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1. Introduction. In a given series
oo

dn — ^ j (*n \UQ — \J)}

ΐf » = l

Jl, sin nt ( . ^n λ
(1.1) 2 Sn ~~^Γ (where sn = 2 β -)

converges for every value of t (0 < t < δ <i 27r), and

2 ^ sin /2̂
lim ^. sw — s,

then we call that the series Σan is summable {Rx) to s, and write

Similarly, we call that the series Σβn is summable (R,l) to s, and write
2 «» = 5 (/?, 1), if the series

(1.2) 2 « » S i n

w f
converges for every value of t (0 < t < 8 <! 27r), and

The summabilities (/?!) and (R, 1) have been studied by many writers,
O.Szasz [4,5,6,7], G.Sunouchi [1], H.Hirokawa (and G.Sunouchi [3] and
others. In this note we shall unify and extend the theorems due to the above
writers. Generally speaking, the Riemann summabilities are near to the
convergence of series and so Tauberian conditions of the above authors may
be replaced by the conditions on s~s (s > 0), which will be defined in a moment.

We denote by si the n-th Cesaro sum of order γ of the series 2 an, i. e.

where A* is denned by the identity
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for all real 7, then particularly we have s£ = 0, s°n = sn and

We restrict each #w to be real throughout this paper.

THEOREM 1. Let r > 0, 0 < s < 1 (or s = 1,2, . . . . ) , βwrf

(a) ±

and

(b) 1 2
?W = 0(i?τ). Indeed the series (1.1) converges uniformly in 0 $ / <;7r.

THEOREM 2. Under the same assumptions as Theorem 1, Σflfo = 0 (/?, 1).
Moreover, the series (1.2; converges uniformly in Q ̂ Lt^π if and only if

sinntTT J, ±1 / sin nt \ si

converges. Here we suppose that — — = hm
** \ nt Jt=o ί̂ o

= 1.

2. Preliminary lemmas. We require a number of lemmas.

LEMMA 1. If a > 0 <z;2£/ &n ̂  0 then we have the following equivalent
relations .

a) 2 - 7 = ° '«") ** 2 »' = o(»β+1),
1 M+l

w+1

2n

2 w" = o(w-α) ^ 2 »" = o(w-αx
Λ M + l

->oo. O WZΛJV ^ replaced by o, and conversely.

We prove (I). Clearly, the latter equation follows from the former.
Inversely, if the latter holds then

n + ι

Hence, taking the integer k such as 2te~1 <; n < 2fc,
n n [n/2"l [»/2%~^

2 ~ = 2 + 2 +....+ 2
1 [n/2]+l LιMl+1 rn/2*!+i

+ + (»/2») J + G
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< βn« + G (n> n0),

where G = 2 , l i Uvlv * s a constant depending on n0. From this follows the

former, and (I) is proved. The proofs of (II), (III) and (IV) are analogous.

LEMMA 2.1. Let r > 0, - 1 < b < a + r, C > 0 and H>0. If

(2.1) sζ = *(**) («->«>),

(2.2) sw+w — sw > — Cna for m = 1,2, .. .., [Hn] (n > w0),

then

(2.3) sn = O(rcα) (w -> oo),

#?2ύ? S£ = o ( w α c l " ' A / r ) + ^ / r ) (W ->• oo),

/br βz ̂ r^ μ such that 0 < μ < r.

This lemma is due to Prof. S. Izumi. He pointed out that this may be
obtained immediately by replacing the condition sn+m — sn > —Kn" m in
Theorem 6 of L. S. Bosanquet [9] by sn+m — sn> —KnΛ, and the proof is quite
analogous as the Theorem 6.

Lemma 2.1 is an improvement of the well-known convexity theorem due
to Dixson and Ferrar [8] (cf. G. Sunouchi [2]). It must be noticed that (2. 3)
is a result from the two conditions (2.1) and (2.2).

LEMMA 2. Let r > 0,s > 0 and 0 < a <; 1. Then, the two conditions (a)
and (b) in Theorem 1 imply the following relations .

(2.4) s\+r = o(n1+r")

n . .

(2.5) 2 "V" = °( '̂α).
1

(2.6) s^-s = O ( ^ - s α ) ,

(2.8) 2 — =
(2.9) 2 IVI = 0{nl~**) (sa < 1),

1

tfS W - > oo.

Indeed, (2.4) follows immediately from (a). (2.5) does from (a; and
Lemma 1. Next, from (b) we have

(2.10) sι'+
s

m - sι

n'
s > -CnL-s" for m = 1,2, . . . . , n (n > n0).

Hence, applying Lemma 2.1 to (2.4) and (2.10) we have (2.6) and (2.7;, and

then (b) is equivalent to
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which yields (2.8) and (2.9) by Lemma 1.

3. Proof of Theorem 1. We denote by the capital letter S* the n-th
partial sum of the series (1.1), then

From the identity

we have

n n v
Tj _ ^ s eivu = y eiuu y As-ι s-s

n — UU μ J-J ' \ v-μ. μ. >

and

(3.1) sn=$ϊ(l Undu\= —$t( I Undu\
\J / \J /

0 t

Changing the order of summation we get, in the case 0 < s < 1
n n

// — ^ c~~s /?ψW y / l s ~ l /y' (yV — μ)u
—' ^ μ, ^ -ί^Ί —μ, *>

= Σ ; *""(Σ- J j
i.e.

