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1. Introduction. When we intend to represent a B*-algebra as an operator-
algebra on a Hilbert space H, we must construct the Hilbert space H at
first. In the previous paper [9], we investigated the general method for the
construction of H and especially pursued the space on which a given B*-
algebra is represented as a W*-algebra. In this paper we clarify the relations
between W+-algebras which are generated from C*-representations of a given
Bxalgebra A on various underlying spaces (a C*representation means a
faithful representation as a uniformly closed operator algebra on a certain
Hilbert space). A distinguished state of A with respect to a C*representation
{A%* H}V is a state p which permits an expression

@® p(x) = Z < xtp, @, >

i=1
where x* is the representative operator for ¥ € A and @,(i =1,2,....) are
elements in the underlying space H which satisfy the condition

@ 2 g =1

Let S(A%, H;) and S(A*:, H,) be the sets of all distinguished states with
respect to the C+representations of A on H; and on H. respectively and
M,, M, be the W+algebras generated from these C*representations. Then
the main assertion in this paper is following: If S(A*1, H,) > S(A%3, H.),
there exists a normal homomorphism of M, onto M, and if S(A*%, H;) = S(A%s,
H.), M, is algebraically *-isomorphic to M,. As an application, an alternative
proof of Y.Misonou’s theorem [4] is given in the last section of this paper,
which shows the space-free character of direct product of W+-algebras.

2. Weak closures of operator algebras. For every state p of a B*-
algebra A, we can construct a representation A of A on a Hilbert space
H, by the well known method. By aff we denote the representative operator on
H, for a € A. Let p, o be two states of A and {A% H,}, {A¥ H,} be repre-
sentations of A on Hilbert spaces H, and H, constructed by p and o respec-
tively. If there exists an invariant subspace in A, on which the restriction
of A¥ is unitarily equivalent to the representation {A% H,}, we define an
order for p and o by p > o. Then the set of all distinguished states S(A%*, H)
with respect to a C*representation {A* H} of A has the following properties
[9, Theorem 1]:

(i) S(A* H) is weakly dense in the state space Q of A,

1) The author called it a strongest continuous state with respect to a C*-represen-
tation in the previous [9].
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(ii) S(A*, H) is closed by the norm topology of Q.

(iii) S(A* H) is convex,

(iv) if p € S(A¥ H) and p > o, then o €S(A% H).
Conversely, if a subset S in the state space () satisfies the condition (i)-
(iv), we can construct a C*-representation of A for which the set of all
distinguished states of A coincides with S. Let R be a collection of states
of A and {A;*, H,} be the representation of A by p € R. The representation
{A#¥, Hz} of A by R is the representation on the;direct sum H: of H, (p €
R) which coincides with {A¥, H,} on each component space H,. That is, for
atc At and @or=(....,@p, ..., @p, .- VEHr, (.....p,....,p¢,.... €R)

3) aGpr= (..., a¥p,, ....a¥%p,....) € Hr.

Especially, when R is all states of A, we describe the above representation
by {A-E:i Hﬂ} .

THEOREM 1.2 Let {A™, H}, {A¥2 H,} be two CHrepresentations of a B*-
algebra A on Hilbert spaces H, and H. respectively and M,, M. be the weak
closures of these operator representations, furthermore, S(A*, H,), S(A*: H,)
be the sets of all distinguished states with respect to these C+ryepresentations.
Then there is an algebyaicalx-isomorphism v from M, onto M. such that n(a*1)
= a¥ if and only if S(A%™, H,) = S(A*:, H,).

Proor. Let S, S. be the sets of all normale states of M; and M. respec-
tively. Then, since A*: is weakly dense in M, every state in S(A%*:, H;) can
be uniquely extended to a state in S;, hence S(A¥, H;) can be identified with
S,. Similarly S(A%: F,) is identified with S.. Since the normality of a state
is purely algebraic property, if M; is algebraically x-isomorphic to M, satis-
fying 7(a®*") = ax., S; = Sa». Hence, in this case, S(A% H,) = S(A%: I).

