ON SOME EXTENDED PRINCIPAL AXIS THEOREMS FOR COMPLETELY CONTINUOUS OPERATORS

M. Nakamura, Z. Takeda and T. Turumaru
(Received September 11, 1953)

1. Introduction For a square matrix A of order n, a classical theorem of Autonne states the existence of unitary U and V for which $U A V$ is diagonal consisting of proper value of $\left(A A^{*}\right)^{1 / 2}$. Autonne's theorem was generalized by Eckart-Young [1], Williamson [4] and Wiegmann [5], who observed the simultaneous diagonalizability of two or more matrices as analogues of the principal axis problems of hermitian and normal matrices.

The purpose of the present note is to generalize their above mentioned theorems for completely continuous operators on a Hilbert space. ${ }^{1)}$
2. Definitions. Let H be a Hilbert space. The separability of the space is not necessary for us, however, we assume it for the notational convenience. After R. Schatten [3], we shall use the symbol $\varphi \times \psi$ for an operator such as

$$
\begin{equation*}
\xi(\varphi \times \psi)=<\xi, \psi>\varphi . \tag{1}
\end{equation*}
$$

It is one-dimensional and so completely continuous. Therefore, their linear combination

$$
\begin{equation*}
a=\sum_{\mathrm{i}=1}^{\infty} \alpha_{i} \varphi_{i} \times \psi_{i} \tag{2}
\end{equation*}
$$

defines a linear completely continuous operator if $\left\{\alpha_{n}\right\}$ is a non-increasing sequence of complex numbers converging to 0 , which are in turn the square roots of proper values of $a a^{*},\left\{\varphi_{i}\right\}$ and $\left\{\psi_{i}\right\}$ are orthonormal sets. Conversely, if a is completely continuous, then it is expressible in (2). This is established in R. Schatten [3]. We shall call it as Schatten's canonical form for a. If $a \geq 0$ (i.e., a is non-negative definite), then (2) becomes the spectral decomposition of a by $\varphi_{i}=\psi_{i}$. Let $\left\{\phi_{i}\right\}$ be a complete orthonormal set in H. An operator a on H will be called diagonal with respect to $\left\{\phi_{i}\right\}$ provided that

$$
\begin{equation*}
a=\sum_{i=1}^{\infty} \alpha_{i} \phi_{i} \times \phi_{i} \tag{3}
\end{equation*}
$$

for a sequence $\left\{\alpha_{i}\right\}$ of complex numbers. If a is diagonal then it is obvious a is normal. For a linear operator b on H, the extended principal axis problem will be called being true if there exists unitary operators u and v such that $u b v$ is diagonal with respect to $\left\{\phi_{i}\right\}$. For a set of operators b_{i}, the problem will be called being true provided that $u b_{i} v$ is diagonal for all i.
3. Theorems The theorems of Autonne, Eckart-Young, Williamson and

[^0]Wiegmann will be generalized as follows:
Theorem 1. The extended principal axis problem is true for a completely continuous operator.

Theorem 2. The extended principal axis problem for two completely continuous operators a and b is true if and only if ab* and $b^{*} a$ 'are normal.

For a special case of Theorem 2, we shall show
Theorem 3. For two completely continuous operators a and b, the extendedly transposed operators uav and ubv are diagonal with real coefficient if and only if $a b^{*}$ and $b^{*} a$ are hermitian.

For three or more operators, Theorems 2 and 3 become
Theorem 4. The extended principal axis problem of a set of completely continuous operators a_{i} is true if and only if $a_{i} a_{j}{ }^{*}$ and $a_{j} a_{i}{ }^{*}$ are normal for each pair of i and j, and $a_{i} a_{j}{ }^{*} a_{i}=a_{k} a_{j}{ }^{*} a_{i}$ for each $\left.(i, j\},\right)$.

Theorem 5. For a set of completely continuous operators a_{i}, there exist unitary operators u ant v such that uave is hermitian and diagonal if and only if $a_{i} a_{i}{ }^{*}$ and $a_{i} a_{j}{ }^{*}$ are hermitian for each pair (i, j).
4. Proof of Theorem 1. Let a be expressed in Schatten's canonical form (2), and let $\left\{\phi_{i}\right\}$ be a complete orthonormal set. After completing $\left\{\varphi_{i}\right\}$ and $\left\{\psi_{i}\right\}$, there exists unitary operators u and v such that $\phi_{i} v^{*}=\varphi_{i}$ and $\phi_{i} u=\phi_{i}$ respectively. Hence,

$$
u a v=u\left(\sum_{i} \alpha_{i} \varphi_{i} \times \psi_{i}\right) v=\sum_{i} \alpha_{i \varphi i} v \times \psi_{i} u^{*}=\sum_{i} \alpha_{i} \phi_{i} \times \phi_{i},
$$

