ON FUNCTIONS REGULAR IN A HALF-PLANE

Gen-ichirô Sunouchi

(Received July 12, 1956)

1. Let $\varphi(z)$ be an analytic function, regulai for $y>0$, and let

$$
\int_{-\infty}^{\infty}|\boldsymbol{\phi}(x+i y)|^{p} d x \leqq K^{*)} \quad(p>0)
$$

for all value $y>0$. Then we say that $\varphi(z)$ belongs to the class \mathfrak{S}_{p} (= The Hille-Tamarkin Class). E. Hille and J. D. Tamarkin [2], for $p \geqq 1$ and T. Kawata [3], for $1>\boldsymbol{p}>0$, proved the following theorems.

Theorem A. (1) A function $\varphi(z) \in \mathscr{S}_{p}$ tends to a limit function $\varphi(x)$ in the mean of order p, and

$$
\int_{-\infty}^{\infty}|\varphi(x+i y)|^{p} d x \uparrow \int_{-\infty}^{\infty}|\varphi(x)|^{p} d x \quad \text { as } y \downarrow 0
$$

(2) Any $\phi(z) \in \mathfrak{Y}_{p}$ for almost all x tends to its limit function $\varphi(x)$ along any non-tangential path.

Theorem B. A function $\phi(z) \in \mathfrak{S}_{p}$ can be represented as a product $\phi(z)=$ $B(z) \psi(z)$ where $B(z)$ is the Blaschke product and $\psi(z) \in \mathfrak{F}_{p}$ which does not vanish in $y>0$.

Theorem C. If the limit function $\varphi(x) \in L_{p}, 1 \leqq p \leqq \infty$ has a Fourier transform $\Phi(x)$ in $L_{q}(1 \leqq q \leqq \infty)$, then the Poisson integral associated with $\varphi(x)$ can be written in the form

$$
\frac{1}{\pi} \int_{-\infty}^{\infty} \varphi(t) \frac{y d t}{\left(t-x j^{2}+y^{2}\right.}=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{i x t} e^{-y t} \Phi(t) d t
$$

These theorems are counterparts of theorems on functions belonging to class $H_{p}(p>0)$ in a unit circle. Recently D. Waterman [6] proved $\mathfrak{S}_{\nu}(p>1)$ analogue of the Littlewood-Paley and Zygmund theorems. In the present note, the author shows some generalized theorems following on his former paper [5].

We put by the definition

$$
g_{\alpha}^{*}(x) \equiv g_{\alpha}^{*}(x ; \varphi)=\left\{\frac{1}{\pi} \int_{0}^{\infty} y^{2 \alpha} d y \int_{-\infty}^{\infty} \frac{\left|\phi^{\prime}(t+i y)\right|^{2}}{|t-z|^{2 \alpha}} d t\right\}^{1 / 2}
$$

[^0]$$
=\left\{\frac{1}{\pi} \int_{0}^{\infty} y^{2 \alpha} d y \int_{-\infty}^{\infty} \frac{\left|\varphi^{\prime}(x+t+i y)\right|^{2}}{\left(y^{2}+t^{2}\right)^{\alpha}} d t\right\}^{12}
$$

If $\alpha=1$, this reduces to Waterman's $g^{*}(x)$, which is a counterpart of $g^{*}(\theta)$ of Littlewood-Paley. Then we have

Theorem 1. If $\boldsymbol{\varphi}(z) \in \mathfrak{J}_{p}$, then

$$
\int_{-\infty}^{\infty}\left\{g_{\alpha}^{*}(x)\right\}^{p} d x \leqq A_{p, \alpha} \int_{-\infty}^{\infty}|\varphi(x)|^{p} d x
$$

where $\alpha>1 / p$ for $0<p \leqq 2$ and $\alpha>1 / 2$ for $p>2$.
For the proof, we need some lemmas.
Lemma 1. If $\alpha>1 / 2$, then

$$
\int_{-\infty}^{\infty} \frac{d t}{\left(y^{2}+t^{2}\right)^{\alpha}}=O\left(y^{1-2 \alpha}\right) \quad \text { for } y>0
$$

