
ON THE DIRECT PRODUCT OF OPERATOR ALGEBRAS I

TAKASI TURUMARU

(Received June 16, 1952)

1. Introduction. Recently, R Schatten and J. von Neumann have defined*
the direct-product of Banach spaces, and obtained many interesting results

for example, they have proved that the double conjugate space of
Banach space of all completely continuous operators on the Hubert space
coincides with the space of all bounded operators on that space (cf.
C4 : Theorem 5.15]).

As they say, the direct-product of Banach spaces is seen to be an
effective tool in dealing with Banach spaces whose elements are operators
on some Banach space. On the other hand, from the algebraic standpoint,
the direct-product of Banach spaces is considered to be a generalization of
the Kronecker product of vector spaces to the infinite dimensional cases,* so
the author suppose that it is significant to consider the direct-product of
the C *-algebras as a generalization of the Kronecker product of rings to
the infinite dimensional cases.

In the present paper, we shall define the direct-product of operator
algebras as Kronecker product of rings, and introduce a suitable norm in
this product space; and finally completing this ring by using the norm
defined above, we shall construct a new C*-algebra as the direct-product
of C*-algebras.

In § 2, we recall R. Schatten-J. von Neumann's definition of the direct-
product and define the product of expressions. In § 3, we consider about the
states on the direct-product and introduce a suitable norm (cross-norm in
R. Schatten's sense) on this direct-product ring. Finally in § 4, we apply the
above consideration to the commutative C*-algebras, and prove that direct-
product of the commutative C*-algebras of all continuous functions defined
on compact Hausdorff spaces Ω and Γ, is isometrically isomorphic to the
C*-algebra of all continuous functions defined on the product space ί lxΓ;
this result may justify our norm, and is related to Dunford-Schatten's
results [I] .

I will express my hearty thanks to Prof. M. Nakamura for his many
valuable suggestions.

2. Definitions and notations. We begin with recalling Schatten-J. von
Neumann's definitions and notations.

For any C'-algebras Au A* (with unit), let X be a set of all formal
^expressions"
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^where xt € AΊ, yt € A,, i = 1,2,..., n; n = 1,2,
In X, we introduce a relation ~ subjects to the following rules:

n n

•( i ) 2 * 1 x^*~ 2 * p ω x>'*ω> where p(l),.,.., ί(w) denotes any permutation
i = l t = l

•of the integers 1,2,..., n.

(ii') tfi x (^ -I- y'{) + 2 ^ x ^ ~ Xl x ^ί + Xl x ^i' + 2 ^ " x ^

<iii) ^?(a.Xi) x ^ i ^ 2 A Γ ί x (Λί^*)» where at denotes any scalar.

And finally, two expressions 2*« x ^ ι a n d 2 S ^ x ^7 in X will be termed

equivalent if one can be transformed into the other by a finite number of
successive applications of rules (i)-(iii) and we write

2 Xι x yi ~ 2 5-7 x *J

Then we can easily verify that the relation 2̂  is reflexive, symmetric,
transitive so we define the linear set AΎ 0 A2 as a set of residue classes
-of X by this relation ĉ  .

Now, we define the product and involution * in X as follows :

(
n . m . n m

2*χ^) (2s^'x )̂ = 22-^^
i=i / ^:=i ^ t=i j=i

(involution) ( 2 ^ x ^£ ) = Σ * * x *̂*

Then the following Lemma can be proved:

LEMMA 1. The product, and the involution* defined above are invariant
under the relation — .

