ON THE UNIFORM MEROMORPHIC FUNCTIONS WITH
THE SET OF CAPACITY ZERO OF ESSENTIAL
SINGULARITIES

TApasH1 KURODA

(Receievd 14, November 1950)

Introduction
Recently many interesting results on the singularities and value-distribu-
tions of uniform meromorphic functions with the set of capacity zero? of
essential singularities have been obtained by S.Kametani [6], K.Noshiro
{97, [10] and M. Tsuji {127, [13]. But, as far as I know, the relation
between the order of such meromorphic functions and their inverse functions
is not yet obtained.
First we shall state Evans’ theorem [5] without proof in §1. We, in
§2, prove an extension of Noshiro’s result, from which some results already
proved by Messrs. K. Noshiro and M. Tsuji are obtained as corollaries. In
§3, by the method due to M. Tsuji [14], we shall give an extension of
Ahlfors’ distortion theorem [17 on the conformal mapping. By this method,
we get, in §4, the relation between the order of functions belonging to
a certain class and their inverse functions.

§1. Preparation.

1. Let E be a non-empty, bounded and closed set of capacity zero in
the z-plane. We suppose that the function w = f(z) is uniform and meromor-
phic outside the set E and has an essential singularity at every point of E.
We denote by & the class of such functions.

Since E is a bounded and closed set of capacity zero, there exists a
positive mass distribution du (@) on E by Evans’ theorem [5] or by Selberg’s
[117 such that the potential

u(z) = f log Tz‘iﬂ du(a) ( f du(a) = 1)

is harmonic at every finite point except all the points belonging to E and
that #(z) tends to + oo when z tends to any points of E and tends to — o
when z tends to infinity.

Let v(z) be its conjugate harmonic function and we put

§=X(z) = "™ = 7(z)e"® (0=v(z) < 27).

This function is called Evans’ function associated with the set £. It may
be easily seen that the niveau curve C,: 7(2) = const. =7 associated with

1> Throughout this paper we mean by “Capacity” the logarithmic capacity.
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the set E consists of a finite number of simple closed and analytic curves
surrounding the set £ and that

fdv(z) = f%ﬁ ds =27,
[ c,

where » is the inner normal of C, and ds is the arc length of C,.

§2. An extension of Noshiro’s theorem.

2. Let w = f(z) be a function belonging to the class § and E be the
set of its essential singularities. Denote by z = ®(w) the inverse function
of w = f{z) and suppose that this inverse function z = ®(w) has at least one
transcendental singularity and Q is such a one with the projection w = w.

Let A, be the set of all the values taken by the branch z = @,(w) corres-
ponding to the p-neighbourhood ®, (< &) of the accessible boundary point
Q of ®, where & denotes the Riemann covering surface which has the
Riemann sphere as its basic surface and is associated with the inverse func-
tion z = ®(w). Then, obviously, A, is a connected domain and its boundary
consists of at most an enumerable number of analytic contours v, and the
non-empty closed subset £, of E£. It is immediate that the function w = f(z)
is meromorphic in the closed domain A, excluding the set E, and satisfies
the relation: [f{(z), ©] < p inside A, and [f(z), »] = p on y,, where

' 1f2) — o
U@ o1 = @0 1+ ol

represents the spherical distance between the points w = f(2) and w = w.
Since E, is a closed subset of a bounded set E, E, is of capacity zero.
Hence there exists Evans’ function
é’ — X(Z) = pU(D+iv(2) — r(z)eiv(z) (0 §_ 7)(2) < 271-)
associated to the set E,. If C,represents the niveau curve C,: 7(z) = const.
= r associated to E,, then we have

fdv(z) = 2.

We denote by v(r) the number of simple closed and analytic curves of the
niveau curve C,.
Let 6. be the intersection of the domain A, and the niveau curve C; and
- Ap(7) be the intersection of A, and the domain exterior to C,. A,(r) consists
of a finite number of components AY(7),----, A{™(7) (m = m(r) = 1) for all
sufficiently large r. Suppose that ®,(r) and ®{(») are the Riemannian images
of Ay(7) and A{(7), respectively, on &, by w = f(2).

We put
_ 1 [UOI
57 &) = f f T+ A2 %

ApM
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and

- [f(2)]
20, 80 = [ 142,
oT
where do is the area element of the z-plane. These quantities have the
geometrical meaning :
S(r,A,) is the average number of sheets of @ () and L(r,A,) is the
length of the boundary of ®,(r) relative to the disc (¢,): [w, @] < p.