Next, we construct the representation {M¥ 6 Hs} of M, by the set of
states S;. As S; is weakly dense in the state space of M,, this representation
is a Crepresentation of M,. Moreover, as each state ¢ in S, is normal,
the representation {M# 6 A,} of M, by the state & is weakly closed. Hence
M on Hs is weakly closed. For if a directed set m¥, (« € 1) in M¥
converges weakly to my, and mi, = my , a subfamily m(a’ € /') in me
(a € I) converges weakly to m in M, asi M, is weakly closed. Put ¥ be
the image of m in M3, then clearly m¥ = m, We notice the representation
of A is weakly dense in M. Similarlv we construct the representation
{M},, Hs,) of M, by S,, which is weakly closed and contains the represen-
tation of A as a weakly dense subalgebra. If S(A¥, H;) = S(A%: H,), the two
representation of A is unitarily equivalent, hence the weak closure of these
representations of A must be unitarily equivalent each other. That is, M
is unitarily equivalent to M21§2. This assures the algebraic (normal) isomorphism
between M; and M,. q.e.d.

2) This theorem can be considered as an extension of the WECKEN-P1ESSNER-ROKHLIN

Theorem for non-commutative operator algebras. C. . M. NAKAMURA and Z. TAKEDA.

Normal states of commutative operator algebras, this jcurral Vol 5 (1¢53) p.116
Theorem 5 and Proposition 7.
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LEMMA 1. Let M be the wzak closure of a C*-representation A¥ of a B*-
algebra A on a Hilbert space H and o, be a state of A defined by an element
@ of H with norm unity. Then the restriction of M on [Mg], the invariant
subspace spanned by mp (m € M), is unitarily equivalent to the weak closure
of the representation {Afw, H, } of A by the state o,.

Proor. As A¥ is dense in M by the strong topology, for any m € M and
& >0, there exists g* € A% such as | (m — a*)p < & hence [A*p] = [Mp].

A¥ is weakly dense in M on the space [M@]. As the restriction of A#
on [A*g] and the representation of A by the state o, are unitarily equivalent,
the weak closures of these algebras are unitarily equivalent each other.
Hence the lemma is proved.

THEOREM 2. Let {A™ H}, {A%: H.}, My, M., SCA#*\, Hy) and S(A%*:, H,) be
same as in Theorem 1. Then if S(A%, H,) D S(A*2 H,), there exists a normal
homomorphism h from M, onto M, such as h(a*) = a** for all a € A.

Proor. Put S;,S. be the sets of all normal states of M; and M, respec-
tively. Then by Theorem 1, it is sufficient to prove only for the represen-
tations (M}, Hs,) of M, and (M, Hs,) of M: constructed by S, and S,
respectively. As S(A% H,) D S(A%: H,), by Lemma 1 and the constructions
of H, and H, there exists an invariant subspace in Hy on which the re-
striction of the representation (A¥, Hy) of A is unitarily equivalent to the
representation (A¥, Hy,). Since My, My, are weak closures of A¥ and A%
on Hs, and Hs, ,respectively, M#, on Hs, is unitarily equivalent to the
restriction of M on the invariant subspace in Hy,. Thus we get:the desired
conclusion.

CoRrOLLARY. Let W be the weak closure of the representation A% of a B*-
algebra A on the Hilbert space Ho and M be the weak closure of a C*-repre-
sentation A* of A on a Hilbert space K. Then there exists a normal homomor phic
mapping of W onto M.

Thus W is a W+-algebra having a character to be named the universal
weak closure of A. We notice here that the above stated W has been used
in the proof of Sherman’s theorem in [8]. W, considered as a Banach space,
is isomorphic to the double conjugate space of A.

As well known [1],[6], the ring of all bounded operators on a Hilbert
space is isometrically isomorphic as a Banach space to the double conjugate
space of the C*-algebras composed of all completely continuous operators
on that space. Then, does there exist for every W*-algebra a C*-algebra
whose double conjugate space should be isomorphic to the W*-algebra
considered as a Banach space'? The answer is negative even for factors as
shown in the following :

PROPOSITION 1. If a factor considered as a Banach space is isometrically
isomor phic to the double conjugate space of a C*-algebra, the factor is of type
I
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Proor. Let IT be the set of all pure states of a C*-algebra C and M
be the weak closure of the representation (C#, Hy) of C by II. Then by the
definition jof the representation (C¥, Hy), the representation (C¥ H,) by a
state 7 in II can be considered as a restriction of C# on an invariant
subspac2 H, in Hy and the restriction of M on H, is the weak closure of
C¥ As 7 is a pure state, C¥ isirreducible on H, hence the restriction of
M on H, is of type 1. Pute, the projection to the manifold H, and ¢ the
smallest projection in the centre of M such as ¢,<e). Then ¢, € M’ and,
as well known [5], Me, is algebraically x-isomorphic to Me),. Thus Me), is of
type I. As the supremum of ¢2(x € II) is 1, M is of type I

