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1. Fundamental theorem I. Put

(1.1) F(s) = 2 <*n exp (—λ»s) (s = σ + it, 0 ^ λi<λ2< < \w> + oo).

Let (1.1) be simply convergent for σ > 0. In this present Note, by the
systematic method based upon A. Ostrowski's criterion of singularities, we
shall study the relation between singularities of (1.1) and coefficients {an}.
We begin with some definitions.

DEFINITION I. Let {aa} be real. We say that the sign-change occurs be-
tween {ΛΛA._I, anky, provided that

( i ) ank 4= 0, ank-j =*= 0 and ank.ank-ι < 0,

or

(ϋ) ΛΛft =f= 0, ank-\ = ank—z = aίtk-3 = • = a-nk-v+ι. = 0

and ank ank-v < 0.
DEFINITION II. We call that the sequence of coefficients {an} has the

normal sign-change, provided that the sign-change occurs between {ank-ι,
a*k} (& = 1, 2, ) with lim (\nk — λ»Λ-i) > 0.

DEFINITION III. We say that the sequence of coefficients {an} has the
normal sign-change in the sequence of intervals {/fc} (li Ij = 0, fΦ j),
provided that the subsequence {ant} (i = 1, 2, • • ), whose exponent λ^ belongs
to {/fc} (& = 1, 2, ), has the normal sign-change in the sense of Definition 2.

Our fundamental theorem states as follows.

FUNDAMENTAL THEOREM I. Let (1.1) be simply convergent for σ > 0. Then
s = 0 is the singular point for (1.1), provided that there exist two sequences

&} ίθ < ΛTfc φ oo), {γfc} (γfc : r£tf/) Such that

e x p ( — %γfc( a ) lim 1/Λ5t log

( ^ ) lim <rfc/[>fc] = 0, where σk. the number of sign-changes of ςJΐ (an exp(—iyh))9

λw € / f c [ ώ (1 - ω), CΛΓJ (1 -f ω)] (0 < ω < 1),
( c ) /^β sequence 9ΐ («w exp ( — iyk)) (Xn € {/&}) has the normal sign-change

2. Lemmas. For its proof, we need some lemmas.

C Ό is the greatest integer contained in .τ:
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singular point, provided that there exist two sequences
such that

(a ) lim 1/xi: log

( b ) ίR (an exp ( — vyΊ,)) > 0 for \n

: reάly

= 0,

(1 + ω)] (* =
(0

1
<

,2
ω < 1),

) lim [cos {arg (αΛ exp ( — iy7c)}"}ιlKn = 1.

PROOF. The assumptions (b) and (c) of the Fundamental Theorem 1 are
evidently satisfied. Hence, it is sufficient to prove that

(6.1; Δ = lim I/*-*; log '# <an exp ( — iy\ ))

By T. Kojima's theorem,

Δ S l i m l/^ log
Λ->eo

g lim 1/x 2 Λι

= 0.

= 0,

so that

(6.2) Δ ^ 0.

On other hand, by (b) we have

an exp ( - = l/xk log/ 2 1^1c o s ^» - 7*)}

> 1/ΛΛ log /COS (&,Λ - 7fc) 2 l

1/x-k log

where cos (0Wjfc — 7̂ .) = M i n [cos (θn — 7fc)D- Hence, by (a) a n d

Δ > lim C>, . 1/Xnk log {COS (θnτ. ~ 7fc)} + l i m l/*fc # l θ S

so that
(6. 3) Δ ^ 0.
By (6. 2) and (6. 3), Δ = 0.

Putting 7tΞΞθ (k = 1,2, ) in Theorem 2, we get

COROLLARY III. Let (1.1) &£ simply convergent for σ > 0.
/#£ singular point, provided that there exist two sequences {%
/to/

- 0 ,

q. e. d.

s = 0 is
r 7 A Λ SMC&

( a ) l im 1/Λfc. log 2 an

( b ) ' 3f (βn) > 0 for Xn € Cfe] (1 - ω), [_x^ (1 + ωj] fft = 1, 2, •; 0 < ω < 1),
(c ) lim [cos {arg (<2w)}I]

1/λ» = 1.
0K
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COROLLARY IV (C. Biggeri, C5. H pp. 979-980). Let (1.1) be simply con-
vergent for σ > 0. If 9i (an) i> 0 for n> N and lim Ccos {arg <zw>]l/λ" = 1,

s = 0 is the singular point.

By T. iKojima's theorem, the simple convergence-abscissa of (1.1) is.
determined by

lim 1/x log 2

Hence, there exists at least one sequence {#*} such that

l im 1/Λjb log = 0.

