Since
$0 \leqq \sigma_{k} /\left[\gamma_{n_{k}}\right] \leqq s_{k} /\left[\gamma_{n_{k}}\right]$, by (b) we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sigma_{k} /\left[\lambda_{n_{k}}\right]=0 \tag{7.3}
\end{equation*}
$$

By (c), the sign-change of $\mathfrak{R}\left(a_{n} \exp \left(-i \gamma_{k}\right)\right)\left(\lambda_{n} \in I_{k}\right)$ is evidently normal. Thus, all the assumptions of Fundamental Theorem 2 are satisfied. Hence $s=0$ is the singular point for (1.1). By the transformation $s=s^{\prime}+$ it and the same arguments as above, $s=$ it is singular for (1.1). This proves our theorem.

As a consequence of Theorem 1, we can prove
Corollary VI (F. Carlson-E. Landau, O. Szàsz, [6], [7], [3] p. p. 140141). Let (1.1) be simply convergent for $\sigma>0$. If $\lim _{u \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)>0$ and $\lim _{n \rightarrow \infty} n / \lambda_{n}=0$, then $\sigma=0$ is the natural boundary.

Proof. Since evidently $\lim _{, \rightarrow \infty} \log n / \lambda_{n}=0$, by G. Valiron's theorem ([4] p. 4) the simple convergence-abscissa of (1.1) is determined by $\lim _{n \rightarrow \infty} 1 / \lambda_{n} \cdot \log \left|a_{n}\right|=0$. Denoting by $N(r)$ the number of λ_{n} 's contained in $[0, r]$, by $\lim _{, n \rightarrow \infty} n / \lambda_{n}=0$ we have

$$
N(r)=o\left(\lambda_{v(r)}\right)=o(r)
$$

Hence,

$$
0 \leqq s_{n} /\left[\lambda_{n}\right] \leqq N\left(\left[\lambda_{n}\right](1+\omega)\right) /\left[\lambda_{n}\right](1+\omega) \cdot(1+\omega) \rightarrow 0
$$

as $n \rightarrow \infty$, where s_{n} : the number of $a_{i} \neq 0, \lambda_{i} \in I_{n}\left[\left[\lambda_{n}\right](1-\omega),\left[\lambda_{i n}\right](1+\omega)\right]$. Thus, all assumptions of the theorem are satisfied, so that $\sigma=0$ is the natural boundary. q. e.d.
8. Theorem IV. Here we shall prove

Theorem IV. Let (1. 1) be simply convergent for $\sigma>0$. Then, $s=0$ is the singular point, provided that there exists a subsequence $\left\{\lambda_{n_{k}}\right\}(k=1$, 2, …) such that
(a) $\quad \varlimsup_{k \rightarrow \infty} 1 / \lambda_{n_{k}} \cdot \log \left|a_{n_{k}}\right|=0$,
(b) $\lim _{\substack{n \rightarrow \infty \\ i_{n}, \lambda_{n}+1 \in I_{i s}(k=1,2, \cdots \cdots)}}\left(\varphi_{n+1}-\varphi_{n}\right)=0$,
where $\varphi_{n}=\arg \left(a_{n k}\right)$, and $I_{i k}\left[\left[\lambda_{n_{k}}\right](1-\omega),\left[\lambda_{n_{k}}\right](1+\omega)\right] \quad(k=1,2, \cdots)$,
(c) $\lim _{\substack{n \rightarrow \infty \\ \lambda_{n \prime}, \lambda_{n}+1 \in T_{k}(k=1,2, \cdots)}}\left(\lambda_{n+1}-\lambda_{n}\right)>0$.

From this theorem immediately follows
Corollary VII. Let (1.1) be simply convergent for $\sigma>0$. If $\underset{n \rightarrow \infty}{\lim }\left(\lambda_{n+1}-\lambda_{n}\right)>0$ and $\lim _{n \rightarrow \infty}\left(\boldsymbol{\varphi}_{n+1}-\boldsymbol{\varphi}_{n}\right)=0, \boldsymbol{\varphi}_{n}=\arg \left(a_{n}\right)$, then $s=0$ is the singular point.

In fact, by G. Valiron's theorem, we have $\varlimsup_{n \rightarrow \infty} 1 / \lambda_{n} \cdot \log \left|a_{n}\right|=0$. Hence, all hypotheses of Theorem 4 are satisfied, so that we get Corollary 7 by Theorem 4. In the case of Taylor series, Theorem 4 was proved by E. Fabry ([4] p.84).

