TAUBERIAN THEOREMS FOR RIEMANN SUMMABILITY
GEN-ICHIRO SUNOUCHI
(Received February 25, 1953)

1. Introduction. O.Sz4sz [77] has studied Tauberian theorems for sum-
mability (R;). In his case, the given series are convergent or Abel-summable
and his Tauberian conditions are satisfactory. Recently S.Izumi-N.
Matsuyama [17] have treated the case where the given series are Cesaro
summable. But their conditions are somewhat stringent. In §2, the author
gives better conditions. On the other hand, concerning summability (R, 1),
0.Széasz [4] [5] has studied the analogous type to his own theorems for
summability (R,1) and L.Schmetterer [2] has studied the analogous type
to Izumi-Matsuyama’s theorem for summabiity (R;). Since the latter inve-
stigation is unsatisfactory, the author gives a better theorem in § 3.
These problems are closely connected to the uniform convergence of
trigonometrical series. The problem of uniform convergence has been
treated by O.Szasz [6] and S.Izumi-N.Matsuyama [17]. A related theorem
to their investigation is given in §4.

2. Summability (R;). In the series 2 a, put S,= Z a,. Then if
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we call that the series is summable (R;) to sum s. Then we get the
following theorem.
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THEOREM 1. In the series > a,, if
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then the series is summable (R,) to sum zero.

Proor. If we put
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then
la.] = n(rn — 74+1)

and we have

2[ a, | = Ev(n—m])
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by (2). That is
(3) Sp = O(n=%).
By this result we get
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On the other hand, by Abel’s transformation
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hence in the interval 0< € <t <272 — €,
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Thus the series 3(s,/v) sin »¢ is uniformly convergent in 0 < € < ¢ <27 — €.
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say. where n = Et'—c'f' #J. Now, estimating analogously to (5).

sn+1_|)
n+1,

3

S, sv+) !
lu(2)] < ﬂt"( S _
2 VEI v v+1 !

= 10(n~%) = O(t~'t €) = E-0Q1).
As to u;(t), we have

+

n n-1
w(t) = 2 sinut = 25,00+ 5 stamt
v=1
where
sin nt __sin(p + 1)
§ So Aalt) = P
Since
_ sinnt —sin(n 4 1)t 1 1
A(t) = L +sinm+ (5 — 1)
- (@n+ 1t t sin (n+ 1)t _ (_t_
__——nc B sm2+———”(n+1) =0(
we have

n-1

L)) S 20 1S 1ALE)] + [Sul/n

- §n1: 0w)0 (£) + ot ()

=t > ofv™*%) + o(1)

= f-o(n*) + o(1) = o(t t~'&-1) + o(1) = o(1).
Hence if € is arbitrally small, we have
}1)11102 —sin vt = 0.
Thus we get the theorem.

3

COROLLARY: 1. In the series >. a., if

v=1

(1) s, = o(n%), O<a<)
v=1
@) 2 (la) —a) = On-%,

v=n

then the series is suwmable (R;) to sum zero.
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PrOOF. Applying Szisz’s argument [3] to (1) and (2'), we get (2). For
the sake of completeness, we shall repeat his argument. If we put

n

Up = zva.,, (_Uo: S,_):ao)’ lgkgl_*_(n_’—l)

v=1

then we have

= D (sy—5,)
v=0

and

n+k

Unsp — Un = (B + 1) (Snﬂe — Sp) + 2 (Sn+x — Sv)

v=n+1
2~ Pt~ — w0 pk = — pn'=*(n + k),
by (2), where p is a bound of (2'). Now put
' n, = [n2-"] »=0,1,2,....),
so that

Un = 2 (v"v v”v+1

v=(

then

v, = —pnt=® i n=—pn"*n é 270 = 2p pi-o,
Under the assumptiovr;o(l) "
On = <5: s.,>/n = o(n-1+%)
and =

Sp = - v“ 1 + o> — 2?""“ + 0(7‘_1“”) > —3pn“"

for large n. On the other hand we have
n+1

Sp = op+1 + (Cams1 — o i 2 (Su+v — Su)
whence

Sp < O(N~1F%) + o(BTIHY) — PN ® L 2pnr-®
for large n. By combining these two inequalities for s,, we get

Sy = O(n'-%).
On the other hand, we have

2n
> lal
v=n

Il

m
E(Iawl — Gy + S — Su-1)
n

Ont-*) + O(n'~%) = O(n'~%).
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Consequently
2n 2n
2 via] vt X lal = Om™),
y="n v="n
2I(:+1_l
> vlal = 0@2*e)
y=2F
and
2l

> u-ila,] =0<:2=02-ka) = O(L).

v=1
Hencelwe have
- B L o
2vilal = > > vial = O(n‘“EZ"“‘) = O(n=%)
v=n k=0 mne2k k=0

which is the desired inequality (2).