Taking this sequence {xk}, the assumptions of Corollary 3 are all satisfied,
so that Corollary 4 follows immediately from Corollary 3.

COROLLARY V (M. Fekete, L3] p. 81). Let (1.1) be simply convergent for
σ > 0. If I arg an\ <; θ < τr/2 for n>N, then s = 0 is the singular point.

By I arg an\ <θ< π/2, we have evidently
9ΐ (an) ;> 0, cos θ S cos {arg (an)} g l f or n > TV,

so that
lim Ccos{arg an}^ιlλ» = 1.

Hence, we obtain Corollary 5 from Corollary 4.

7. Theorem III. In this section, we shall prove some theorems of
Fabry's type concerning the singularities of Dirichlet series, by virtue of
Fundamental Theorem 2 established in the previous Note OH). Put

(1.1) F(s) = 2 αn exp ( - \ns) (s = σ + it, 0 g λt < λ, < < λn -> oo).

First we shall prove

THEOREM III. Let (1.1) be simply convergent for σ > 0. Then o- = 0 is
the natural boundary for (1.1), provided that there exists a subsequnce {Xn^
(k = 1,2, ••-•) such that

(a ) lϊΐn l/\nk log \ank\ = 0,
Λ»oo

( b ) lim Sfc/λnj. = 0, where sk : the number of an =»= 0,

λ,.€/«:CDuJ(l-ω), Cλ*J(l + ω)D (* = 1,2, : 0 < ω < 1),
(c) lim (λ w + 1 -λ w )>0.

λn,λ 7 ? + 16ΓΛ(fc = l ,2 ,-~)

PROOF. Putting γfc = arg (an.k) (k = 1,2, : •), by Cα) we get

(7.2) Πm l/λWfc log I « ( a n k exp ( - i7fc)) [ = 0.

Denote by σk the number of sign-change of 3t(anexp( — /7fc» (λ«€ ΛΛ Since
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0 S o JlynJ < st/[7»J, by (b) we have

(7.3) lim σft/Dw! = 0.
fc-»oo

By (c), the sign-change of 3t (an exp ( — £γfc)) (λ» € 7fc) is evidently normal.
Thus, all the assumptions of Fundamental Theorem 2 are satisfied. Hence
s = 0 is the singular point for (1.1). By the transformation s = s' -4- it and
the same arguments as above, s = it is singular for (1.1). This proves
our theorem.

As a consequence of Theorem 1, we can prove
COROLLARY VI (F. Carlson-E. Landau, O. Szasz, [6], [73, [3] p. p. 140-

141). Let (1.1) be simply convergent for σ > 0. //Inn (λ»+i — λn) > 0 and

lim n/\n = 0, then σ = 0 is the natural boundary.

PROOF. Since evidently lim log n/\n = 0, by G. Valiron's theorem ([4] p. 4)

the simple convergence-abscissa of (1.1) is determined by ϊirn l/λ» loglα^l =0.

Denoting by N(r) the number of Xn's contained in [0,/Ί], by lim n/Xn = 0

we have
N(r) = o(λ.vcr>) = o(r).

Hence,
0 S SΛ/Du] ̂  N(£Knl (1 + ω))/Cλ,J (1 + ω) . (1 + ω) -> 0

as « -> oo, where s«: the number of aι =t= 0, λi€ /« CCλwj (1 — ω λ Cλ,»I! (1 + ω )3.
Thus, all assumptions of the theorem are satisfied, so that σ = 0 is the na-
tural boundary. q. e. d.

S. Theorem IV. Here we shall prove
THEOREM IV. Let (1. 1) be simply convergent for σ > 0. Then, s == 0

is /&£ singular point, provided that there exists a subsequence {\nk} (k = 1,
2, ) 5MC/Ϊ //ίαί

(β) ίϊml/λ»Λ log \ank\ = 07

( ^) lim (^n+1 - Ψn) = 0,
*H,*ii+ie/.t(fc«=l,2,--)

n = arg (an), and ILίXnJ (1 - ω), [λ^,] (1 + ω)] (k = 1, 2, ),

Λ,„λ„+ie//,(£= 1,2,--O

From this theorem immediately follows

COROLLARY VII. Lέtf (1.1) be simply convergent for σ > 0. // lim (λ^+i— Xn)>0

lim (^w+1 — Ψn) = 0, 9̂ w, = arg(tfM), ί/ίβw s = 0 is ί/?̂  singular point.

