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The representation theory of (partially) ordered vector spaces has an
application to the representation theory of commutative Z?*-algebras. Kadison
has treated this idea [2J. In this respect, we shall notice that the B*-algebra
with the decomposition property is necessarily commuative, which is a
generalization of a commutativity theorem of Sherman [5] and might simplify
the argument such as Kadison's when we apply the ordered vector space to
the representation theory of Z?*-algebras. Incidentally different proofs were
obtained, which we shall state in the following. § 1 is due to Misonou, § 2
to Fukamiya and § 3 to Takeda.

1. Theorem and its direct treatment. By a B*-algebra, we mean a
Banach algebra possessing a ^-operation such as ! x*x \ = ,' x A It has recently
been proved that every B*-algebra can be represented as a uniformly closed,
self-adjoint algebra of bounded operators on a suitable Hubert space. Let
A be a Z?*-algebra and H, D be the set of all hermitian elements and
positive hermitian elements in A respectively, then H is an archimedian
ordered vector space by an order relation atgb in H as b — aζD. We say
a B*-algebra A satisfies the decomposition property, originally due to F. Riesz,
if for every a such as 0 <; a <S b + c with b and c positive, there exist positive
aΊ, a2 such that a = aΊ + aλ, aΊ <^b,a.2<, c. Then we shall prove

THEOREM 1. A Bλ-algebra A tvhich has an identity e and satisfies the de-
composition property is necessarily commutative.

FIRST PROOF OF THEOREM. AS a preparation, we notice that every
projection p and hermitian operator c o n a Hubert space such that 0 <; a
<k p satisfy ap = pa. For, by the assumption, we have 0 <; (1 — p)a(l - ί ) < 0 ,

which implies άHl — p) = 0, hence ail — p) = 0 and a = ap = pa.
Since every element of A can be expressed as a linear combination of

positive elements of A, it is sufficient to prove that ab = ba for every pair
of positive elements a,bSe.

Let B be the Z?*-subalgebra of A generated by a and e. Then B can
be isomorphically represented to a ring C(Λα) of all continuous function on
the spetrum Aa of a. We denote by V the weak closure of an operator
representation of B on a suitable Hubert space.

Let ait) be the function corresponding to a by the function representation
of B on Λa. Then ait) can be approximated at each point of Aa by a sequence
{sn(t)} of step functions. This means there exists a sequence {sn} of linear
combinations of projections in V which converges strongly to a. Hence, to
prove the theorem it is sufficient to show that b is commutative with each
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projection p in V which is represented to a characteristic function of a
closed interval in Aa.

Let / = [ * : a^t^β]3.nά V = Aaf\I and p(t) be the characteristic
function on V. Then we can find a sequence of positive continuous functions
qΛ(ϊ) on Λa which converges to p{t) at each point satisfying qn(t)<p(t). Let
rn{f) = 1 — qn{t) then rn(t) is continuous on An. We shall denote the elements
of B which are determined by qn(t) and rn{t) as qn, rn respectively. Then qΛ

-f rn — e. Hence, by the decomposition property of A3 there exist positive
b\n,b2n such that

b = bln -f ân, #m ̂  qn, bιn <J rn.

Clearly b]n<Lp, hence ^ 2 W = 6m by the above remark. Since p(t)b2n(t) conver-
ges to 0 at each point, pb2n converges to 0 strongly. That is, pbιn converges
to pb strongly. Similarly, blnp converges to bp strongly. This shows pb =
bp. q. e. d.

2. Second Proof due to direct Generalization of Sherman's Method.
In this section, we shall proceed as Krein did and obtain a proof of the

theorem by using the method employed by Sherman for the proof of his
commutativity theorem. An order ideal N in an archimedian ordered vector
space E is a linear subspace such that — a^b^a for some a € N implies
b 6 N; an order ideal is a lattice ideal (normal ideal) when the vector space
is a lattice. Every proper order ideal can be extended to a maximal order
ideal. For every maximal order ideal M, the quotient space E/M is isomor-
phic (as a linear and ordered space) to reals. Therefore, the set of all
states on the £*-algebra A (the positive linear normalized functionals on
H) is in one-to-one correspondence with the set of all maximal order ideals
on H: / -> N = {u € H: f(u) = 0}. (See Kadison [2])

At first, we notice that, if u > w ^ 0, v > w ^ 0 and uv = 0, then w = 0.
For, as u > 0 is equivalent to σ(u) > 0 for every state <T, huh j> 0 for every
h € H along with u > 0. Thus u>w means 0 = vuv > vwv > 0, and as α*α

= 0 means a = 0, we have ίίrz; = 0. On the other hand, 0 < ws g ^PM; =
(wv)w = 0 shows w; = 0.

LEMMA. // B ^-algebra A satisfies the decomposition property, then the
maximal order ideal No corresponding to an extreme state σo'- No = {u € H
σo(u) = 0} /z«s the property that, for every u € H with u~u+— u~, u+ > 0,
^_ > 0, w+ ̂ _ = ^_ w+ = 0, either u+ or u- must belong to No. If u € iV0, ^oίλ
u+ and u- € iV0.