Proof.

$$
\begin{gathered}
\left.\int_{-\infty}^{\infty} \frac{d t}{\left(y^{2}+t^{2}\right)^{\alpha}}=2 \int_{y}^{\infty} \frac{d t}{\left(y^{2}+t^{2}\right)^{\alpha}}=2 \int_{0}^{y}+\int_{y}^{\infty}\right\} \frac{d t}{\left(y^{2}+t^{2}\right)^{\alpha}} \\
=O\left(\int_{0}^{y} \frac{d t}{y^{2 \alpha}}\right)+O\left(\int_{y}^{\infty} \frac{d t}{t^{2 \alpha}}\right)=O\left(y^{1-2 \alpha}\right)
\end{gathered}
$$

Proof of Theorem 1. The case $p=2$. Since $\alpha>1 / 2$, we have

$$
\begin{gathered}
\int_{-\infty}^{\infty}\left\{g_{\alpha}^{*}(x)\right\}^{2} d x=\frac{1}{\pi} \int_{-\infty}^{\infty} d x \int_{0}^{\infty} y^{2 \alpha} d y \int_{-\infty}^{\infty} \frac{\left|\phi^{\prime}(x+t+i y)\right|^{2}}{\left(y^{2}+t^{2}\right)^{\alpha}} d t \\
=\frac{1}{\pi} \int_{0}^{\infty} y^{2 \alpha} d y \int_{-\infty}^{\infty} \frac{d t}{\left(y^{2}+t^{2}\right)^{\alpha}} \int_{-\infty}^{\infty}\left|\phi^{\prime}(x+t+i y)\right|^{2} d x
\end{gathered}
$$

By Theorem C and Parseval's relation, this yields

$$
\begin{aligned}
& =\frac{1}{\pi} \int_{0}^{\infty} y^{2 \alpha} d y \int_{-\infty}^{\infty} \frac{d t}{\left(y^{2}+t^{2}\right)^{\alpha}} \int_{1}^{\infty} x^{2} e^{-y x} \Phi^{2}(x) d x \\
& =\frac{1}{\pi} \int_{0}^{\infty} x^{2} \Phi^{2}(x) d x \int_{0}^{\infty} y^{2 \alpha} e^{-y x} d y \int_{-\infty}^{\infty} \frac{d t}{\left(y^{2}+t^{2}\right)^{\alpha}} \\
& \leqq A \int_{1}^{\infty} x^{2} \Phi^{2}(x) d x \int_{0}^{\infty} y^{2 \alpha} e^{-2 y x y^{1-2 \alpha} d y} \quad \text { (by Lemma 1) } \\
& \leqq B \int_{1}^{\infty} x^{2} \Phi^{2}(x) d x \int_{0}^{\infty} y e^{-2 y x} d y
\end{aligned}
$$

$$
\leqq C \int_{0}^{\infty} x^{2} \Phi^{2}(x) x^{-2} d x=C \int_{0}^{\infty} \Phi^{2}(x) d x=D \int_{-\infty}^{\infty} \phi^{2}(x) d x
$$

Thus we get theorem for the case $p=2$. For the sake of proving the case $0<p<2$, we need a more lemma.

