TAUBERIAN THEOREMS FOR RIEMANN SUMMABILITY

GEN-ICHIRÔ SUNOUCHI

(Received February 25, 1953)

1. Introduction. O. Szász [7] has studied Tauberian theorems for summability (R_1) . In his case, the given series are convergent or Abel-summable and his Tauberian conditions are satisfactory. Recently S. Izumi-N. Matsuyama [1] have treated the case where the given series are Cesàro summable. But their conditions are somewhat stringent. In § 2, the author gives better conditions. On the other hand, concerning summability (R, 1), O. Szász [4] [5] has studied the analogous type to his own theorems for summability (R, 1) and L. Schmetterer [2] has studied the analogous type to Izumi-Matsuyama's theorem for summability (R_1) . Since the latter investigation is unsatisfactory, the author gives a better theorem in § 3. These problems are closely connected to the uniform convergence of trigonometrical series. The problem of uniform convergence has been treated by O. Szász [6] and S. Izumi-N. Matsuyama [1]. A related theorem to their investigation is given in § 4.

2. Summability
$$(R_1)$$
. In the series $\sum_{\nu=1}^{\infty} a_{\nu}$, put $S_n = \sum_{\nu=1}^{n} a_{\nu}$. Then if

$$\sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \sin \nu t$$

converges for every t in $0 < t < \delta < 2\pi$, and

$$\lim_{t\to+0}\sum_{\nu=1}^{\infty}\frac{s_{\nu}}{\nu}\sin\nu\,t=s,$$

we call that the series is summable (R_1) to sum s. Then we get the following theorem.

THEOREM 1. In the series $\sum_{\nu=1}^{\infty} a_{\nu}$, if

(1)
$$\sum_{i=1}^{n} s_{\nu} = o(n^{\alpha}), \qquad 0 < \alpha < 1$$

and

(2)
$$\sum_{\nu=n}^{\infty} \left| \frac{a_{\nu}}{\nu} \right| = O(n^{-\alpha}),$$

then the series is summable (R_1) to sum zero.

Proof. If we put

$$\sum_{v=n}^{\infty} \left| \frac{a_v}{v} \right| = r_n,$$

then

$$|a_n| = n(r_n - r_{n+1})$$

and we have

$$\sum_{\nu=1}^{n} \left| a_{\nu} \right| = \sum_{\nu=1}^{n} \nu \left(r_{\nu} - r_{\nu+1} \right)$$

$$= r_{1} + \sum_{\nu=2}^{n} r_{\nu} - n r_{n+1}$$

$$= O\left(\sum_{\nu=1}^{n} \nu^{-\alpha} \right) + nO(n^{-\alpha}) = O(n^{1-\alpha}),$$

by (2). That is

$$(3) s_n = O(n^{1-\alpha}).$$

By this result we get

$$\sum_{\nu=n}^{\infty} \frac{|s_{\nu}|}{\nu^{2}} = \sum_{\nu=n}^{\infty} O\left(\frac{\nu^{1-\alpha}}{\nu^{2}}\right) = \sum_{\nu=n}^{\infty} O(\nu^{-1-\alpha}) = O(n^{-\alpha})$$

and we have

$$(4) \qquad \sum_{\nu=n}^{\infty} \left| \frac{s_{\nu}}{\nu} - \frac{s_{\nu+1}}{\nu+1} \right| = \sum_{\nu=n}^{\infty} \left| \frac{s_{\nu} - s_{\nu+1}}{\nu} + \left(\frac{1}{\nu} - \frac{1}{\nu+1} \right) s_{\nu+1} \right| \\ \leq \sum_{\nu=n}^{\infty} \left| \frac{a_{\nu+1}}{\nu} \right| + \sum_{\nu=n}^{\infty} \frac{|s_{\nu+1}|}{\nu^2} = O(n^{-\alpha}).$$