3. We shall now state two important lemmas without proofs.

LemMA 1 (Tsuji [127, Noshiro[gJ).

lim S(r,A;) = o and lim inf L(r,0p) _ 0.

r>o (VW)
LeEMMA 2. Let Fbe a finite covering surface having F, as its basic surface
and D,, D;, ----, D@ =2) be q closed discs such that each lies entirely
inside F, and no two of them have any point in common and let F, be the
domain obtained by excluding all the discs D,, D,, ----, D, from F,. For each
D;(G=1,2, ----, q) we denote by n(D;) the number of sheets of all the islands
above D; and by n,D;) the number of orders of all branch points of all the
islands above D;. Finelly we denote by S(F,) the average number of sheets
of F and by L(F,) the length of the boundary of F relative to F,. Then

a

2 1(D;) — 2 m(Dy) = n(Fy)S(Fy) — n(F) — hL(Fy),
j=1 i=1

where 7(Fy) is Euler’s characteristic of Fy, 7; = Max (n, 0) and his a constant

depending only upon D,, D, ----; D, and F,.

This lemma was proved by J. Dufresnoy {4]and Y. Tumura [15] indepen-
dently and was used by K.Kunugui {77 and K. Noshiro [9], [10]. This is
also an extension of Ahlfors’ fundamental theorem [2] on a finite covering
surface,

4. K. Noshiro [9] proved the following theorem.

If ®, is simply connected, then d, covers every boint infinitely often inside
the disc (cp): Tw, 1< p except at most one point.

We can now generalize this theorem in the following form :

THEOREM 1. @, covers every point infinitely often inside (c,): [w,0]1< p
except at most 2 + &, + &, points, where
=1 v(7) - . m(")v(ﬂ
&, = lim sup St Ay £ = Kp) I“F,LS“P S, A,

r>x

and k(p) = (4/=p?) sin~Y(p/2) is the constant depending only on p.
In this theorem we assume nothing about the connectivity of ®,.
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In order to prove this, it is sufficient to show the following theorem :

THEOREM 2. Denote by D1, D,, ----, D{q = 2) q closed discs lying entirely
inside (c,): [w, w3< p. Let n® (D;) be the number of sheets of all islands
{D§} contained in d((r) and lying above D; and nS>(D;) be the number of
orders of all branch points of all islands {D®}. If we put

m m

20Dy = n(r, Dy; A,), > #i(Djs) = ny(r, Dys; Ap)

i=1 i=1
and

(7, D5 Do)

(1 _n(r,Dj; Ap)) . = lim i AL
1 ————, 6(D7 H AP) - hr?%;nf S(r, Ap) ’

&Dj; A,) =lim inf { S(r,A,)

>0

then

q q
28Dy Ap) + 2 6Dss A) S2+ Er+ &
i=1 Jj=1
Proor. We can find a positive number 7, such that for all » = 7,
A7) consists of a finite number of components AC)(7), - --, A7) (m = m(r)
=1). Since <I>{,“(r) is a finite covering surface having the disc (¢,): Tw, o]
< p as its basic surface, we have by lemma 2
o “ _ o .
> a0 (D;) — 2 nDy) Z (g — DSDO(r, Ap) — n(DO)) — RLO(r, A,
J=1 Jj=1
where S® (7, A;) is the average number of sheets of ®{’(r) and L7, Ay)
is the length of boundary of @Y (7) relative to (¢): [w, ®]< p and h is a
constant depending only on D,, D.,, ----D,, and (¢): [w, ©]< p. Since we
can easily see then

m m

S(r, Ap) = 28z, A,) and Lz, A,) = > LO(r, A,),

i=1 i=1
we have
q

1) D (S(r, Ap) — n(r, Dj; Ap)) + > m(r, Dj; A,)
Jj=1 j=1

< S0, A) + 2 W @O@)) + hL(r, A,).

i=1
On the other hand we have easily

(2) (P P7)) = nAPT) = 9WAP() + 1 = pD(7),
where u(r) denotes the number of component of boundary of A{’(r). Hence

there are two classes of such components, namely:
i) Components consisting of only one component of niveau curve C,,
whose number will be denoted by »¢(r). Obviously

2 vOr) S vlr).
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ii) Components consisting of at least one part of contours v,. We
denote by x(r) the number of such components.