PROOF. TO complete the proof of this lemma, it is [sufficient to show
-that

n n' wi m>

2 Xi x yt ^ 2 χ i x y'» a n d 2 s->x fj - 2 s ί x fj
ί=l i = l j = l 3=1

imply

2 2 x ' s^x y**j - 2 2 ^ x : v^ '
-and
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Firstly, by [4 : Lemma 1.1] we can assume, without loss of generality,
that the sets {#*}, •(#}, — , {s'j} and {t]} are linearly independent respec-
tively, then n = rί and m = rri by [4: Lemma 1.1], and furthermore, there
exist matrices (Aib), (aiJc), (BP1) and φin) such that

^ 2 aay^ a n d ( ^ ( ^ = l n ;

si = 2J Bp.: sPi t\^ 2 ^*Ώ ^i?) a n ί ^

where lr denotes the r x r unit matrix.
Thus,

x'ι s) =

Similarly,

Therefore,

x ^

This proves the first part of the Lemma.
The proof of the second part is similar.
By this lemma, Ax© AΛ can be considered as a *-algebra with unit

l x l .

3. Norms on the space AΪ © A2. In this section, we consider about
n

a norm on A\ © A2. For any expression 2 *£ x ^' ^ ^ ^ Schatten defined

the greatest cross-norm:
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and he proved that γ( ) has following properties :

(1) 2 * * x ^ - O x O if and only if y(jj?XiXyλ=O,

n TO . / \ / m

( 2 ) 7 ( 2 * x * + * Σ s > x t ή ^ y ( * Σ X ί χ y ή + y ( Σ S : X

^ ί = l ./=1 ' V = l ' \j=l

) 7 la- 2 ΛΪ x jy J = \a\ 7 I 2 «̂ χ JVί ), where a denotes a scalar,

* x ? s — Σ s ' x *' implies 7 ί 2 ** x ^ ) = 7 ( 2 s ' x ^ ) '

C3

( 4 )

( 5 ) 7(Λ;X y )= || yi . |l^||.

Furthermore we can prove the following :

LEMMA 2. For any 2 *« x

ί - l

x

J = l

) ](
PROOF. Since (7) is similarly proved, we prove (6) only.

< = 1

s i n f Σ Σ

x = i n f 2 i t x

* - Σ * x y< Σ s^ x *ί - Σ s ^ x ^ ί

s*x ^ - Σ

Now, if we consider a non-complete normed space AΊ © A2 with norm 7,
we obtain a non-complete normed ^-algebra by the properties (1M7) of 7:
we denote this ^-algebra by Ai © v A2.

Next, we consider a linear functional ψ xψ on the space AΎ © Aly
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where φ and ψ denote the states on Aτ and A2, respectively. That φ x
is considered as a functional on Λι © A2 that is

χi xy
' < = 1

is invariant under the equivalence ~, is easily verified. We shall prove the
following two essential lemmas.

LEMMA 3. <p x ψ is a state on Aι 0 A.λ . that is, φ x ψ is a positive
type functional with \jp x ψ ] ( l x 1) = 1.

PROOF. It is sufficient to prove the following inequality:

for any expression ^ ^ x yt € X.

Now, we recall I. E. Segal's results (cf. [3j) by his theorem, for states φ, ψ,
there correspond the representations of AΊ and A> respectively; we denote
this representation spaces by Af = \x<D\x € A,} and Af = {yψ\y € A3>, and
their inner products by < . , . > φ and < .,. > ψ respectively. Then,

n n n

— ^ d ^ %ι j % j s* φ ^ y \ , y j ^ ψ — " ^ j£+ι ^i } jίLέ

i,J = l <=1 ? =1

in Af 0 σ At

where Af 0 σ Af is used in Murray-Neumann's sense [4]. Therefore

CΦ x ψ~}{( 51 Xi x y*) (*Σ χι x yι ) * ) ̂  0, as desired.

LEMMA 4. TA^ set S = {<?> x ψ}, w /ẑ r̂  ^ βWί/ ψ are pure states on Aι
end A2 respectively, is complete on Aι 0 A2 in the following sense: For any

n

expression 2 & x ^ Φ 0x0, there exists φ x ψ in S such that

PROOF. Without loss of generality, we can assume that {#*} are linearly
independent. Since AΛ is a C*-algebra, there exists a pure state ψ on A3 such
that ^CViX)>0.