Lemma 2. If $\phi(z) \in \mathfrak{H}_{2}$, and $1<k<2$, then

$$
|\varphi(x+t+i y)| \leqq A_{k} \varphi_{k}^{*}(x)\left\{1+\frac{|t|}{y}\right\}^{1 k}
$$

where

$$
\varphi_{k}^{*}(x)=\left.\left.\sup _{0<|n|<\infty}\left|\frac{1}{h} \int_{0}^{h}\right| \varphi(x+u)\right|^{k} d u\right|^{1 k}
$$

and

$$
\int_{-\infty}^{\infty}\left|\varphi_{k}^{*}(x)\right|^{2} d x \leqq B_{k} \int_{-\infty}^{\infty}|\boldsymbol{\varphi}(x)|^{2} d x .
$$

For the proof, sea Waterman's paper [6].
The case $0<p<2$. In the view of Theorem B, we can suppose that $\phi(z)$ is zero point frea. Put

$$
\psi(z)=\{\varphi(z)\}^{p / 2}
$$

then

$$
\psi(z) \in \mathfrak{F}_{2} .
$$

Since

$$
\phi^{\prime}(z)=\frac{2}{p}\{\psi(z)\}^{\frac{2}{p}-1} \psi^{\prime}(z),
$$

we have

$$
\begin{aligned}
& \left\{g_{\alpha}^{*}(x ; \varphi)\right\}^{2}=\frac{4}{\pi p^{2}} \int_{0}^{\infty} y^{2 \alpha} d y \int_{-\infty}^{\infty} \frac{|\psi(y+t+i y)|^{\left.2^{\prime} \frac{2}{p}-1\right)}\left|\psi^{\prime}(x+t+i y)\right|^{2}}{\left(y^{2}+t^{2}\right)^{\alpha}} d t \\
& \leqq A_{p, k}\left\{\psi_{k}^{*}(x)\right\}^{\frac{2}{p}(2-p)} \int_{0}^{\infty} y^{2 \alpha} d y \int_{-\infty}^{\infty}\left\{1+\frac{|t|}{y}\right\}^{\frac{2}{k}\left(\frac{2}{p}-1\right)} \frac{\left|\psi^{\prime}(x+t+i y)\right|^{2}}{\left(y^{2}+t^{2}\right)^{\alpha}} d t \\
& \leqq A_{p, k}\left\{\psi_{k}^{*}(x)\right\}^{\frac{2(2-p)}{p}} \int_{0}^{\infty} y^{2 \alpha-\frac{2}{k}-\left(\frac{2}{p}-1\right)} d y \int_{-\infty}^{\infty} \frac{\left|\psi^{\prime}(x+t+i y)\right|^{2}}{\left(y^{2}+t^{2}\right)^{\alpha-\frac{1}{k}}\left(\frac{2}{p}-1\right)} d t .
\end{aligned}
$$

If we put $\alpha=(1+\varepsilon) / p(\varepsilon>0), \beta=\alpha-\frac{1}{k}\left(\frac{2}{p}-1\right)$, and take $k(<2)$ near enough to 2 , then

$$
2 \beta-1=\left(\frac{2}{p}-1\right)\left(1-\frac{2}{k}\right)+\frac{2 \varepsilon}{p}>0
$$

whence

$$
\left\{g_{\alpha}^{*}(x ; \varphi)\right\}^{2} \leqq A_{p, k}\left\{\psi_{k}^{*}(x)\right\}^{2^{2}}(2-p)\left\{g_{\beta}^{*}(x ; \psi)\right\}^{2}
$$

Applying Hölder's inequality, the case $p=2$ and Lemma 2, successively

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left\{g_{\alpha}^{*}(x ; \varphi)\right\}^{p} d x \leqq A_{p, k} \int_{-\infty}^{\infty}\left\{\psi_{k}^{*}(x)\right\}^{2-p}\left\{g_{\beta}^{*}(x ; \psi)\right\}^{p} d x \\
\leqq & A_{p, k}\left[\int_{-\infty}^{\infty}\left\{\psi_{k}^{*}(x)\right\}^{2} d x\right]^{(2-p) / 2}\left[\int_{-\infty}^{\infty}\left\{g_{\beta}^{*}(x ; \beta)\right\}^{2} d x\right]^{p / 2} \\
\leqq & A_{p, k} \int_{-\infty}^{\infty}|\psi(x)|^{2} d x \leqq A_{p, k} \int_{-\infty}^{\infty}|\varphi(x)|^{v} d x .
\end{aligned}
$$