Now let the variable z vary on the part of «, which belongs to a compo-
nent of the second class such that the corresponding point w = f(z) varies on
the circle ¢, [w, w]= p at most once. Thus we obtain function elements
lying on the circlec,: [w, ] = p. We prolonge every function element along
a radius of the circle ¢,: [w, ] = p to its centre w = w. These prolongations
are continued until they meet a branch point or the boundary of q>§j>(r)
relative to (c,): [w, w]< p. Let A’ be the area of the schlicht domain e
just obtained above and L’ be the length of the boundary of this domain e,
which are contained in the relative boundary of <I>“,"’(r). Then, by using
Ahlfors’ first covering theorem [27, we get
(3) zp* — A < WL + E(p),
where &’ is a constant depending only on (c,): [w, @1< p and k(p) = (4/zp?)
sin~i(p/2).

The term k(p) in (3) appeared in virtue of the components consisting of
the parts of v, and C,.

Hence, if for every component of the second class belonging to A(” (7)
we carry out the process just stated and add the inequalities (3), it is easily
seen that

(4) 7o (r) < 2 A+ W 2 L+ k(p)u(r).

Since each domain e has no common part with each other, it follows that

DA < 2pSO(r,A,) and > L < LO(r,A,),

whence we obtain, from (4),

m

D kD(r) < S(r, A,) + W' L(r, A,) + k(pym(r)v(r),

i=1
where n” = I'/zp?. Consequently it follows that

m

D ud(r) S S(r, Ay) + B'L(r,A,) + v(r) + k(p) m(r) v(r).

i=1
From this and (1), (2) we get

q 1
D (S(r, A,) — n(7, Di: Au) + 2 ns(r, Dys Ay)
Jj=1 j=1
< 2S8(7, A,) + B L(r, A,) + v(r) + k(p)m(r)v(r),
where ' = h + k" depends only on D,D,, ----, D, and (c,): [w, o]1< p.
Bylusing lemma 1, we obtain
q

q
S>8Ds; A+ 20D A)S2+E +E

Jj=1 Jj=1
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— Cw(r) _ 1 \ mr)v(r) - 2
where & lm}_)iup Sor, Ay E = lurr}) sup k(p) Sir. A, and k(p) = (4/mp*)
sin~Y(p/2).

5. From Theorem 2 Noshiro’s theorem stated in the preceding section
is deduced and moreover the following theorems are deduced :

CoroLLARY 1 (Noshiro [107). If the set E, lies on one component of v,
then ®, covers every point inside (c,): [w, 1< p infinitely often except at
" most two points.

CoroLLARY 2 (Tsujil13]). If A, consequently ®,, is finitely connected,
®, covers every point inside (c,): [w,w]< p infinitely often except at most
one point. Moreover we denote by A, the domain A, with addition of the
inner parts of closed componens vy, of boundary of the domain A,. We call
A, the associated domain of A, If the associatetd domain A, of A, is finitely
connected, ®, covers every point inside (c,): [w, 1< p except at most two
points. -

CoROLLARY 3. If the number of contours vy, extended to certain points
belonging to the set E, is finite, then &, covers infinitely often every point
inside (c,): [w, 1< p except at most 2 + E, points.

6. By the similar way as the proof of theorem 2 we can show the
following

THEOREM 3. Suppose that the branch z= P(w) has a transcendental
singularity Qq, with projection w = w, such that [, 1< p. And we denote
by @, the py-neighbourhood (on ®,) of the accessible boundary point Qy of P,
such that ®, lies above the disc [w, wy]< p,, which lies entirely inside the
disc (¢,): [w, 1< p. If A,, namely ®,, is finitely connected, then ®, covers
infinitely often every point inside ils basic surface (c,): [w, wy]< py except at
most two points.

§3. An extension of Ahlfors’ distortion theorem.

7. M. Tsuji [14] extended the famous Ahlfors’ distortion theorem [17.
We shall extend it a little more,

Let D be a simply connected domain in the z-plane. Suppose that the
bounded and closed set E of capacity zero lies on the boundary I' of the
domain D.