If afactor A as a Banach space is isometrically isomorphic to the double
conjugate space of a C*algebra C, A is isomorphic or anti-isomorphic to
the weak closure W of A on H, [3; Theorem 14]. But as the type of factor
is invariant for anti-isomorphism, we can assume A is isomorphic to W.
Then by Theorem 2 there exists a normal homomorphism of A onto M.
But there is no normal homomorphism except an isomorphism for a factor
since every factor has no non-trivial weakly closed two-sided ideal. Therefore,
if exists such a C*-algebra, A must be of type 1. qg.e.d.

3. Direct product of operator algebras. T.Turumaru has defined the
direct product A, x A, of two C*-algebras A,, A; and has shown the unique-
ness of the product [10]. This means that the algebraical structure of the
product does not depend on the choice of the underlying spaces on which
the component algebras act as operators. For two W#*-algebras A, and A,
on Hilbert spaces H, and H: respectively, the C*-direct product of A, and
A, in the sense of Turumaru can be seen as a C*-algebra on the Hilbert
space H, x H, Hence its weak closure on H; X H; is naturally considered
as a direct product of two W+-algebras A; and A,. In the followings we
denote this product by A; & A,. Recently Y. Misonou has proved that the
algebrical structure of A; @ A. does not depend on the underlying spaces
H, and H. similarly as the C*-algebra case [4]. That is, if A,, A, are repre-
sented as W+-algebras on another Hilbert spaces K, K, respectively, the
direct product A, ® A, on H, x H, is algebriacally *-isomorphic to the
product on K; x K,. As an application of Theorem 1, we give here an alter-
native proof of this theorem. T.Turumaru has given an another proof of
Misonow’s theorem depending on the cross-space theory [10].

Let p and o be states of C*-algebras A and B respectively then p x o
is a state on A x B such as

(p X 0’)(2 a, X b}c) = Zp(ak)a(bk)
k=1 k=1

for elements of the formza,a x b, in A x B [10].
k=1
LEMMA 2. If A, B are C*algebras with 1 and acting on Hilbert spaces
H,K 7respectively, p,o are distinguished states of A on H and of B on K
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respectively, then p X o is a distinguished state of A x B acting on H x K.

Proor. By the definition of the distinguished state, there exist two
sequences {p,} and {y} of elements in H and K respectively satisfying

P(tl)=2<a<pi,q;‘> for ac A andz @ 2=1,
=1 i=1

o) = >, < by, P, > for b€Band > Yy z=1
=1 ~

Then

(p X o) Z a, X b,c) = > p(a)o(be)

n
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< <2a70 X bk)g); X Yo, @i X Py >
’ k=1

As p X o is a state of A x B

PxolxD)= 2D <Xy X ;> = 2> g x Yy =1
i=1 j=1 i=1 j=1
A ® B, the set of all elements of the formza;c x by, is uniformly dense
k=1

in A x B. Hence for every ¢ in A x B,

(p X o)) = ZZ < elgi X ), @i X Yy >

i=1 1 1
That is, p x o is a distinguished state of A x B acting on the Hilbert space
H x K.

LEMMA 3. Let p and o be states of C*-algebras A and B and {A¥, H,},
{B¥ H,} be the representations of A and B by states p and o respectively.
Then the representation of A X B by the state p X o is unitarily equivalent
to the C*-direct product A¥ x B¥ on H, X H,.