This lemma is equivalent to |cro(w)| = σo(\u\) for an extreme state σ0.
PROOF. i\Γ0 = {u\ σo{u) = 0, u € H} is clearly a maximal order-ideal To

show the above statement, assume that a u € H be such that both w+ and

»- €~iV+. Put Nx^ {ve H: - (cw+ + «;)<; t; ̂  cw+ + to, c > 0, w € -^f}. If
we have u- 6 Nu then it would follow at once, by the decomposition pro-
perty, u- = Vι -f v«y vx % cu+, v2 <ί to, so we would have 0 g ^ < cu+, g u~,
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and u+ u- = 0, thus we have vγ = 0 by the above remark. Hence u- = v2 €
N£, contrary to the assumption, so that u_ "^ Λf. iVi is extended to a maximal
order ideal Λy, for which a state r corresponds. It is obvious that both p

= σ0Λτ and A: = 2cr0 — p are states and er0 = 0 (^ ~*~ τ^? which contradicts
to the extremity of σ0. Thus u+ or «_€ iVIj.

SECOND PROOF OF THEOREM 1. From the above lemma we can easily
see, as Sherman did, that the set No = {x:σo(x) = 0} for an arbitrary extreme
state (T0 is a two-sided ideal of A, and σ0 is an homomorphism from A
onto the complex number field. As σ0 is arbitrary, A is commutative.

3. Lattice Property of Conjugate Space.
As shown by Sherman \5], all hermitian elements H of a £*-algebra A

constitute a Banach lattice if and only if A is commutative. Then naturally
the conjugate space of H is a complete Banach lattice. On the other hand,
as shown in [6], every real-valued functional on Hoi a non-commutative B*-
algebra A is expressed by a difference of two positive functionals of H—
this is easily obtained from the fact that the positive element of H forms
a normal convex cone [1] [4]. Thus the conjugate space of H is of like
nature as a Banach lattice, but not necessarily a Banach lattice. For any
algebra, does this exactly form a Banach lattice? The answer for this
question is

THEOREM 2. The conjugate space of the real Banach space H of all
hermitian elements of a B*-algebra A is a Banach lattice if and only if A is
commutative.

Since Kadison [2] has shown that the conjugate space of H is a Banach
lattice (in fact, a complete lattice) for a J3*-algebra with the decomposition
property, this theorem gives the third proof of Theorem 1 as a direct
corollary.

Let Ω be the state space of a £?*-algebra A. By the usual method we
construct a Hubert space <£)σ for every state σ in ί l and put ξ> the direct
sum of £>σ(σ € ίl). Then A is isomorphically represented to an operator
algebra A* on ξ> [8]. Let <z* be the representative operator for a € A and W
be the weak closure of A*. A canonical state of A* is a state σ given by
φ ^ Q such as σ(Λ*) = <a*φ, φ>. Considering all finite linear combinations
of canonical states of A which define the same linear functional on A as a
class, we get a space S constructed by all such classes, which can be
regarded as isomorphic to the conjugate space A of A. We denote by {/}
the class in S which corresponds to / i n I . A canonical linear functional
σφ,φ on A* means a linear functional such as σ>jψ(tf#) = <a*φ,ψ> where
φ, ψ are elements of £>. Then every class of V contains a canonical linear

functional, for 2 <a*<Pu Ψf> c a n be written a s ^ ^ i W where aτ is a
1 = 1 1=1

complex number and σz is a state on A satisfying σι =1= σv for / Φ /'. Then,
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n

by the definition of £), there exist φ, ψ €Ξ -£) such as 2 Ka^φijψi > = < aw

φ, ψ >. Hence if we bundle up as a class all canonical functionals which
belongs to a same class in S, S can be replaced by the totality R of such
classes. Thus every element F of the conjugate space A of A defines a
linear functional on R and the latter gives a bilinear functional on £). By
Riesz's well known lemma F defines an operator w on •£) such as F(f) =
<Wφ, φ > for every σ>,ψ € {0" This w is contained in W, because for a
canonical linear functional g defined by o(a^) = <aχ*afψ, -ψ > where β' € A41',

= <wafψ, ψ> = <wφ,a'φ*> = <a'ωψ, ψ> since <a^afφ, ψ > =

, a'*ψ>. On the contrary every tt; C W defines a linear functional on A

and this correspondence between A and T^ is linear, norm preserving. For

\\F - sup J ^ ? r ' > s u p - —

Let Λ* be a directed set in the unit sphere of A41 which converges to w/ to
weakly. Then, as σφ,φ = sup | <a®φ,ψ> |,

I1 " # i ^ Ί

Γ!
; sup

φ^ Li
= sup - 1 — — ^ - ^ — - <; sup - - f-^- ••' ' Ύ . w for every a.

Hence \F •] ^\ w \ that is F ^ w .
By the definition of iv, w is a positive operator if and only if F is a

positive functional on A. Thus we get a precise statement of a theorem in
[6].

THEOREM 3. The double conjugate space Hoi the space H af all hermitian
elements of a B*-algebra A is isomorphic as an ordered Banach space to the
space of all hermitian operators of a W*-al gebra W.

PROOF OF THEOREM 2. If H is a Banach lattice, H is a complete Banach
lattice, hence by the above theorem, all hermitian operators in W constitute
a vector lattice. Then by S. Sherman's theorem, W is commutative, hence
A is necessarily commutative.
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