Thus we get theorem for the case $0<p<2$. For the case $p>2$, the proof is done by the standard argument of A. Zygmund, [cf. 6]. So we omit the proof.
2. In the present section, we show some applications of the last theorem. If we suppose the limit function $\varphi(x) \in L_{p}(1 \leqq p \leqq \infty)$, and has a Fourier transform $\Phi(x)$ in $L_{q}(1 \leqq q \leqq \infty)$, then

$$
\varphi(z)=\frac{1}{\sqrt{2} \pi} \int_{0}^{\infty} e^{t x t} e^{-y t} \Phi(t) d t, \quad y>0
$$

Put

$$
\sigma^{\alpha}(\omega, x)=\frac{1}{\Gamma(\alpha) \omega^{\alpha}} \int_{0}^{\omega}(\omega-t)^{\alpha} \Phi(t) e^{t x t} d t, \alpha>-1
$$

and

$$
\tau^{\alpha}(\omega, x)=\frac{1}{\Gamma(\alpha-1) \omega^{\alpha}} \int_{0}^{\omega}(\omega-t)^{\alpha-1} t \Phi(t) e^{i x t} d t, \alpha>0
$$

then we get easily

$$
\tau^{\alpha}(\omega, x)=\alpha\left\{\sigma^{\alpha-1}(\omega, x)-\sigma^{\alpha}(\omega, x)\right\}=\omega \frac{d}{d \omega} \sigma^{\alpha}(\omega, x) .
$$

Theorem 2. If $\phi(z) \in \mathfrak{F}_{p}(1<p<\infty)$, then

$$
\int_{-\infty}^{\infty} d x\left\{\int_{0}^{\infty} \frac{\left|\tau^{\alpha}(\omega, x)\right|^{2}}{\omega} d \omega\right\}^{p / 2} \leqq A_{p, \alpha} \int_{-\infty}^{\infty}|\varphi(x)|^{p} d x
$$

where $\alpha>1 / p$ for $1<p<2$, and for $\alpha>1 / 2$ for $2<p<\infty$.
Proof. Since

$$
\phi^{\prime}(x+t+i y)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} i e^{i t u} e^{-y u} u \Phi(u) e^{i x u} d u \quad(y>0)
$$

and

$$
\frac{1}{(y-i t)^{\alpha}}=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} u^{\alpha-1} e^{-u y} e^{i t u} d u \quad(\alpha>0, y>0)
$$

the convolution theorem yields

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{\phi^{\prime}(x+t+i y)}{(y-i t)^{\alpha}} e^{-i t \omega} d t=\frac{\Gamma(\alpha)}{\sqrt{2} \bar{\pi}} \int_{0}^{\omega}(\omega-u)^{\alpha-1} e^{-(\omega-u) y} e^{t x u-y u} u \Phi(u) d u \\
& \left.=\frac{\Gamma(\alpha)}{\sqrt{2 \pi}} e^{-\omega y} \int_{0}^{\omega}(\omega-u)^{\alpha-1} u \Phi^{\prime} u\right) e^{i x u} d u=\frac{\Gamma(\alpha)}{\sqrt{2 \pi}} e^{-\omega y} \omega^{\alpha} \tau^{\alpha}(\omega, x)
\end{aligned}
$$

Applying Parseval's identity, we have

$$
\int_{-\infty}^{\infty} \frac{\left|\varphi^{\prime}(x+t+i y)\right|^{2}}{\left(t^{2}+y^{2}\right)^{\alpha}} d t=\{\Gamma(\alpha)\}^{2} \int_{0}^{\infty} \omega^{2 \alpha}\left\{\tau^{\alpha}(\omega, x)\right\}^{2} e^{-2 \omega y} d \omega
$$