On the other hand, by Abel's transformation

(5)
$$\sum_{\nu=n}^{m} \frac{s_{\nu}}{\nu} \sin \nu t = \sum_{\nu=n}^{m-1} \left(\frac{s_{\nu}}{\nu} - \frac{s_{\nu+1}}{\nu+1} \right) T_{\nu}(t) + \frac{s_{m}}{m} T_{m}(t) - \frac{s_{n}}{n} T_{n-1}(t),$$

where

$$T_n(t) = \frac{\cos\frac{t}{2} - \cos\left(n + \frac{1}{2}\right)t}{2\sin\frac{t}{2}},$$

hence in the interval $0 < \varepsilon \le t \le 2\pi - \varepsilon$,

$$\left|\sum_{\nu=n}^{m} \frac{s_{\nu}}{\nu} \sin \nu t\right| \leq \varepsilon^{-1} \pi \sum_{\nu=n}^{\infty} \left|\frac{s_{\nu}}{\nu} - \frac{s_{\nu+1}}{\nu+1}\right| + 2\varepsilon^{-1} \pi \left(\frac{|s_{m}|}{m} + \frac{|s_{n}|}{n}\right).$$

Thus the series $\Sigma(s_{\nu}/\nu) \sin \nu t$ is uniformly convergent in $0 < \varepsilon \le t \le 2\pi - \varepsilon$. We write

$$\sum_{\nu=1}^{\infty} \frac{S_{\nu}}{\nu} \sin \nu t = \left(\sum_{\nu=1}^{n} + \sum_{\nu=n+1}^{\infty}\right) \frac{S_{\nu}}{\nu} \sin \nu t$$
$$= u_{1}(t) + u_{2}(t),$$

say. where $n = (t^{-\frac{1}{\alpha}} \mathcal{E}^{-\frac{1}{\alpha}})$. Now, estimating analogously to (5).

$$|u_2(t)| < \pi t^{-1} \left(\sum_{\nu=n+1}^{\infty} \left| \frac{s_{\nu}}{\nu} - \frac{s_{\nu+1}}{\nu+1} \right| + \left| \frac{s_{n+1}}{n+1} \right| \right)$$

$$= t^{-1} O(n^{-\alpha}) = O(t^{-1} t \mathcal{E}) = \mathcal{E} \cdot O(1).$$

As to $u_1(t)$, we have

$$u_1(t) = \sum_{\nu=1}^n \frac{s_{\nu}}{\nu} \sin \nu t = \sum_{\nu=1}^{n-1} S_{\nu} \Delta_{\nu}(t) + S_n \frac{\sin nt}{n} ,$$

where

$$S_n = \sum_{\nu=1}^n s_{\nu}, \quad \Delta_n(t) = \frac{\sin nt}{n} - \frac{\sin (n+1)t}{n+1}.$$

Since

$$\Delta_n(t) = \frac{\sin nt - \sin (n+1)t}{n} + \sin (n+1)t \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= \frac{-2}{n} \cos \frac{(2n+1)t}{2} \sin \frac{t}{2} + \frac{\sin (n+1)t}{n(n+1)} = O\left(\frac{t}{n}\right),$$

we have

$$|u_{1}(t)| \leq \sum_{\nu=1}^{n-1} |S_{\nu}| \cdot 1\Delta_{\nu}(t)| + |S_{n}|/n$$

$$= \sum_{\nu=1}^{n} o(\nu^{\alpha}) O\left(\frac{t}{\nu}\right) + o(n^{\alpha}) \left(\frac{1}{n}\right)$$

$$= t \sum_{\nu=1}^{n-1} o(\nu^{-1+\alpha}) + o(1)$$

$$= t \cdot o(n^{\alpha}) + o(1) = o(t \ t^{-1} \mathcal{E}^{-1}) + o(1) = o(1).$$

Hence if \mathcal{E} is arbitrally small, we have

$$\lim_{t\to+0}\sum_{\nu=1}^{\infty}\frac{s_{\nu}}{\nu}\sin \nu t=0.$$

Thus we get the theorem.

COROLLARY: 1. In the series $\sum_{v=1}^{\infty} a_v$, if

(1)
$$\sum_{\nu=1}^{n} s_{\nu} = o(n^{\alpha}), \qquad (0 < \alpha < 1)$$

(2')
$$\sum_{\nu=n}^{2n} (|a_{\nu}| - a_{\nu}) = O(n^{1-\alpha}),$$

then the series is summable (R_1) to sum zero.