3. Summability (R, 1). In the seriesz a,, if
v=1
S, Sin vt
v vt
v=1
converges for every ¢ in 0 < ¢t < 27z, and

. sin vt
lim a - =S
50 g v vt ’

then we say that the series is summable (R,1)to sum s. For the summability
(R,1), we get the analogous theorem.

o

THEOREM 2. In the series X, a,, if

v=1

6) 2 s, = o(n%), O<a<l
v=1

and

3
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yv=n

then the series is summable (R,1) to sum zero.
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B O(n~"),

ProorF. The proof is analogous to §2. Since
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in the interval 0 < € <t <27 — &, we have
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m=1{

m
> gin = 3
v=n

— v v+ 1
hence
1 Qv M &-1 . ( 1Gnl
vzn: . sin »t| < &- ”yEn] b1 ’—!—2 7:(

and the series

o

a, .
> ™ sin ot
14
v=1
converges uniformly in this interval. We write

oo

> & st 2 S - w0 + wd),

=1 v v=n+l

say, where n = [t—ie-al‘j. Then

lut)| < =t~ 1( 2

v=n+1

Qn
n+1

+ 11

]
-+

Gy G
14

= - 10(n~ e 1) K &
Applying Abel's transformation twice to #; (f), we get

n-1

w(t) = 3, a, S0 2 SAXL) + SucrAu(t)

y=1
sin »nt
+ Sp 1’it )
where
sin n¢ _ sin(n 4+ 1)t

) = n n+1

v A L) = A(AL(R)).

Since we have easily

am=0(L) am=o(t)

n—

[ur(t)] = 2, o(v®) O <—<) + o(n*) O ( ) + o(nl—w)o(glt_>

= o(n“t) + o(n~1*%t) + o(n~*-1) = o(1).
Thus we have the desired results.

oo

COROLLARY 2. In the series 2 a, if

(6) >'s, = o(n®) (o<a<i)

and
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@) S(lal —a)= Om-*)

v=n

then the series is summable (R,1) to sum zero.

The proof is obvious from the proof of Corollary 1. The Corollary 2
is a solution of the problem proposed by Schmetterer [2].

4. Uniform convergence of the trigonometrical series. The problem
of uniform convergence of the trigonometrical series is closely related to
Riemann summability.

THEOREM 3. If

(8) > va, = o(n®) O<a<l)
v=1
and
9) > lAa,] = O(n~*)

then the trigonometrical series

2 a, sin vt
v=1

converges uniformly in the interval 0 <t < =.
Proof., We write

o n oo
Sa, sin vt = X a, sin vt + X a, sin vt
v=1

v=1 v =n+1
us(t) + uit),
where 7z is determined in"a little moment. If we put

n
t, = 21} a,
v=1

1

then
n n
- : _ sinyt
u,(t) = gl:a, sin v 1 = Evay ”
n—-1 . ’
= D tA + 1 T

v=1

and

Anlt) = O (%)

where O is independent on #. From the assumption (8), we have

u(t) =0 (,.2_110 (v’” %)) + o(n*"1)
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= o(n®t) + o(n*-1)

and
us(t) = 2 a, sin vt
v=n+1
= —Qan+ Tn(t) + 2 Aa,- Tv(t)
v=n+1
Ansl 1 <
= o(.l AL S Tv;n,:q lAaul)
NS
B ¢ v=n+ lAaV'
= O(t-1n=%).
Hence
(10) > a, sin vt = o(n*t) + Ot~—'n~%) + o(1),

v=1 -
where o(1) does not depend on #. Of course we have
N(t)
11) > a, sin vt = o(n®) + Ot-15n"*) + of1).
v=1

To say the uniform convergence of

za,, sin » ¢,
v=1

it is sufficient to say that
N
2 a, sin vty
v=1
converges as Zy tend to ¢ € [o,7]. If ty tend to ¢ = 0, it is obvious from
the similar argument to (5). If Z» tend to zero, the formula (11) is
h'A

2 a, sin viy= o(n® ty) + Ont3") + o(1)

v=1

-l
and taking # = ¢y &-Y*], we get the desired results.
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