When we construct a representation of A by a state o, there exists a
linear mapping from A into the representative space H,. By a’ denote the
image of @ € A by this mapping.

m

"
Proor. For elements > a’, x b, 2 @), x b9, in H, x H,,

i=1

n
<206 ngﬂ Zaei)XbJo > 22< Xb?a’ angbgv>

o =1 i=1 f=1
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= Z < a?p! agp > < b?w bjea > = 2 2 p(a;kai)o-(bjbi)'

i=1 j=1 i=1 j=1

On the other hand,

(p X o) ((;271 a; X by y(% a X bt>>
(p Xa)<<é:af be)(%ai X b; >

fe=1

Il

m n

(p X o) <2 Zaf a; X b;* bb>

i=1 j=1

= > pat ado (bt b

i=1 j=1

I

m n
6
Hence the correspondence (; a; ¥ bi)ane Hyx, to Zaﬂ, x b2, € H, x H, can

be extended to an isometric transformation # between H,., and H, X H,.
Furtheremore, since

m n
£13 £:3 0 0 0 9
< (& x> al % bY,, > a, x b, >
Jj=1

- i=1 n
= < 2 (a)! x Ob)), 2 dl, x b, >
i=1 Jj=1

= 2 2 p(a}‘L xas) g (b}6 _’,Vbi)

=1 j=1

=(p X o) <% é(af xa;) X (b yb,,))

i=1 j=1

o ((Zax ) (Zra o0

i

" m 0 " v
= < (¥ X y)F,)((,(Za,: X bz> ) (2@ X b.i) >,
i=1 pXo Jj=1 pXa
(x X P, = uH(xF x y¥u.

m 7

As the elements of the forms >, (% X Y Zx}f, x ¥% are uniformly dense
i=1 i=1

subalgebra in (A x B )fxq, A¥ x Bl respectively, the proof is easily concluded.

LEmMA 4. If a Hilbert space H is a direct sum of subspaces H, (& € I) and

a Hilbert space K is a direct sum of subspaces Kg (B € J), then the direct

product space H x K is the direct sum of subspaces Hy X Kg (o € I, B € ]).

LEmMA 5. Let R = {p;, (€D} and S = {a;,(j € ])} be collections of states
of a C*-algebra A on a Hilbert space H and of a C*-algebra B on a Hilbert
space K respectively such that the C+algebra A acting on H is unitarily
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equivalent to the representation (A%, Hz) by R [9; Theorem 2] and the C*
algzbra B acting on K is unitarily equivalent to the representation (B¥, Hs) by
S. Denote by R(® S the set of states of A x B which can be expressed as p X
o(p € R, o € S),then the C*-algebra A x B on the Hilbert space H x K is uni-
tarily equivalent to the representation {(A x B)¥qys Hrosy of Ax B by R©® S.

Proor. “As the product space of invariant subspaces in H and in K is
invariant in H x K for the product A x B, the /lemma is evident from
Lemma 3 and Lemma 4.

THEOREM 3. (Misonou [4; Theorem 1]). If A, is a W+algebraon Hilbert
spaces H, and K, and if A.is a W*-algebra on Hilbert spaces H; and K.
Then the direct product A, (X A, of A, and A, on H, x H, is algebraically
x-somorphic to the product of A, and A, on K, x K,.

Proor. Let S(A, H.), S(B,K,) and S(A x B, H, x K;) be the set of all
distinguished states of A acting on H, of B on K; and that of the C*-direct
product A x B on H, X K;.. By Lemma 2 if p € S(4, H)) and o € S(B, K)),
then p X 0 € S(A x B, H, x K,). Hence S(A x B, H, x K,) contains S(A, H;)
® S(B, K;). Thus

S(A x B, H, x K\)D[S(A, H,) ® S(B, K))]
where the bracket means the smallest subset in the state space of A x B

which contains S(A, H,) ® S(B, K,) and satisfies the conditions (ii)-(iv) in the
introduction.

On the other hand, since a state gyxy on A x B such as
Toxp(0)= < x (@ X V), @ X P > forx€ Aand o xi =1
(where o € H,, v € K, ¢ = i =1), is contained in [S(A, H)) ® S(B, K1)l
and by Lemma 5 there exists a collection T of states of the from o,xy in
the state space of A x B such as

[T] = S(A x B,H, x K,), [9; Theorem 2],
we get

S(A x B, H, x K;)[S(A, H) ® S(B, K))].
Hence

S(A x B, H, x K;) = [S(A, H) & S(B, K)].
Since S(A, H) is nothing but the set of all normal states for the W+algebra
A and the normality of a state of a W+-algebra is purely algebraical [2],
S(A, H) ® S(B, K)) is independent to H; and K,. Therefore,
S(A x B, H, x K)) = S(A x B, H; x K,),

Then by Theorem 1, A ® B on’H, x K, is algebraically *-isomorphic to A ®
B on H; x K. q.e.d.
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