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The representation theory of (partially) ordered vector spaces has an
application to the representation theory of commutative B*-algebras. Kadison
has treated this idea [2]. In this respect, we shall notice that the B*-algebra
with the decomposition property is necessarily commuative, which is a
generalization of a commutativity theorem of Sherman [5] and might simplify
the argument such as Kadison’s when we apply the ordered vector space to
the representation theory of B*-algebras. Incidentally different proofs were

obtained, which we shall state in the following. §1 is due to Misonou, §2
to Fukamiya and §3 to Takeda.

1. Theorem and its direct treatment. By a Bx*-algebra, we mean a
Banach algebra possessing a *-operation such as ' x*x; = ,'x 2 It has recently
been proved that every B*-algebra can be represented as a uniformly closed,
self-adjoint algebra of bounded operators on a suitable Hilbert space. Let
A be a B*algebra and H,D be the set of all hermitian elements and
positive hermitian elements in A respectively, then H is an archimedian
ordered vector space by an order relation ¢ < b in H as b —acD. We say
a B*-algebra A satisfies the decomposition property, originally due to F.Riesz,
if for every a such as0 < a < b + ¢ with b and ¢ positive, there exist positive

ay, a. such that a = a; + a,,a;, < b,a, < c. Then we shall prove

THEOREM 1. A B*-algebra A which has an identity e and satisfies the de-
composition property is necessarily commulative.

FirsT ProOF OoF THEOREM. As a preparation, we notice that every
projection p and hermitian operator a on a Hilbert space such that 0<ea
=< p satisfy ap = pa. For, by the assumption, we have 0 < (1 — p)a(1 —p) =0,

which implies a“-‘(l — p)= 0,hence a(l —p)= 0 and a = ap = pa.

Since every element of A can be expressed as a linear combination of
positive elements of A, it is sufficient to prove that ab = ba for every pair
of positive elements @, b < e.

Let B be the B*-subalgebra of A generated by ¢ and e. Then B can
be isomorphically represented to a ring C(Aq) of all continuous function on
the spetrum A, of a. We denote by V the weak closure of an operator
representation of B on a suitable Hilbert space.

Let a(?) be the function corresponding to @ by the function representation
of B on A« Then a(?) can be approximated at each point of A« by a sequence
{s«(2)} of step functions. This means there exists a sequence {s,} of linear
combinations of projections in ¥V which converges strongly to a. Hence, to
prove the theorem it is sufficient to show that & is commutative with each
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projection p in V which is represented to a characteristic function of a
closed interval in A,.

Let I=[t: a<t=<pB)land ¥ = A.NI and p(¢) be the characteristic
function on 7. Then we can find a sequence of positive continuous functions
a.(}) on A, which converges to p(¢) at each point satisfying g.(2) < p(Z). Let
7{t) = 1 — g«(2) then 7,(?) is continuous on A,. We shall denote the elements
of B which are determined by q.(¢) and 7,(¢) as ¢., 7. respectively. Then g,
+ 7a = e. Hence, by the decomposition property of A, there exist positive
b1, byn such that

b= bm -+ b;m, byn = qn, bm = 7n.

Clearly b,, < p, hence pby, = b, by the above remark. Since p(2)b..(¢) conver-
gesto 0 at each point, pb,, converges to 0 strongly. That is, pb,, converges
to pb strongly. Similarly, b,,p converges to bp strongly. This shows pb =
bp. q.e. d.

2. Second Proof due to direct Generalization of Sherman’s IMethod.

In this section, we shall proceed as Krein did and obtain a proof of the
theorem by using the method employed by Sherman for the proof of his
commutativity theorem. An order ideal N in an archimedian ordered vector
space E is a linear subspace such that — ¢ < b < a for some a € N implies
b€ N; an order ideal is a lattice ideal (normal ideal) when the vector space
is a lattice. Every proper order ideal can be extended to a maximal order
ideal. For every maximal order ideal M, the quotient space E/M isisomor-
phic (as a linear and ordered space) to reals. Therefore, the set of all
states on the B*-algebra A (the positive linear normalized functionals on
H) is in one-to-one correspondence with the set of all maximal order ideals
on H: f>N={uc H: flu) =0} (See Kadison [2])

At first, we notice that, if #=w =0, v =w =0and v = 0, then w = 0.
For, as # =0 is equivalent to o(x) = 0 for every state o, huh =0 for every
h € H along with 2 >0. Thus # = w means 0 = vuv = vwv =0, and as a*a

=0 means a = 0, we have w%v = (0. On the other hand, 0 < w’=< wow =
(wv)w = 0 shows w = 0.

LemMa. If Btalgebra A satisfies the decomposition property, then the
maximal order ideal Ny corresponding to an extreme state oy: Ny= {u € H:
o) = 0} has the property that, for every un € H with u= u, —#_, 4, =0,
- =0, u- = u_-u, = 0,either u, or u_ must belong to N,. If u € Ny, both
u. and u- € N,.

This lemma is equivalent to |oy(#)| = oy(|#|) for an extreme state o,.