We construct Evans’ function § = @+ = p(2) (0 < v (2) < 27)
associated to E and describe the niveau curve C,: r(z) = const. = 7 surround-
ing the set E. We put .= D | C,.. We shall show the following

THEOREM 4. If we map the domain D conformally on the unite circle
lw| <1 by a function w = f(z), then, for all sufficiently large r, the image
A of Or in |w]| < 1 can be enclosed in a finite number of circles B (i =1, --,
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n = n{r)), which cut |w| =1 orthogonally, such that the sum of their radii

is less than
kr

const. exp( — nf —;g(L“—),

To

where 7, < kr < 7,7y, a certain positive number and @(r) = f dv(z)

Proor. There exists a positive number 7, such that, for all r =7, 6
is not empty. We denote by 9 (G =1, ----, = m(r)) the components of
& We map D conformally into the unit circle jw| <1, then we can
suppose without loss of generality that a certain point on the boundary of
D not belonging to E corresponds to the point w = 1. Then the set £ corres-
ponds to a set E* of measure zero on |w| =1 and the point w =1 does
not belong to this set E*.

Let 7\,,(0 be the image of Hf.i) (Z: 1, cees, om) and A = UX(O ' Then
obviously A\, converges to the set E¥ when 7 tends to oo. Denote by kP
(i=1, ----, »=n(r)<m) the system of circles enclosing the Jordan arcs
Ai=1, ----, m) and cutting |w| = 1 orthogonally.

We map again the disc |w| < 1 conformally on the upper semi-plane
Jo >0 of the o-plane by the linear transformation o=o(w)=:i1+w)/(1— w)
and we denote by 4, A®» and K©® the image of A», A and £ in Jo >0,
respectively. Then we get the domains e, ----, e,(mm =q = q(r) = 1), each
of which is bounded by some /4’ and the segments lying on the real axis
Jo = 0 and which correspond to the common parts of the domain D and
the interior of C,. We represent by LY(r) the length of the boundary
{AW} of e; and by AWY (r) the area of e;. Moreover let

q q

Lir)= 2 LO(r) and A(r)= > A9).

Jj=1 Jj=1
Then we can see without difficulty that
(5) A9r) < (L9O(7)) [ 27.
Let z=X"%{) be the inverse function of Evans’ function ¢ = X(z)
associated to the set £ and put o = F(c)_a(f(x 1&)). Then it is also
clear that

Lir) = f |F()lrde and A(r) = f f |F(0)|* rdd dr,

where O, is the 1mage of 6 by &= X(2)(0=< v(z) < 27) on the ¢-plane and
¢ =re®. Using the Schwarz inequality and

§(r) = f 40 = f dv(z) < f do(z) = 27,
o, o, - <y
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it follows that
L¥7) < 76(r) f |F ()] rdo,
from which we get, by (5),

(6) f LO) 4y < Aty = S A < — Z(L(’>(r) < o L),

76(r) =
If we put #(r) = f ) f’;g:; dr, then we have
' — LXr) < 7v8(r)y/(r).
Hence, from (6),
2 ity Sto8

79
whence it follows that

7n(r) < const. exp( — 2;,[ ;g(";)>

o

Since the sum [(r) of radii of circles K (i =1, :---, n) is not greater

than 1 L(r), we can see

2
T o) s
[ oy @ = const. exw (=2 [ 505).

7 ro

If we notice that I(r) is a monotone decreasing function of », it follows

ki
) I(r) _ dr
(r )f 700r) _f 0(r) dr < const. exp< 27rf ——7’0(7)> ,

kr 70

where 7, < kr < r. However, we can easily see that

" ar 1 1
f 76 = 27 8 g
kr

from which we obtain
ki

dr
I(r) < const. exp< - nf W) .
The radius of k(" is less than constant multiple ‘of the radius of K(".
Consequently the sum of radii of " (=1, ----, #) is less than constant
multiple of I(r). Therefore, from the above linequality, the sum of radii
of B9 (i =1, ----, m) is less than
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| kr
const. exp (—-nf 7%15—)‘) , o< kr<r,
To

which proves the theorem.