PROOF. Applying Szász's argument [3] to (1) and (2'), we get (2). For the sake of completeness, we shall repeat his argument. If we put

$$v_n = \sum_{\nu=1}^n \nu a_{\nu}, \ (v_0 = s_0 = a_0), \ 1 \le k \le 1 + (n+1)$$

then we have

$$v_n = \sum_{\nu=0}^n (s_n - s_{\nu})$$

and

$$v_{n+k} - v_n = (n+1)(s_{n+k} - s_n) + \sum_{\nu=n+1}^{n+k} (s_{n+k} - s_{\nu})$$

$$\geq -p \cdot n^{2-\alpha} - n^{1-\alpha} p \cdot k \geq -p n^{1-\alpha} (n+k),$$

by (2'), where p is a bound of (2'). Now put

$$n_{\nu} = [n2^{-\nu}] \qquad (\nu = 0, 1, 2, \ldots),$$

so that

$$v_n = \sum_{\nu=0}^{\infty} (v_{n_{\nu}} - v_{n_{\nu+1}})$$

then

$$v_n \ge -pn^{1-\alpha} \sum_{\nu=0}^{\infty} n_{\nu} \ge -pn^{1-\alpha} n \sum_{\nu=1}^{\infty} 2^{-\mu} = 2p n^{2-\alpha}.$$

Under the assumption (1)

$$\sigma_n = \left(\sum_{\nu=1}^n s_{\nu}\right)/n = o(n^{-1+\alpha})$$

and

$$s_n = \frac{v_n}{n+1} + \sigma_n > -2pn^{1-\alpha} + o(n^{-1+\alpha}) > -3pn^{1-\alpha}$$

for large n. On the other hand we have

$$s_n = \sigma_{n+1} + (\sigma_{2n+1} - \sigma_n) - \frac{1}{n+1} \sum_{\nu=1}^{n+1} (s_{n+\nu} - s_n)$$

whence

$$s_n < o(n^{-1+\alpha}) + o(n^{-1+\alpha}) - p n^{1-\alpha} < 2p n^{1-\alpha}$$

for large n. By combining these two inequalities for s_n , we get $s_n = O(n^{1-\alpha})$.

On the other hand, we have

$$\sum_{\nu=n}^{2n} |a_{\nu}| = \sum_{n}^{2n} (|a_{\nu}| - a_{\nu} + s_{2n} - s_{n-1})$$

$$= O(n^{1-\alpha}) + O(n^{1-\alpha}) = O(n^{1-\alpha}).$$

Consequently

$$\sum_{\substack{\nu=n\\2^{k+1}-1}}^{2n} \nu^{-1}|a_{\nu}| \leq n^{-1} \sum_{\nu=n}^{2n} |a_{\nu}| = O(n^{-\alpha}),$$

$$\sum_{\substack{\nu=n\\2^{k}}}^{2k+1} \nu^{-1}|a_{\nu}| = O(2^{-k\alpha})$$

and

$$\sum_{\nu=1}^{2^l} \nu^{-1} |a_{\nu}| = O\left(\sum_{k=0}^l 2^{-k\alpha}\right) = O(1).$$

Hence'lwe have

$$\sum_{\nu=n}^{\infty} \nu^{-1} |a_{\nu}| = \sum_{k=0}^{\infty} \sum_{n=2k \atop n \neq 2k}^{n \cdot 2^{k+1}-1} \nu^{-1} |a_{\nu}| = O\left(n^{-\alpha} \sum_{k=0}^{\infty} 2^{-k\alpha}\right) = O(n^{-\alpha})$$

which is the desired inequality (2).

3. Summability (R, 1). In the series $\sum_{\nu=1}^{\infty} a_{\nu}$, if

$$\sum_{\nu=1}^{\infty} a_{\nu} \frac{\sin \nu t}{\nu t}$$

converges for every t in $0 < t < 2\pi$, and

$$\lim_{t\to 0}\sum_{i=0}^{\infty}a_{\nu}\frac{\sin \nu t}{\nu t}=s,$$

then we say that the series is summable (R,1) to sum s. For the summability (R,1), we get the analogous theorem.

THEOREM 2. In the series $\sum_{\nu=1}^{\infty} a_{\nu}$, if

(6)
$$\sum_{\nu=1}^{n} s_{\nu} = o(n^{\alpha}), \qquad 0 < \alpha < 1$$

and

(7)
$$\sum_{\nu=n}^{\infty} \left| \frac{a_{\nu}}{\nu} \right| = O(n^{-\alpha}),$$

then the series is summable (R,1) to sum zero.