Now, let 3? = yfζ&O), y$, ,yj be linearly independent elements among
the elements yf, , yft of Af, and furthermore let
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fc

ί > = l

be their representations by the base {:>>£}. Now, define the element x in Aλ:

then by the linearly independency of {xt}t there exists a pure state <P on
A, such that <P(xx*) >0. Then

2 ^ x ̂ ) (2** * #V) = 2 ^ * *

= 2 <x?> χϊ>*<yf> yt>*= < 2 * r χ*f> Σ*?χ^>σ

in Af Qσ At.
n

Therefore, if we can prove 2 xf x y\ 4= 0 x 0 in Λf © Λf, then the right-

hand side of the last equation is positive, consequently the proof is completed.

Now,
n

2 xf x y't = xf x ^ + . + *£ x y\

- (ΛΓf + Ozi ̂ ί + + 0*1 *£) X yf + fe Λf + - - - + β« *£)

+ + (β»h xζ)x Jt

~ x* x yf 4- -. 4- (anlc x$ x y*.

Since jŷ , . ., yg are linearly independent in Af, and xφ =ί= 0 in ^ , conse-

quently 2 Λ f x ^f Φ 0 x 0 by [4 : Lemma 1.1]. q. e. d.

Now, let © be the set of positive type functional Φ such that

where ^ x Ψ € S, and 2 Λ< X ̂  is an arbitrary element of AΊ 0 A2, and we
4 = 1

introduce a new norm in Λi © A2:
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then we can prove the following:

LEMMA 5. The functional on X, ocf^xtxyA defined by (*) has the

following properties, {that is α( ) is a cross-norm on AΊ © A2 in Schatten's
sense [4: Chap. II, § 2]):

(8) a(a 2 χi x y* ) = l«lα( 2 *' x yΛ where a denotes a scalar;

a{ 2 * x >0 ^ ° «(1 x 1) = 1

2 Λ * x yι — 2 5 ^ x ̂  ^ ^ t o 5 α ( 2 **" ^ ) =

. n m n \ / W

(9) α ( 2 ^ χyt + 2 5 ? x ^) ^ α ( 2 X ί x ^ ) + α ( 2 s ^ x

(10)

(ID

(12) α ( ( 2 * * Λ ) ( 2 *
^ ί = l ' ί = l

(13) α ί 2 x ' x yt ) = 0 is equivalent to ^ ^ x ^ ^ Q x O ,

(14) α(# x jy) — [| ΛΓ:[! || ,r (.

PROOF. Although the argument is similar to that of Fukamiya's paper
C21 we give a sketch of proof. In the course of the proof we denote

n m

2 Xi x ^» 2 5 ; x ί ; ^ y f' η r e s P e c t i y e l y ' f ° r convenience.

Ad. (8): Except the last one, all parts are clear. On the other hand,
the last one follows from £4Γ}-

Ad. (9): By the definition of a( ), for any positive £ there lexists a
Φ 6 © such that

- 7)) — 8 < Φ{(ξ -r 7j) (ξ + ηf)

+
This proves (9), since £ is arbitrary.

Ad. (10): Put Ψ(9?)= Φ(ξf£*)/Φ(ξξ*) for Φ € © then Ψ(-) € ©, so
). Therefore by the definition of a( )
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Ad. (11): For any S > 0, there exists a Φ € & such that

a*(f) - a < Φ(ξf *).

Put again ψfy) - Φ(fi/f*)/Φ(ff*), then Ψ( ) € @. Therefore,

Λ»(5*) > ψfg f j = φ(ff *f f *)/φ(f f *) > φ(ff •) > <*2(?) - £.
Since £ is arbitrary, α(f *) > α(f).

By the symmetry, α(f *) •= Λ(f .

Ad. (12): Since α(ξξ*) ^α(f)α(f*) = αίf)a by (10), (11), it is sufficient

to show α(fP)>α:(f) a .
For arbitrarily given 6 > 0, choose Φ € © such that

^(?) - 6 < Φ(f £*).