and

$$
\begin{aligned}
& \int_{0}^{\infty} y^{2 \alpha} d y \int_{-\infty}^{\infty} \frac{\left|\phi^{\prime}(x+t+i y)\right|^{2}}{\left(t^{2}+y^{2}\right)^{\alpha}} d t \\
&=A \int_{0}^{\infty} \omega^{2 \alpha}\left|\tau^{\alpha}(\omega, x)\right|^{2} d \omega \int_{0}^{\infty} e^{-2 \omega^{\prime}} y^{2 \alpha+1-1} d y \\
&=A \int_{0}^{\infty} \omega^{2 \alpha}\left|\tau^{\alpha}(\omega, x)\right|^{2} \\
& \geqq B \int_{0}^{\infty} \frac{\mid 2 \alpha+1)}{(2 \omega)^{2 \alpha+1}} d \omega \\
& \frac{\left|\tau^{\alpha}(\omega, x)\right|^{2}}{\omega} d \omega,
\end{aligned}
$$

Thus we get Theorem 2 by Theorem 1 .
From this theorem we can easily deduce a strong summability theorem and an absolute summability theorem, cf. [5].
3. Before proceeding to Theorem 3, we need some preliminary remarks.

Let $X(\alpha, t), t \in(0,1)$ be the Wiener process over $(0,1)$ and $\xi(\alpha, t), t \in$ $(-\infty, \infty)$ be the same process over an infinite range, [cf. Paley, Wiener and Zygmund [4]], then for any $\beta(t) \in L_{2}(-\infty, \infty)$,
(3.1) $\left\{\int_{0}^{1} d \alpha\left|\int_{-\infty}^{\infty} \beta(t) d \xi(\alpha, t)\right|^{2 m}\right\}^{\frac{1}{2 m}}=\left\{\frac{1 \cdot 3.5 \ldots(2 m-1)}{2 m}\right\}^{\frac{1}{2 m}}\left\{\int_{-\infty}^{\infty}|\beta(t)|^{2} d t\right\}^{\frac{1}{2}}$, $m=1,2, \ldots$.
On the other hand, if we write $\widetilde{f(x)}$ for the conjugate function of $f(x)$, then

$$
\begin{equation*}
\int_{-\infty}^{\infty}|\widetilde{f}(x)|^{p} d x \leqq A_{p} \int_{-\infty}^{\infty}|f(x)|^{p} d x, \quad p>1 \tag{3,2}
\end{equation*}
$$

Further let us suppose $f(x, t) \equiv f(x, \cdot)$ be L_{r}-valued and $B_{2 m}$-integrable in the Bochner sense over $-\infty<x<\infty$ and

$$
\int_{-\infty}^{\infty} \widetilde{f(x, t) d \xi(\alpha, t), ~}
$$

be conjugate*) to

$$
\int_{-\infty}^{\infty} f(x, t) d \xi(\alpha, t)
$$

Then (3.2) gives

$$
\int_{-\infty}^{\infty}\left|\int_{-\infty}^{\infty} \widetilde{f}(x, t) d \xi(\alpha, t)\right|^{2 m}\left\{d x \leqq A_{2 m} \int_{-\infty}^{\infty}\left|\int_{-\infty}^{\infty} f(x, t) d \xi(\alpha, t)\right|^{2 m} d x .\right.
$$

Integrating with respect to α,

$$
\int_{0}^{1} d \alpha \int_{-\infty}^{\infty} d x\left|\int_{-\infty}^{\infty} \widetilde{f}(x, t) d \xi(\alpha, t)\right|^{2 m} \leqq A_{2 m} \int_{0}^{1} d \alpha \int_{-\infty}^{\infty} d x\left|\int_{-\infty}^{\infty} f(x, t) d \xi(\alpha, t)\right|^{2 m}
$$

and changing the order of integration and applying (3.1), we have

$$
\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} \widetilde{\left.f(x, t)\right|^{2}} d t\right\}^{\frac{2 m}{2}} d t \leqq A_{2 m} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty}|f(x, t)|^{2} d t\right\}^{2 m}{ }^{2 m} d x
$$

$$
m=1,2, \ldots \ldots
$$

By the device of Boas and Bochner [1], applying generalized M. Riesz's convexity theorem and the conjugacy method, we establish