which is desired.
5. Proof of Theorem 3. Since the necessity follows easily, it will be proved only the sufficiency. For this purpose, it can be assumed without loss of generality that a is already diagonal, and positive hermitian by Theorem 1 , since the conditions are unchanged after the transposition: If $a^{\prime}=u a v$ and $b^{\prime}=u b v$ then $a^{\prime} b^{\prime *}=u a v(u b v)^{*}=u a b^{*} u^{*}=u b a^{*} u^{*}=u b v(u a v)^{*}=b^{\prime} a^{\prime *}$ and similarly $a^{\prime *} b^{\prime}=b^{\prime *} a^{\prime}$. Under this assumption, the condition becomes:

$$
\begin{equation*}
a b=b^{*} a, \quad a b^{*}=b a . \tag{4}
\end{equation*}
$$

Let φ be a proper vector of a belonging to a proper value λ. Then (4) implies $\varphi b=\varphi b^{*} a / \lambda$ and $\varphi b^{*}=\varphi b a / \lambda$. This shows, a vector φ from the range E of a is transformed into E again by both b and b^{*}, since E is the linear closure of all characteristic vectors, whence E reduces b, that is, $e b=b e$ and $e b^{*}=b^{*} e$ where e is the projection belonging to E.

At first, we shall suppose $E=H$, and

$$
\begin{equation*}
a=\sum_{i=1}^{\infty} \alpha_{i} \varphi_{i} \times \varphi_{i}=\sum_{i=1}^{\infty} \lambda_{i} e_{i} \tag{5}
\end{equation*}
$$

where $\left\{\varphi_{i}\right\}$ is a complete orthonormal set of $E,\left\{\alpha_{i}\right\}$ and $\left\{\lambda_{i}\right\}$ are (non-negative)
proper values of a, and e_{i} is the projection of E_{i} which is belonging to λ_{i}, (i.e., E_{i} is spanned by finite number of vectors $\varphi_{i_{1}}, \cdots \varphi_{i_{k}}$ which are belonging to the same proper value $\alpha_{i_{1}}=\alpha_{i 2}=\cdots=\alpha_{i_{k}}=\lambda_{i}$). By (4) we have

$$
\begin{equation*}
a^{2} b=a b^{*} a=b a^{2}, a^{2} b^{*}=a b a=b^{*} a^{2} \tag{6}
\end{equation*}
$$

which implies, for each j and k,
(7) $\left.\left.\left.\alpha_{j}{ }^{2}<\varphi_{j} b, \varphi_{k}\right\rangle=<\varphi_{j} b a^{2}, \varphi_{k}>=<\varphi_{j} b, \varphi_{k} a^{2}\right\rangle=\alpha_{k}{ }^{2}<\varphi_{j} b, \varphi_{k}\right\rangle$.

This shows either $\alpha_{j}=\alpha_{k}$ or $\left\langle\varphi_{j} b, \varphi_{l}\right\rangle=0$, if and only if either φ_{j} and φ_{k} belong to the same E_{n}, or $E_{n} b$ is orthogonal to $E_{m}, n \neq m$. Thus, $e_{n} b e_{n}=e_{n} b$ for all n. Similarly, $e_{n} b^{*} e_{n}=e_{n} b^{*}$.

Combining these equalities, we have

$$
\begin{equation*}
e_{n} b=e_{n} e_{n} b=b e_{n}, e_{n} b^{*}=e_{n} b^{*} e_{n}=b^{*} e_{n}, \tag{8}
\end{equation*}
$$

that is, E_{n} reduces b. Multiplying e_{n} from left and right at (4), it is easy to deduce $e_{n} b e_{n}=e_{n} b^{*} e_{n}$. Consequently, the restriction $e_{n} b e_{n}$ of b on E_{n} is hermitean and commutes with $e_{n} a e_{n}$, the restriction of a on E_{n}, since $e_{n} a e_{n}=\lambda_{n} e_{n}$ and scalar on E_{n}. Since $1=e=\sum_{i} e_{i}, a b=b a$ and $b=b^{*}$ by the above. Therefore, applying the principal axis theorem for commuting hermitian operators, there exists u such that $u a u^{*}$ and $u b u^{*}$ is diagonal with respect to the given $\left\{\varphi_{n}\right\}$.