Then,

(*•(?) - £)2 < Φ(ff*y ^ Φ(ff*ff*) s *κςς*).
Therefore α\ξ) ^ α(ξξ*) by the arbitrariness of 6.

Ad. (13): This immediately follows from Lemma 4.

Ad. (14): Firstly we shall prove oί{ξ)^ y(ξξ*)112. Indeed, for any real

number k>y(ξξ*), the element
μμ* \ι/aξl )

exists in the complete * -algebra AjXy A2 (=the completion of Aλ QyA.2 by

7( )), and ξ' = f*. Therefore for any Φ <Ξ @,

o< Φ(f'r*) - Φ(P) = Φ(I x i - i f f* ) - l - ^Φiff*),

Consequently, φ(f f *) < 7(f f *).

Then by the definition of α(.), α(£) ^ 7(f f *) 1 ' 2 .

Using this fact,

α ( x x y ) < y ( ( x x y ) ( x x y ) * ψ 2 - (|1 xx*\\ \\yy*\\ )"* = | | Λ | I > { y l .

On the other hand,

α(x xy) = sup [Φ(Λ:Λ;* X ;y>>* )χ/21Φ € £ ] > sup [(̂ (ΛΓΛΓ* )ψ(yy *))1/^ (^ x ψ e S3

This completes the proof.

From the above considerations, Aλ 0 Λ A* is a non-complete C*-algebra

with unit l x l , so completing Aτ QΛ A2, we obtain a new C*-algebra, and

we denote this algebra by AΊ xΛ A>>. Thus the following main theorem has

been completely proved.

THEOREM 1. Let A\ and A2 be any C*-algebras (with unit 1), and define

the cross-norm α( ) on the direct product ""-algebra AτQA2 by (*), then the
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completion Aλ xΛAz is also a C*-algebra (with unit).

4. Direct-product of commutative algebras. In this section, we
consider the commutative case which may justify our definition of norm on
the direct-product.

Let Ώ and Γ be compact Hausdorff spaces and, C(Ω) and C(Γ) be the
C*-algebras of all complex-valued continuous functions on the space Ω and
Γ with usual norm and involution, respectively. Then we can prove the
following :

THEOREM 2. C(ί2) x r tC(Γ), the direct-product of C(ίl) and C(Γ) in the
sense of Theorem 1, can be represented isometrically isomorphic as the
C*-algebra of all continuous functions on the prodtcct space Ω, x Γ.

LEMMA 6. The mapping^ x\xyi -> )jyX *) is the isometric homo-

morphism from C(ίl)©ΛC(Γ) into the C(Ω x Γ).

PROOF. Firstly we prove this mapping is invariant under the equivalence
>ι m

~. Indeed, i f 2 * l ' X : v ' : ~ 2 5 ; x tj> t h en without loss of generality, we can

assume that {xi}, , {tj} are linearly independent respectively, and
n = m, furthermore there exist matrices {Au) and (ai}) such that

, and

Then,

2 sΛ )4( ) - 2 ( 2 Aj, xj( )) ( 2

W ) = 2 ^( }

J- l

Since that this mapping is a homomorphism is clear, it is sufficient to
show the isometric property. While by the. definition of oc( •),

»:) = sup [dω Xγ] ^ 2 *, X >.) ̂ 2 *'
Ω' ^ € Γ ]

= sup

= sup j 2 χtk°)y

€ Ω, 7 € Γ Ί

inC(OxΓ).
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PROOF OF THEOREM 2. By the above Lemma 6, C(ίl) xαC(Γ) is embeded
in C(ί2 x Γ) by the isometrically isomorphic mapping, so the image R of
C(fl) xaC(Γ) is a closed *-subring of C(Ω x Γ). Furthermore for any
distinct points (ωlt 7/; and (ωz, 7.,) there exists clearly an element r of R such
that r(ω,,7!) Φ r(ω2,y2), so R = C(ί2xΓ).

REMARK. Concerning the algebraic properties of the direct-product—
for example; simplicity, factoriality of Aτ xΛA2—we shall discuss in the
later paper in this journal.
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