Theorem 3. If $f(x, \cdot) \in B_{p}\left\{L_{2}\right\}(p>1)$ and $\widetilde{f}(x, \cdot)$ is its conjugate function, then

$$
\int_{-\infty}^{\infty}\left\{\left.\int_{-\infty}^{\infty} \widetilde{f}(x, t)\right|^{2} d t\right\}^{p / 2} d x \leqq B_{p} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty}|f(x, t)|^{2} d t\right\}^{p / 2} d x .
$$

Moreover

$$
\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty}\left|s_{u}(x, t)\right|^{2} d t\right\}^{p, 2} d x \leqq C_{p} \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty}|f(x, t)|^{2} d t\right\}^{p / 2} d x
$$

where

$$
s_{u}(x, t)=\frac{1}{\sqrt{ } 2 \pi} \int_{-u}^{u} F(u, t) e^{i u x} d u
$$

and $F(u, t)$ is the transform of $f(x, t)$, that is

[^1]$$
F(u, t)=1 \underset{\substack{i \rightarrow \infty \\ i \rightarrow \infty \\ i, m}}{\substack{n \\ 2 \pi}} \int_{-1}^{t} f(x, t) e^{-\imath x u} d x .
$$

From this theorem we can prove
Theorem 4. ${ }^{*)}$ Let $f(x) \in L_{p}(1<p<\infty), F(t)$ be its transform and put

$$
\Delta_{n}(x)=\frac{1}{\sqrt{2 \pi}} \int_{2^{n}}^{2^{n+1}} F(t) e^{i x t} d t
$$

then

$$
\int_{-\infty}^{\infty}\left(\sum_{n=0}^{\infty}\left|\Delta_{n}(x)\right|^{2}\right)^{p / 2} d x \leqq C_{p} \int_{-\infty}^{\infty}|f(x)|^{p} d x
$$

Proof. Since

$$
\tau^{1}(\omega, x)=\frac{1}{\omega} \int_{0}^{\omega} t F(t) e^{i x t} d t=\frac{i}{\omega} s^{\prime}(\omega, x)
$$

where $s(\omega, z)$ is $\sigma^{0}(\omega, x)$, we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left\{\sum_{n=0}^{\infty}\left|\tau^{1}\left(2^{n}, x\right)\right|^{2}\right\}^{p / 2} d x \\
& \quad \leqq A_{p} \int_{-\infty}^{\infty}\left\{\sum_{n=0}^{\infty} \frac{1}{\left(2^{n}\right)^{2}}\left|\int_{0}^{2^{n}} t F(t) e^{i x t} d t\right|^{2}\right\}^{p / 2} d x \\
& \quad \leqq B_{v} \int_{-\infty}^{\infty}\left\{\sum_{n=0}^{\infty}\left|\int_{0}^{2^{2^{n}}} t F(t) e^{i x t} d t\right|_{2^{n}}^{2} \frac{2^{2^{n+1}}}{\omega^{3}}\right\}^{p / 2} d x \\
& \quad \leqq C_{p} \int_{-\infty}^{\infty}\left\{\sum_{n=0}^{\infty} \int_{2^{n}}^{2^{2^{n+1}}} 1\right. \\
& \left.\omega^{3}\left|\int_{0}^{\omega} t F(t) e^{t x t} d t\right|^{2} d \omega\right\}^{p / 2} d x \text { (by Theorem 3) } \\
& \quad \leqq C_{p} \int_{-\infty}^{\infty}\left\{\int_{0}^{\infty} \frac{\left|\tau^{1}(\omega, x)\right|^{2}}{\omega} d \omega\right\}^{p / 2} d x .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \left|\sigma\left(2^{n+1}, x\right)-\sigma\left(2^{n}, x\right)\right|^{2} \leqq A\left\{\int_{2^{n}}^{2^{2 n+1}}\left|\frac{d}{d \omega} \sigma(\omega, x)\right| d \omega\right\}^{2} \\
& \leqq B\left\{\int_{2^{n}}^{\underline{\iota}^{n+1}} \omega\left|\frac{d}{d \omega} \sigma(\omega, x)\right|^{2} d \omega\right\}^{1 / 2}\left\{\int_{2^{n}}^{2^{2^{n+1}}} \frac{d \omega}{\omega}\right\}^{1 / 2}
\end{aligned}
$$