Proof of Theorem 4. Taking account of the Fundamental Theorem 2, it is sufficient to prove the existence of the sequence $\left\{\gamma_{k}\right\}\left(\gamma_{k}\right.$: real) such that

$$
\lim _{k \rightarrow \infty} 1 / \lambda_{n_{k}} \cdot \log \left|\Re\left(a_{n_{k}} \exp \left(-i \gamma_{k}\right)\right)\right|=0, \quad \lim _{k \rightarrow \infty} \sigma_{k} /\left[\lambda_{n_{k}}\right]=0,
$$

where σ_{k} : the number of sign-changes of $\mathfrak{R}\left(a_{n} \exp \left(-i \gamma_{k}\right)\right), \quad \lambda_{n} \in I_{k}\left[\left[\lambda_{n_{k}}\right]\right.$ $\left.\cdot(1-\omega),\left[\lambda_{n_{k}}\right](1+\omega)\right](k=1,2, \cdots)$. By hypothesis (b), there exists a positive integer $\mu(k)$ such that

$$
\begin{equation*}
\operatorname{Max}_{\lambda_{n}, \lambda_{n+1} \in I_{k}}\left|\varphi_{n+1}-\varphi_{n}\right| \leqq 1 / \mu(k), \quad \lim _{k \rightarrow \infty} \mu(k)=\infty . \tag{8.1}
\end{equation*}
$$

Let us divide the periphery of the unit-circle into $4 \mu(k)$ equal parts in such manner that each dividing point does not coincide with $\exp \left(i \varphi_{n}\right)\left(\lambda_{n} \in I_{k}\right)$. Since $2 \pi / 4 \mu>1 / \mu$, each $\operatorname{arc}\left(\exp \left(i \varphi_{n}\right), \exp \left(i \varphi_{n+1}\right)\right)\left(\lambda_{n}, \lambda_{n+1} \in I_{k}\right)$ contains at most one dividing point. By (c) there exists h such that

$$
\lambda_{n+1}-\lambda_{n}>h>0 \quad \text { for } \lambda_{n}, \lambda_{n+1} \in \boldsymbol{I}_{k} \quad(k=1,2, \cdots) \text {. }
$$

Hence, the number of $\operatorname{arcs}\left(\exp \left(i \varphi_{n}\right), \exp \left(i \varphi_{n+1}\right)\right)\left(\lambda_{n}, \lambda_{n+1} \in I_{k}\right)$ is at most (8.2) $2 \omega\left[\lambda_{n_{k}}\right] / h$.
Since $\mu \times 2\left[\lambda_{n_{k}}\right] / \mu h>2 \omega\left[\lambda_{n_{k}}\right] / h$, by (8. 2) among $\mu(k)$ quadrates we have one quadrate R_{k}, whose summits touch at most $2\left[\lambda_{n_{k}}\right] / \mu h \operatorname{arcs}\left(\exp \left(i \phi_{n}\right)\right.$, $\left.\exp \left(i \varphi_{n_{+1}}\right)\right)\left(\lambda_{n}, \lambda_{n+1} \in I_{k}\right)$. Then we can choose a suitable summit $\exp \left(i \gamma_{k}\right)$ such that

$$
\begin{equation*}
\left|\varphi_{n_{k}}-\gamma_{k}\right| \leqq \pi / 4 . \tag{8.3}
\end{equation*}
$$

Denoting by σ_{k} the number of sign-changes of $\Re\left(a_{n} \exp \left(-i \gamma_{k}\right)\right)\left(\lambda_{n} \in I_{k}\right)$, we have evidently

$$
0 \leqq \sigma_{k} \leqq 2\left\lceil\lambda_{n_{k}}\right] / \mu(k) h .
$$

Therefore, by (8.1)

$$
\lim _{k \rightarrow \infty} \sigma_{k} /\left[\lambda_{n_{k}}\right]=0 .
$$

On the other hand, by (8.3)

$$
\Re\left(a_{n_{k_{k}}} \exp \left(-i \gamma_{k}\right)\right)=\left|a_{n_{k}}\right| \cos \left(\varphi_{n_{k}}-\gamma_{k}\right) \geqq 1 / \sqrt{ } 2 \cdot\left|a_{n_{k}}\right|,
$$

so that
(8.4) $\varlimsup_{k \rightarrow \infty} 1 / \lambda_{n_{k}} \cdot \log \left|\Re\left(a_{n_{k}} \exp \left(-i \gamma_{k_{k}}\right)\right)\right| \geqq \varlimsup_{k \rightarrow \infty} 1 / \lambda_{n_{k}} \cdot \log \left|a_{n_{k}}\right|=0$.

