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1. Halphen [Ί] defined a coincidence point of a plane curve in the follow-
ing way. There is a pencil of cubics having 8-point contact with the curve
and with each other at a given point P. These cubics all pass through a
further point H If H coincides with P, then P is called a coincidence point
of the curve. The cubics therefore have 9-point contact with each other at
P, but only 8-point contact with the curve. Halphen [2] also shows that a
necessary and sufficient condition that a simple point P is a coincidence point
is that there is a cubic with a double point at P such that P counts nine
times as an intersection of the curve and the cubic: in general, such a cubic
will have a node at P, one branch having 8-point contact with the curve.

The object of this note is to determine the number of coincidence
points of a curve in terms of its Pliicker numbers. We shall assume that
the curve has no singularities other than nodes or cusps, and we shall not
regard a cusp or an inflexion as a coincidence point.

2. We first consider the case where the curve has no cusps. As a
preliminary result, we find the number of simple points P such that a cubic
through 7 fixed points of the curve, Oh O7, has a node at P. The cubics
through Oh O j form a net, and the nodes lie on the Jacobian of the
net, which is of order 6 and has nodes at Oi, , O7 [3]. Hence the number
of points is 6n — 14.

We now consider the (a, a) correspondence between a point P of the
curve and a point Q where the cubic through 6 fixed points of the curve,
Oι, , O3, and having a node at P meets the curve again. If 7 is the
valency of the correspondence, then we have a = 3n — 8, a = 6n — 14 (from
the last paragraph), 7 = 2. By the Cayley-Brill formula [4], the number of
coincidences is 9n — 22 + 4p. This is therefore the number of points P such
that there is a cubic through Oh , Os which has a node at P, one branch
having 2-poίnt contact at P.

We now consider the (a, a1) correspondence between a point P of the
curve and a point Q where the cubic through 5 fixed points of the curve,
Oi, , Oδ and having a node at P, one branch having 2-point contact,
meets the curve again. We now have a = 3n — 8, a' = 9n — 22 4- 4£, 7 = 3.
Hence the number of coincidences is 12n — 30 4- 10p. This is therefore the
number of points P such that there is a cubic through Oτ, ...., O5 which
has a node at P, one branch having 3-ρoint contact at P.

Proceeding in this way, we arrive at the result that the number of
points P such that there is a cubic with a node at P, one branch having
-8-ρoint contact at P is 27 n — 70 + 70 p. This would include the inflexions,



36 E J.F. PRIMROSE

however, since the inflexional tangent counted three times would be a
degenerate cubic satisfying the conditions. The number of coincidence points
is therefore

27 n - 70 + 70 p - t = 32 m - 40 n.

3. We must now find the modification necessary if the curve has cusps.
If the process described in section 2 is applied to the problem of finding
the number of sextactic points of a curve, it is easy to allow for the number
of cusps: in fact, at each stage the number of cusps has to be subtracted.
In finding the number of coincidence points, however, this method presents*
difficulties. We therefore adopt another method.

We shall show that the dual of a coincidence point is the tangent at a
coincidence point, thus showing that the number of coincidence points is-
self-dual. Now the dual of a coincidence point P of a curve S is a tangent
p to the dual curve Σ such that there is a 3-cusped quartic with p as the
bitangent, which has 8-line contact with Σ at one point of contact.

Now it may be shown (I omit the details, which are rather laborious)
that the points of contact of the bitangent of a 3-cusped quartic are coin-
cidence1 points. Hence there is a cubic with a node at such a point, one
branch having 8-point contact with the 3-cusped quartic there, and therefore
8-point contact with Σ there (since 8-line contact is equivalent to 8-point
contact). It follows that the dual of a coincidence point is the tangent at a
coincidence point.

Let the number of coincidence points be 32 m — 40 n +/(/e). Then it is.
also 32Λ-40wί + /Γκ). Hence 72(m - n) = f{t) - f(κ). But, from one of
Plϋcker's equations, we have 3(m — n) = ι — K. Hence f(κ) -- 24 K, and the
number of coincidence points is 32 m — 40 n + 24 K.

4. With care, the above formula may be applied even for cubic curves.
In this case, of course, the cubic is itself one of the family of cubics having
8-point contact at a point P, so that, at a coincidence point, the family of
cubics have 9-point with the given cubic.

Special mention should be made of the nodal cubic. The formula gives
8 coincidence points. Now if the curve is expressed in the standard form
χ - t, y = t'1, z = 1 + t3, the curve meets any other cubic in nine points U
such that Πti = — 1. If the 9 points coincide, we have t9 = — 1. Ignoring
the 3 roots given by t3 = — 1, which give the inflexions, we have, apparently,
only 6 coincidence points. However, the cubics having 8-point contact with
one branch at the node meet the given cubic 9 times altogether at the node,
so the node counts as two coincidence points, one for each branch. For a
general curve, however, a node does not count as a coincidence point.

The work on coincidence points in Hilton's Plane Algebraic Curves (2nd
edition) needs some modification. The definition of a coincidence point on
p. 254 only applies for a cubic curve, not for curves in general. The result
given in ex. 23, p. 257 is incorrect: the error was presumably caused by
taking the number of coincidence points of a nodal cubic as 6, but in any
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case the method used there is suspect.
I wish to thank Professor Simpson for his great help in connection with

this paper. He has verified the number of coincidence points for a rational
curve, using an entirely different method.
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