In fact, by G. Valiron's theorem, we have ίίm l/\n log |tf«| = 0. Hence,
tt->co

all hypotheses of Theorem 4 are satisfied, so that we get Corollary 7 by
Theorem 4. In the case of Taylor series, Theorem 4 was proved by E. Fabry
([4] p. 84).
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PROOF OF THEOREM 4. Taking account of the Fundamental Theorem 2,

it is sufficient to prove the existence of the sequence {7^} (7^ : real) such that

lim l/λ%. log 19t (α^exp ( - iΊlc)) | = 0, lim σjZXn^l = 0,

where σk : the number of sign-changes of 3ΐ (an exp ( — iyk)), \ n € h LHλ̂ l̂

• (1 — ω)y ϊ\nJ (1 -f ω)2 (k = 1, 2, •)• By hypothesis (b), there exists a positive

integer μ(k) such that

(8.1) Max \<pn+1 - 9°n| < l/μ(k), lim /z(&) = 00.

Let us divide the periphery of the unit-circle into iμ(k) equal parts in such

manner that each dividing point does not coincide with exp {iφn) (λw € /&).
Since 2τr/4μ > 1//A, each arc (exp (i<Pn), exv{i<Pn+ι))(\n, λn+i€ /*) contains at
most one dividing point. By Cc) there exists h such that

λw+i - \n > h > 0 for χ», \n+ι € /fc (k = 1,2, ).

Hence, the number of arcs (exp(^»), exp(iφn+{)) (λ», λ»+i€ 4) is at most

(8.2) 2a> [XaJ/fc.

Since μ x 2 \jλnκ3/μh > 2&> £λnkl/h, by (8. 2) among μ-(fc) quadrates we have

one quadrate Rk, whose summits touch at most 2 [_\nk]/μh arcs (exp (i<Pn),

exp (i<Pn+ι)) (λn, λ»+i € /fr). Then we can choose a suitable summit exp (£7*.)
such that

(8.3) l ^ ; - γ , | S W 4

Denoting by σ> the number of sign-changes of 3t (αrt exp ( — iyh,)) (λ/ft € Λ), we

have evidently

Therefore, by (8.1)

lim σ fc/CλwJ = 0.

On the other hand, by (8. 3)

at(a,lJfcexp ( - i7fc)) = | ^ | c o s ( ^ - - yk)

so that

(8.4) lim l/\nk log | 9t(«nΛ exp( - iyk))\ > lim 1/λn* log \aΛk\ = 0.

By |9t(ΛΛA. exp( — iyk)) | ^ |«Λfc|, we get evidently

lim l/\nk log \$i(anr. exp ( — iyk)) \ g liml/λMfc log \ank\ = 0.

Hence, by (8. 4)

Tim l/λ»fc log \Wank exp ( — iyk)) \ = 0.

Thus, {7*;} is the desired one. q. e. d.

(to be continued)
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NOTES ON FOURIER ANALYSIS (XLVIII):
UNIFORM CONVERGENCE OF FOURIER SERIES
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(Received April 5, 1951)

1. G. H. Hardy and J. E. Littlewood \χ\ proved that

THEOREM A. If

(1.1) Ax+t)-Ax)=o(lj\oz~} (f->0)

and the n-th Fourier coefficients off(t) are of order rτh (0 < δ < 1), then the
Fourier series of f(t) converges at t = x.

Recently O. Szasz [4] proved that

THEOREM B. If fit) is even {or odd) and continuous, and if
λn

(1.2) lim lim sup 2 (\aΛ ~~ a^ = 0>

av being the n-th Fourier cosine {or sine) coefficient of /(£), then the Fourier
series off{t) converges uniformly at t = x. Especially if an is of order ir1,
then (1,2) is valid.

In the assumption of these theorems, the first is the continuity condition
and the second is the Tauberian condition. We shall prove that the assump-
tion of Theorem A is not sufficient to the uniform convergence of the
Fourier series of f(t) at t — x. Further, even if (1.1) is replaced by the
condition
(1.3) f(x+t)-f(x) = O(\t\) (/->0)
in the assumption of Theorem A, the Fourier series of fit) does not converge
uniformly at t = x in general. But we can prove that, if, instead of (1.1)

(1.4) At) - fit') = o{l /log jy^- j J (f -» *,

or, if

(l. 5) /if) -At') = o ( i / i o g ί T 7 i ) ( ί ^ χ ;

and the w-th Fourier coefficients of At) is of order (log ri)*/n (a > 0), then
the Fourier series of f{t) converges uniformly at t = x. The condition (1. 4)
is the type of Dini-Lipschitz test, and (1. 5) links Theorem B and this test.

To prove the negative theorem, we construct an example of the type
used by one of the authors [2Γ\ For the proof of the positive theorem we
use the method due to H. Lebesgue and R. Salem [3J

On the other hand, we can prove that Young's convergence test implies
the uniform convergence of Fourier series at a point. This is a duaJ of