By $\left|\Re\left(a_{n_{k_{k}}} \exp \left(-i \gamma_{k}\right)\right)\right| \leqq\left|a_{n_{k}}\right|$, we get evidently

$$
\overline{l i m}_{k \rightarrow \infty} 1 / \lambda_{i_{k}} \cdot \log \left|\nVdash\left(a_{n_{k}} \exp \left(-i \gamma_{k}\right)\right)\right| \leqq \lim _{k \rightarrow \infty} 1 / \lambda_{n_{k}} \cdot \log \left|a_{n_{k}}\right|=0 .
$$

Hence, by (8.4)

$$
\lim _{k \rightarrow \infty} 1 / \lambda_{n_{k}} \cdot \log \left|\Re\left(a_{n_{k}} \exp \left(-i \gamma_{k}\right)\right)\right|=0 .
$$

Thus, $\left\{\gamma_{k}\right\}$ is the desired one.
q. e. d.
(to be continued)

References

[1]. C. Tanaka, Note on Diricblet series, (I): On the singularities of Dirichlet series,

NOTES ON FOURIER ANALYSIS (XLVIII) : UNIFORM CONVERGENCE OF FOURIER SERIES

Shin-ichi Izumi and Gen-ichirô Sunouchi

(Received April 5, 1951)

1. G. H. Hardy and J. E. Littlewood [1] proved that

Theorem A. If

$$
\begin{equation*}
f(x+t)-f(x)=o\left(1 / \log \frac{1}{|t|}\right) \quad(t \rightarrow 0) \tag{1.1}
\end{equation*}
$$

and the n-th Fourier coefficients of $f(t)$ are of order $n^{-\delta}(0<\delta<1)$, then the Fourier series of $f(t)$ converges at $t=x$.

Recently O. Szász [4] proved that
THEOREM B. If $f(t)$ is even (or odd) and continuous, and if

$$
\begin{equation*}
\lim _{\lambda \downarrow 0} \lim _{n \rightarrow \infty} \sup _{n} \sum_{n}^{\lambda n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=0 \tag{1.2}
\end{equation*}
$$

a_{ν} being the n-th Fourier cosine (or sine) coefficient of $f(t)$, then the Fourier series of $f(t)$ converges uniformly at $t=x$. Especially if a_{n} is of order n^{-1}, then $(1,2)$ is valid.

In the assumption of these theorems, the first is the continuity condition and the second is the Tauberian condition. We shall prove that the assumption of Theorem A is not sufficient to the uniform convergence of the Fourier series of $f(t)$ at $t=x$. Further, even if (1.1) is replaced by the condition

$$
\begin{equation*}
f(x+t)-f(x)=O(|t|) \quad(t \rightarrow 0) \tag{1.3}
\end{equation*}
$$

in the assumption of Theorem A, the Fourier series of $f(t)$ does not converge uniformly at $t=x$ in general. But we can prove that, if, instead of (1.1)

$$
\begin{equation*}
f(t)-f\left(t^{\prime}\right)=o\left(1 / \log \frac{1}{\left|t-t^{\prime}\right|}\right)\left(t \rightarrow x, t^{\prime} \rightarrow x\right) \tag{1.4}
\end{equation*}
$$

or, if

$$
\begin{equation*}
f(t)-f\left(t^{\prime}\right)=o\left(1 / \log _{2} \frac{1}{\left|t-t^{\prime}\right|}\right)\left(t \rightarrow x, t^{\prime} \rightarrow x\right) \tag{1.5}
\end{equation*}
$$

and the n-th Fourier coefficients of $f(t)$ is of order $(\log n)^{\alpha} / n(\alpha>0)$, then the Fourier series of $f(t)$ converges uniformly at $t=x$. The condition (1.4) is the type of Dini-Lipschitz test, and (1.5) links Theorem B and this test.

To prove the negative theorem, we construct an example of the type used by one of the authors [2]. For the proof of the positive theorem we use the method due to H. Lebesgue and R. Salem [3].

On the other hand, we can prove that Young's convergence test implies the uniform convergence of Fourier series at a point. This is a dual of