Next, consider the casa $E \neq H$. By the above considerations, we have

$$
\begin{equation*}
a(1-e)=(1-e) a=0,(1-e) b=b(1-e) \tag{9}
\end{equation*}
$$

Putting $a_{1}=e a e, b_{1}=e a e, b_{2}=(1-e) b(1-e)$, there are matrix representation of a and b on $H=E+E^{\perp}$:

$$
a=\left(\begin{array}{ll}
a_{1} & 0 \tag{10}\\
0 & 0
\end{array}\right) \quad, \quad b=\left(\begin{array}{ll}
b_{1} & 0 \\
0 & b_{2}
\end{array}\right) .
$$

By Theorem 1, there are unitary operatos u_{2} and v_{2} such that $u_{2} b_{2} v_{2}$ is diagonal. Let u_{1} be the obtained unitary operator on E as in the preceding paragraph. Put

$$
u=\left(\begin{array}{l}
u_{1} \tag{11}\\
0 \\
0
\end{array} u_{2}\right) \quad, \quad v=\binom{u_{1}{ }^{*} 0}{0}
$$

Then
(12)

$$
u a v=a^{\prime} \quad \text { and } u b v=b^{\prime}
$$

are hermitian and diagonal with respect to $\left\{\varphi_{i}\right\}$ as desired.
5. Proof of Theorem 2. The main feature of the proof is as same as that of Theorem 3. Only a few minor changes are necessary. As in the before, we shall only prove the sufficiency. Again, it is enough to assume that a is positive hermitian.

Let E be the range of a as before. The proof of Theorem 2 that E reduce b must be changed. However, in this case the condition, which is same as (6) by a theorem of I. Kaplansky [2; Theorem 1], implies the range F of a^{2} reduces b. Since a is positive, $E=F$ in our case, and so E reduces b.

The reduction of (8) from (6) is unchanged. Using (8) the normality ${ }^{2)}$ of

[^1]$e b e$ follows from that of $a b$:
(13) $\quad a b b^{*} a=b^{*} a^{2} b=b^{*} b a^{2}$,
multiplying e_{n} from both sides, and by $e=\sum_{n} e_{n}$. The remainder of the proof needs only minor verbal changes.
6. Proof of Theorems 4 and 5. To prove these theorems, it will be sufficient by Theorems 1,2 and 3 that, the restrictions of a_{i} and a_{k} on the range E (with the projection e) of a_{i} which is assumed to be hermitian positive commutes each other. For an example, we shall show this in Theorem 4.

Use the condition $a_{i} a_{j}^{*} a_{k}=a_{k} a_{j}^{*} a_{i}$ for $j=1$. As in $\S 4$, it is not hard to see e_{l} commutes with each a_{i} and a_{k}, where e_{l} is the spectral projection of a_{i}, whence $e_{l} a_{i} e_{l} a_{k} e_{l}=e_{l} a_{k} e_{l} a_{i} e_{l}$. Using $e=\sum_{l} e_{l}$, we have

$$
e a_{i} e \cdot e a_{k} e=e a_{k} \cdot \cdot \cdot e a_{i} e
$$

as desired.
7. Remarks. It is to be noticed, the constructions of u and v shows that Theorems 2 and 3 are true for a completely continuous a and an arbitrary b if the proper vectors of a corresponding non-zero proper value of $\left(a a^{*}\right)^{1 / 2}$ spans H, i. e., 0 is not a proper value of a, since the complete continuity of b is used in H^{\perp}.

Also, it will be remarked that Theorems 1,2 and 3 are still true if a and b are not completely continuous and to have Schatten's canonical form in which the coefficients α_{i} and β_{i} need not converging to zero in general.

Finally, it will be noted, a remark of Wiegmann [6] for the normality of the product of two normal matrices can be carried out for completely continuous operators as follows. If a and b are completely continuous normal operators, then $a b$ is normal (whence $b a$ is normal too by Wiegmann-Kaplansky's theorem) if and only if there exist unitary operators u and v such that $u a v$ and $u b^{*} v$ are diagonal. This easily follows from Theorem 3 and a Theorem of Kaplansky [2; Theorem 1].

REFERENCES

[1] Eckart and G.Young, A principal axis transformation for non-hermitean matrices, Bull. Amer.Math. Soc., 45(1939), pp. 118-121.
[2] I. Kaplansky, Products of normal operators, Duke Math. Jorun., 20 (1953) pp. 257-260.
[3] R. Schatten, A theory of Closs-space, Princeton, (1950).
[4] J. Williamson, Note on a principal axis transformation for non-hermitean matrices, Bull. Amer. Math. Soc., 45(1939), pp. 922-929.
[5] N.A. WIEGMANN, Some analogs of the generalized principal transformation, ibid., 54 (1941), pp. 905-908.
[6] N. A. Wiegmann, A note on infinite normal matrices, Duke Math. Journ., 16(1949), pp. 535-538.

Ôsaka Normal College, ôsaka; Tôhoku University, Sendai and TÔHOKU UNIVERSITY,SENDAI.

[^0]: 1) The material of the note grew under seminar discussions between Misonou, Sakai, Suzuki, Watari and the authors. Especially, Watari pointed out a mistake in earlier stage proof of Theorem 3. The authors express here their hearty thanks.
[^1]: 2) Under a discussion, Misonou tells us a simple proof of this thesis basing on his decomposition theorem for a hyperreducible W^{\star}-algebra.