8. By applying Theorem 4, we can prove the focllowing theorem of
Phragmén-Lindelof type.

THEOREM 5. Let w = f(2) be regular in the simply connected domain D
and suppose that lim sup |f(2)| <1, where  denotes an arbitrary point
z2>¢

on the boundary I of D not belonging to the bounded and closed set E of
capacity zero lying on I We put 0. = D | C,(where C, is the niveau curve
associated to the set E). If lim inf = log M(r) = 0, then |f(2)] <1 at

r > oo

every point of D, where M(r) = M?x 1/C2)| and O( < 2x) is the upper bound

of 6(r) = f d(z) for all sufficiently large r.
o

Proor. Let z, be a point in D. We can choose 7 >0) such that,
for all » > 7,, z, is contained in a component D, of domains which are
the parts of D, lying outside C,. The boundary of D, consists of the part
6 of ¢- and the parts of boundary of D, and it contains no point belonging
to the set E. We denote by o(z, 6,, D,) the harmonic measure of g, with
respect to D,, namely the harmonic function in D, such that it equals to
lon g, and to zero on the other boundary of D,. If we notice that log
|/(z)| is harmonic in D, except zero-points of f(z), by using the maximum
principle or Nevanlinna’'s “Zweikonstantensatz’ [ 8], we have

log|f(2)| < o(z, 6 D») log M(r).
whence at the point z = z, we have
(7> log | f(z))| < (2, 6, D) log M(r)..

We shall now map D conformally on the unite circle || < 1 in the
r-plane by the function = = 7(z) (m(zy) = 0). Similarly as in the proof of the
preceding theorem, we can enclose the image of 6, by system of circles
kD (=1, -.--, n) which cut |r| = 1 orthogonally. Denote by «a; and G; two
edge points of £ on the circle |r| = 1 and suppose that «; < 8;.

We can find 7.,( > 0, such that, for all » = »,, the point + = 0 lies outside
these circles 2P (i =1, ----, n). We denote by Q¢ the domain, which
contains the image r = 0 of the point z =z, and whose boundary consists
of #» and |r| = 1. If we put = arg (8:;/a;), we can easily see from
Theorem 4 that

n K

(8) > ¥ = const. exp (= f 73(77)\

i=1
"o
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re< kr<rw, 6r)= f dv(z),
6y

where 7, = Max (71, 7.). We put v(7) = arg (+ — B:)/(+ — ;) and Vi(r) =
2(vi(t) — ¥:/2)/w. Then Vi(r) is the harmonic function in the domain Q¥
and equals to 1 on £° and to zero on the other boundary of Q. If we

n
put Q, = 1 QP, then Q, is contained in the image of D, and the function
i=1
n
V(r)= EVL(’T) is harmonic in Q, and is greater than 1 on kP (=1, ----,n)
i=1
and equals to zero on the other boundary of (),.. Since harmonic property
is invariant by a conformal mapping, we have
w(zy, 6r Dy) <V (0).
Hence, from (7), it follows

log | f(z))l = V(0) log M(r).

On the other hand, it is easy to see that V(0) = 2 Yi/n and so from (8)
i=1
kr
dr
log |f(zp)] < const. exp ( - f ‘7’0—(7’;> .log M(r).

To

Since #(r) <27, there exists §(>0) such that 8(r) <@ =<2z for all
7 =7, Hence it is easily seen that

log |f(2y) | =< const.»~*/¢ log M(7).
Accordingly, if lim inf r~*° log M(r) = 0, then we have
7S oo
1f(z)] =1

Since z, is an arbitrary point in D, we obtain the theorem.

Especially we have

CoOROLLARY. If lim inf =12 log M(r) = 0, then we have |f(2)| <1 at every

r> o

point in D.

ReMArRk. Theorem 5 can be proved by the Beurling’s distortion theo-
rem [3].

From the proof of the preceding theorem, the following theorem is
obtained without difficulties.

THEOREM 6. If the point z lies in the domain D,, then

Kr
w(zﬂi p;‘} D7) § h (7’) eXp ( - ”f 7%%)‘)7 (rl < 7’),

where h(r') is a constant depending only on 7.
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§4. The relation between the order of functions belonging
to the class & and their inverse function.

9. Let w = f(z) be the function belonging to the class ¥ and  be the
transcendental singularity of its inverse function. Denote by ® the pro-
jection of Q. M. Tsuji [12] proved the following theorem :

The set of projections of the direct transcendental singularities of the
tnverse function on the w-plane is of capacity zero.

We denote by A, the set of all values taken by the branch z = ®,(w)
of the inverse function z = ®(w) of w = f(z), where z = ¥, (w) corresponds
to the p-neighbourhood &, of an accessible boundary point Q of & which is
the Riemann covering surface having w-plane as its basic surface?).