[^2]$$
\leqq B\left\{\int_{2^{n}}^{2^{n+1}} \omega\left|\frac{d}{d \omega} \sigma(\omega, x)\right|^{2} d \omega\right\}^{1 / 2} \leqq C \int_{2^{n}}^{2^{n+1}} \frac{\left|\tau^{1}(\omega, x)\right|^{2}}{\omega} d \omega
$$
and
\[

$$
\begin{aligned}
& \left|\Delta_{n}(x)\right|^{2}=\left|s\left(2^{n+1}, x\right)-s\left(2^{n}, x\right)\right|^{2} \\
& \quad \leqq\left|s\left(2^{n+1}, x\right)-\sigma\left(2^{n+1}, x\right)\right|^{2}+\left|s\left(2^{n}, x\right)-\sigma\left(2^{n}, x\right)\right|^{2}+\left|\sigma\left(2^{n+1}, x\right)-\sigma\left(2^{n}, x\right)\right|^{2} .
\end{aligned}
$$
\]

Thus we establish

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left\{\sum_{n=1}^{\infty}\left|\Delta_{n}(x)\right|^{2}\right\}^{p / 2} d x \leqq A_{p} \int_{-\infty}^{\infty}\left\{\sum_{n=0}^{\infty}\left|\tau^{1}\left(2^{n}, x\right)\right|^{2}\right\}^{p / 2} d x \\
& \quad+B_{p} \int_{-\infty}^{\infty}\left\{\int_{0}^{\infty} \frac{\left|\tau^{1}(\omega, x)\right|^{2}}{\omega} d \omega\right\}^{p / 2} d x \\
& \leqq C_{p} \int_{-\infty}^{\infty}|f(x)|^{p} d x
\end{aligned}
$$

This is the required result.

References

[1] R. P. BOAS, JR. AND S. BOCHNER, On a theorem of M. Riesz for Fourier series, Journ. London Math. Soc., 14 (1939), 62-72.
[2] E. Hille and J. D. TAMARKin, On the absolute integrability of Fourier transform, Fund. Math., 25(1935), 329-352.
[3] T. KAWATA, On analytic functions regular in the half-plane (I), Japanese Jonrn. Math., 13(1936), 421-430.
[4] R.E.A.C. Paley, N. Wiener And A. Zygmund, Notes on random functions, Math. Zeitschr., 37(1933), 647-668.
[5] G. SUNOUCHI, Theorems on power series of the class H^{p}, Tôhoku Math. Journ., 8(1950), 125-146.
[6] D. Waterman, Oa functions analytic in a half-plane, Trans. Amer. Math. Soc., 81(1956), 167-194.

Mathematical Institute, Tôhoku University.

[^0]: *) Throughout this paper, $A, B \ldots \ldots$ are constants and may be different from one occurence to another.

[^1]: *) It is sufficient to consider simple functions $f(x, \cdot)$ only for our Theorem 3. Then we may define $\widetilde{f}(x, \cdot)$ as the function whose transform is $-i F(x, \cdot) \operatorname{sgn} x$, where $F(x, \cdot)$ is the transform of $f(x, \cdot)$.

[^2]: *) This Theorem was stated without proof by D. L. Guy, Weighted p-norms and Fourier transforms (Preliminary report), Bull. Amer. Math. Soc, 62(1956) p. 159, but my paper is independent of his result.