PROOF. The proof is analogous to §2. Since

$$\sum_{\nu=n}^{\infty} \left| \frac{a_{\nu}}{\nu} - \frac{a_{\nu+1}}{\nu+1} \right| \leq 2 \sum_{\nu=n}^{\infty} \left| \frac{a_{\nu}}{\nu} \right| = O(n^{-\alpha}),$$

in the interval $0 < \varepsilon \le t \le 2\pi - \varepsilon$, we have

$$\sum_{\nu=n}^{m} \frac{a_{\nu}}{\nu} \sin \nu t = \sum_{\nu=n}^{m-1} \left| \frac{a_{\nu}}{\nu} - \frac{a_{\nu+1}}{\nu+1} \right| T_{\nu}(t - \frac{a_{m}}{m}) T_{m}(t) - \frac{a_{n}}{n} T_{n-1}(t),$$

hence

$$\left|\sum_{\nu=m}^{m} \frac{a_{\nu}}{\nu} \sin \nu t\right| \leq \varepsilon^{-1} \pi \sum_{\nu=n}^{\infty} \left|\frac{a_{\nu}}{\nu} - \frac{a_{\nu+1}}{\nu+1}\right| + 2 \varepsilon^{-1} \pi \left(\frac{|a_{m}|}{m} + \frac{|a_{n}|}{n}\right)$$

and the series

$$\sum_{\nu=1}^{\infty} \frac{a_{\nu}}{\nu} \sin \nu t$$

converges uniformly in this interval. We write

$$\sum_{\nu=1}^{\infty} \frac{a_{\nu}^{\prime}}{\nu} \frac{\sin \nu t}{t} = \sum_{\nu=1}^{n} + \sum_{\nu=n+1}^{\infty} = u_{1}(t) + u_{2}(t),$$

say, where $n = (t^{-\frac{1}{\alpha}} \mathcal{E}^{-\frac{1}{\alpha}})$. Then

$$|u_2(t)| < \pi t^{-1} \left(\sum_{\nu=n+1}^{\infty} \left| \frac{a_{\nu}}{\nu} - \frac{a_{\nu+1}}{\nu+1} \right| + \left| \frac{a_n}{n+1} \right| \right)$$

$$= t^{-1} O(n^{-\alpha} \mathcal{E}^{-1}) \leq \mathcal{E}.$$

Applying Abel's transformation twice to u_1 (t), we get

$$u_{1}(t) = \sum_{\nu=1}^{n-1} a_{\nu} \frac{\sin \nu t}{\nu t} = \sum_{\nu=1}^{n} S_{\nu} \Delta_{\nu}^{2}(t) + S_{n-1} \Delta_{n}(t) + s_{n} \frac{\sin nt}{nt},$$

where

$$\Delta_n(t) = \frac{\sin nt}{n} - \frac{\sin(n+1)t}{n+1}, \ \Delta_n(t) = \Delta(\Delta_n(t)).$$

Since we have easily

$$\Delta_n(t) = O\left(\frac{t}{n}\right), \qquad \Delta_n^2(t) = O\left(\frac{t}{n}\right),$$

$$|u_1(t)| = \sum_{\nu=1}^{n-1} o(\nu^{\alpha}) O\left(\frac{t}{\nu}\right) + o(n^{\alpha}) O\left(\frac{t}{n}\right) + o(n^{1-\alpha}) O\left(\frac{1}{nt}\right)$$

$$= o(n^{\alpha}t) + o(n^{-1+\alpha}t) + o(n^{-\alpha}t^{-1}) = o(1).$$

Thus we have the desired results.

COROLLARY 2. In the series $\sum_{\nu=1}^{\infty} a_{\nu}$, if

(6)
$$\sum_{\nu=1} s_{\nu} = o(n^{\alpha}) \qquad (o < \alpha < 1)$$

and

(7')
$$\sum_{\nu=n}^{2n} (|a_{\nu}| - a_{\nu}) = O(n^{1-\alpha})$$

then the series is summable (R,1) to sum zero.

The proof is obvious from the proof of Corollary 1. The Corollary 2 is a solution of the problem proposed by Schmetterer [2].

4. Uniform convergence of the trigonometrical series. The problem of uniform convergence of the trigonometrical series is closely related to Riemann summability.