Proor. Ny = {u: oo(u) =0, u € H} is clearly a maximal order-ideal. To
show the above statement, assume that a # € H be such that both %, and
u-€Nf. Put Ny={v€ H: —(cusr +w)<v=cu, + w, c20, we Ny} If
we have #_ € N,, then it would follow at once, by the decomposition pro-—
perty, #u_- =0, + v, 0, = Clhy, 0, S w, SO0 we would have 00, <cu,, <u-,
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and #.-x_ = 0, thus we have v, = 0 by the above remark. Hence #_ = v, €

Ny, contrary to the assumption, so that z_ ‘€ N,-N, is extended to a maximal
order ideal N’, for which a state = corresponds. It is obvious that both p

=oggAT and « = 20, — p are states and oy = -;(p + 7), which contradicts
to the extremity of oy. Thus #, or #- € N,.

SEcoNnD ProOrF oOF THEOREM 1. From the above lemma we can easily
see, as Sherman did, that the set Ny = {x:0y(x) = 0} for an arbitrary extreme
state oy is a two-sided ideal of A, and o, is an homomorphism from A
onto the complex number field. As oy is arbitrary, A is commutative.

3. Lattice Property of Conjugate Space.

As shown by Sherman [5], all hermitian elements H of a B*-algebra A
constitute a Banach lattice if and only if A is commutative. Then naturally
the conjugate space of H is a complete Banach lattice. On the other hand,
as shown in [6], every real-valued functional on Hof a non-commutative B*-
algebra A is expressed by a difference of two positive functionals of H—
this is easily obtained from the fact that the positive element of H forms
a normal convex cone [1] [4]. Thus the conjugate space of H is of like
nature as a Banach lattice, but not necessarily a Banach lattice. For any
algebra, does this exactly form a Banach lattice? The answer for this
question is

THEOREM 2. The conjugate space of the real Banach space H of all
hermitian elements of a B*-algebra A is a Banach lattice if and only if A is
commutative.

Since Kadison [2] has shown that the conjugate space of H is a Banach
lattice (in fact, a complete lattice)for a B*-algebra with the decomposition
prorerty, this theorem gives the third proof of Theorem 1 as a direct
corollary.

Let O be the state space of a B*-algebra A. By the usual method we
construct a Hilbert space ¥, for every state ¢ in Q and put § the direct
sum of Yo € Q). Then A is isomorphically represented to an operator
algebra A* on$[8]. Let a* betherepresentative operator fora € A and W
be the weak closure of A¥. A canonical state of A* is a state o given by
@ € 9 such as o(a*) = <a*p, >. Considering all finite linear combinations
of canonical states of A which define the same linear functional on A as a
class, we get a space S constructed by all such classes, which can be

regarded as isomorphic to the conjugate space A of A. We denote by {f}

the class in S which corresponds to fin A. A canonical linear functional
ooy On A%* means a linear functional such as oy,y(a¥) = <a¥*p,¥> where
@, ¥ are elements of . Then every class of V contalns a canonical linear

functional, for 2 <a*@;, ¥> can be written as Ealo-l(a*) where «a, is a
=1 =1
complex number and o, is a state on A satisfying ¢; + o for /= #. Then,
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by the definition of 4), there exist . ¥ € £ such as > <atgp, i > = < a¥

i=1
@, ¥ >. Hence if we bundle up as a class all canonical functionals which
belongs to a same class in S, S can be replaced by the totality R of such
classes. Thus every element F of the conjugate space A of A defines a
linear functional on R and the latter gives a bilinear functional on . By
Riesz’s well known lemma F defines an operator w on £ such as F(f) =
<wg, ¢ > for every o,y € {f}. This w is contained in W, because for a
canonical linear functional g defined by ¢(a*) = <a%*a’¢, ¥ > where o/ € A%/,
Fg)= <wdgp, ¥ > = <wp,dpx> = <dwy, ¥> since <atdyp, ¥ > =
<a*@p,a’*yr>. On the contrary every w € W defines a linear functional on A

and this correspondence between A and W is linear, norm preserving. For

HF = sup [i%}k_d z supl?f"/h‘l’>| = w.
(Y] Oy VY (7720 '\If

Let a¥ be a directed set in the unit sphere of A" which converges to w/ w

weakly. Then, as g,y = sup | < a¥gp, ¥ > |,
gk, =1

'F = sup 2 Y>> —gup [i<av/_;v lp > } for every a.
0,y To,y . oy LI <aAwy, >
Hence F|< w' thatis F = w .
By the definition of w, w is a positive operator if and only if F is a

positive functional on A. Thus we get a precise statement of a theorem in
[6].

THEOREM 3. The double conjugate space H of the space H af all hermitian
elements of a Bx-al gebra A is isomorphic as an ordered Banach space to the
space of all hermitian operators of a W*-al gebra W.

Proor oF THEOREM 2. If H is a Banach lattice, H is a complete Banach
lattice, hence by the above theorem, all hermitian operators in W constitute
a vector lattice. Then by S.Sherman’s theorem, W is commutative, hence
A is necessarily commutative.
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