Let O, be any transcendental singularity of z = ®#(w) and w = w, be
its projection on the w-plane such that w, lies inside the disc (c,): |w| >1/p
(w =) or |lw—w| < p(w=*xox) Wecall Q, the direct transcendental
singularity of the branch z = ®,(w), when the point w = w, is lacunary with
respect to the py-neighbourhood ®,(c=®d,) of Q. Then, by similary as the
argument of Tsuji [127, we can easily show the following theorem:

THEOREM 7. The set of projections of the direct transcendental singulari-
ties of the branch z = P (w) on the disc (c,) is of capacity zero.

10. We describe the niveau curve C, associated with the set E, by
constructing Evans’ function associated with the set E,, where E, is the
closed subset of E which is the bounded closed set of essential singularities
of the function w = f(z) and E, belongs to the boundary of A,. We put
Cr N A, =6 and

( Meax 1f(2)] for o = oo,
Mir) = iM?x 1/1/(z) —w| for o = oo,
and
. log log M(v)
i sup —=o 5 = pe). |
We call p(p) the M-order of w = f(z) with respect to A,. Then we shall
prove

THEOREM 8. Suppose that the M-order p(p) of w = f(2) with respect to
A, s finite, If A, is simply connected, then the number of direct transcendental
singularities of the branch z = P(w) lying above w = w is not greater than 2p(p).

Proor. Without loss of generality we can suppose @ = . Let Q, be
a certain direct transcendental singularity of z = ®,(w) lying above the
point w = . We denote by &, the pyneighbourhood of €, lying entirely
inside &, and by A, the set of values taken by the branch z = ®,(w) corres-

2) If w = oo, then we take a certain connected piece @, lying above the disc |w|>1/p.
If o= oo, we take a disc |w — w| <p instead of [w|> 1/p. In the following we consider
@ n this sense. And we denote by (¢p) the basic disc of @,.
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ponding to &,. The boundary of A, consists of an enumerable number of
analytic curves v, and the closed subset E, of E,. The function w = f(2)
is meromorphic in the closed domain A, excluding the set E, and satisfies
the relation: [f(z)] > 1/p, inside A, and |f(z)| = 1/p, on v,.

We can choose p,( >0) such that f(z) = ® = oo in A, or f(z) is regular
in A, Since A, is simply connected by the assumption, the associated
domain A,(See Theorem 2, Corollary 2) is also simply connnected. The
function lgg [f(2)] « po is subharmonic and is equal to 0 on v, We shall
extend the definition of this subharmonic function in the domain Aj by

putting lgg [f(2)] *+ po = 0 inside holes of A,, then l(;g {f(2)| - po is subharmonic
in A,, We put
M(r) = Max |f(2)],

2¢0,

where 6, = C, 1 A, (= 6,). We can use the argument used in §3 for ¢, and,
deforming the proof of Theorem 5 we can see that there exists a certain
number & >0 such that for all sufficiently large »

r-=i¢ log M(r)= & >0,

where @ is the upper bound of f du(z).
0,

On the other hand it is immediate that M(r) < M(»). Accordingly,
for all sufficiently large », we see

7r-=i6 log M(r) = &
or log log M(r) = (x/0) log r + const.

If we suppose that there exist # direct transcendental singularities of ®,
lying above w = w, then we get similar » inequalities as above. We can,
however, choose # py-neighbourhoods disjoint with each other. Hence there

exists at least one such that § < @/# <2x/n. Then we have for such ¢
log log M(r) = n log » + const,,

or

T log log M(r)
pp) = lim sup Tog 7 =

NS

which proves the theorem.

1. Now let w = f{z) be a regular function belonging to the class .
For the niveau curve C, associated with the set E, we put

M(r) = Max |f(2)]

and
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L. log log M(r)
b= hrrn_f,},l P logr

We call p the order of a regular function w = f(z) belonging to the class .

Then, by the similar way as the proof of Theorem 8, -we can show
the following

THEOREM 9.  Suppose that w = f(z) is a regular function outside the
bounded closed set E of capacity 0 and it has an essential singularity at every
point of E. We suppose moreover that its order p is finite. If its inverse
function has n distinct asymptotic values on a point w = w and all their p-
neighbourhoods are simply connected, then n <2p.

We can state easily the analogues of other theorem of the above type.
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