THEOREM 3. If

(8)
$$\sum_{\nu=1}^{n} \nu \, a_{\nu} = o(n^{\alpha}) \qquad (0 < \alpha < 1)$$

and

(9)
$$\sum_{\nu=n}^{\infty} |\Delta a_{\nu}| = O(n^{-\alpha})$$

then the trigonometrical series

$$\sum_{\nu=1}^{\infty} a_{\nu} \sin \nu t$$

converges uniformly in the interval $0 \le t \le \pi$.

Proof. We write

$$\sum_{\nu=1}^{\infty} a_{\nu} \sin \nu t = \sum_{\nu=1}^{n} a_{\nu} \sin \nu t + \sum_{\nu=n+1}^{\infty} a_{\nu} \sin \nu t$$
$$= u_{1}(t) + u_{2}(t),$$

where n is determined in a little moment. If we put

$$t_n = \sum_{\nu=1}^n \nu \ a_{\nu}$$

then

$$u_{1}(t) = \sum_{\nu=1}^{n} a_{\nu} \sin \nu t = \sum_{\nu=1}^{n} \nu a_{\nu} \frac{\sin \nu t}{\nu}$$
$$= \sum_{\nu=1}^{n-1} t_{\nu} \Delta_{\nu}(t) + t_{n} \frac{\sin nt}{n},$$

and

$$\Delta_n(t) = O\left(\frac{t}{n}\right),\,$$

where O is independent on n. From the assumption (8), we have

$$u_1(t) = O\left(\sum_{\nu=1}^{n-1} o\left(\nu^{\alpha} \frac{t}{\nu}\right)\right) + o(n^{\alpha-1})$$

$$= o(n^{\alpha}t) + o(n^{\alpha-1})$$

and

$$u_{2}(t) = \sum_{\nu=n+1}^{\infty} a_{\nu} \sin \nu t$$

$$= -a_{n+1} T_{n}(t) + \sum_{\nu=n+1}^{\infty} \Delta a_{\nu} \cdot T_{\nu}(t)$$

$$= O\left(\frac{|a_{n+1}|}{t} + \frac{1}{t} \sum_{\nu=n+1}^{\infty} |\Delta a_{\nu}|\right)$$

$$= O\left(\frac{1}{t} \sum_{\nu=n+1}^{\infty} |\Delta a_{\nu}|\right)$$

$$= O(t^{-1}n^{-\alpha}).$$

Hence

(10)
$$\sum_{\nu=1}^{\infty} a_{\nu} \sin \nu t = o(n^{\alpha}t) + O(t^{-1}n^{-\alpha}) + o(1),$$

where o(1) does not depend on t. Of course we have

(11)
$$\sum_{\nu=1}^{N(t)} a_{\nu} \sin \nu t = o(n^{\alpha}t) + O(t^{-1}n^{-\alpha}) + o(1).$$

To say the uniform convergence of

$$\sum_{\nu=1}^{\infty} a_{\nu} \sin \nu t,$$

it is sufficient to say that

$$\sum_{\nu=1}^{N} a_{\nu} \sin \nu t_{N}$$

converges as t_N tend to $t \in [0, \pi]$. If t_N tend to $t \neq 0$, it is obvious from the similar argument to (5). If t_N tend to zero, the formula (11) is

$$\sum_{\nu=1}^{N} a_{\nu} \sin \nu t_{N} = o(n^{\alpha} t_{N}) + O(n^{-1}t_{N}^{-1}) + o(1)$$

and taking $n = (t_N^{-1} \mathcal{E}^{-1/\alpha}]$, we get the desired results.

REFERENCES

- [1] S. IZUMI-N. MATSUYAMA, Uniform convergence of trigonometrical series, appear to Journal of Mathematics.
- [2] L. Schmetterer, Taubersche Sätze und trigonometrische Reihen, Sitzungsb. Österreichischen Akad. Wiss., Math. Klasse, 158(1950), 37-59.
- [3] O. SZÁSZ, Convergence properties of Fourier series, Trans. Amer. Math. Soc., 37(1935), 483-500.

- [4] O. Szász, On the convergence and summability of trigonometric series, Amer. Journ. Math., 64(1942), 575-591.
- [5] O. SzAS7, On Abel and Lebesgue summability, Bull. Amer. Math. Soc., 49(1943), 885-893.
- [6] O. Szász, On uniform convergence of trigonometrical series, Bull. Amer. Math. Soc., 50(1944), 856-867.
- [7] O. Szász, Tauberian theorems for summability (R_1), Amer. Journ. Math, 73(1951), 779-791.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY, SENDAI.