(3.2) ί/Λ = (1 - ^ w ) - 5 2 V s £ ί μ w - O»»

where
n oo m Ϊ7.

Here, we define m such as

(3. 3; n-m=- [Sn«] (θ < S < 1/2).

If s is an integer, then applying Abel's transformation s times to

On = 2 l = i s " e i v u w e s e e easily that

(3.4) Qn = 2 s\'s (1 - e<«)-> β<c»+i)«.

If 0 < s < 1, then by AbeΓs^transformation

Γ m m

Q'n = (l - β «)-i 2 s;5 2 ^:;*"" + Σ Λ'»-V s ; s *ί(M+J)ω I
*- / 4 = 1 1 = W - 4 - l II. = 1 -»
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n oo n

π>, "^Π 1 * *^""* Λ c 9 t ., 1 c % Π /,„ , k

and by (2.6) and (2.9) in Lemma 2

(3.5) sΛ~s = O(nι-Scύ) and 2 IVI

Therefore, integrating by parts

Qndu = 2 s ; s 2 Af'-M ( 1 - «">

+ -SΆ-1*- ί 1-

2 I s ;' I Σ \A' r-l\(vt^

= 0 ( 2 !s-°\(nrrι(n + 1 - μΓ1 ) + θ((w - m)"Knt)-^ \s~
V / μ=l

XSn*)'-1 n1-*") by (3.3), (3.5),
5 ' 1 (n«tYι\

Similarly, integrating by parts and observing that m ~~ n we have

o

μ=m+l

+ Odsi-lwKΛ - w)') + 0{\s\-s\lnts)

= 0{nl-s«n-l{n - ra)s) + O(nι-°"/nt8) by (3. 5),

= O(n-**(€n")') + O(n«t)-8 by (3. 3j,
= OΓθ ) + O(n«t)-S.

Thus, when 0 < s < 1 we have

(3.6) J G» <fo = O(n«ty8
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When s is an integer, from (3.4) and from s}~J = O(nι-i*) for / = 1,2,
,s, which is (2.6) and (2.7χin Lemma 2, it follows

It

Qndu=.

Further, we see that by 2 J = n I S Γ'/^ = O(»"*") which is (2.8),

(1-e**)- 2 s^e^du = θ( 2 —?M = O(*ff)"

for every integer £ > 0. Hence, by (3.1) and (3.2) it holds

(3.7) S w - Sn = O'κn*tY* + 9*( / (Q»+i' - O») ^«)»

for every p > 0. Now, we put

r, _ ^ . s in v t

Then by (3.7), (3.6) and (3.6)' we have

Oin"trs + 0{εs-\natγί) + 0{εη (0 < s < l)

(3.8) Rn=
2 O ( « - / ) - J ( s = 1,2, . . . . ) ,

where O's are uniform in 0 < t < 2τr. In particular, (3. 8) shows that the
series (1.1) converges uniformly in 0 < S <Ξ t < 2τr — δ.

Next, from the expression (3.2) of Un replaced s by — r we have

where

Clearly, integrating by parts and using 2μ-ι I sjl I/A* = o(ΛrΛ) which is (2.5)

in Lemma 2, we have

/

n n

(1 - β<tt)r 2 s

μ β<μtf rf« = O ί Γ 2
and then

— - ) = oinH

(3.9) J Undu^ o(n«ty - f Pndu.
0 0

Here, we suppose that r is not an integer, since the case r an integer
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may be proved by the same arguments. Applying Abel's transformation
successively [r] + 1 times to the second sum of Pn we have

n oo [ r]

(3.10) Pn = (1 - eiu)[r]+1 2 s; ^ A>;%reivu - 2 si+1d ~ O ' eu"" I)U.

Concerning the first term of the last expression

( i _ β y r π i ( 2 + 2 ) = p,; + p ;

say, where we define m such as

(3.3/ w - m - [«α/2]
Then again by Abel's transformation

m m

i s'- 2 Aί ί-/-1 β"» + SΪ 2 Airi

Observing that
n

(3.11) 2 isμl = o{n1+r") and s;+r = o(n1+r"),
μ = l

which is (a)-'and (2.4) in Le nma 2, we have

f Pndu= 2 s ; Σ Aΐ-T

"-v r 5 μ I ( i - e < ί t ) ' L r l β i C κ

i

i^r 1 !*" '/") + 0 ( 2 ^ι»V κ\t^-in\

m

μ-l ^

since w - m - [n«/2] by (3. 3)r. Again, using (3. 3)' and (3.11)

Q μ = m + l t- = W + l

= ° f 2 i5^ r i i [ r 3 + 1 w - # 1 ( w + 1 -
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+ (K\s£r\frt+in-ι(n -my>-r+1) + O(\s'n
+r\tr/n)

+ o(?2ι+m zfM+1 w-̂ w — m)ίr]-r+ι) + o{n]+raf'ln)

Further, observing that s1/** = oifi1***-*) for — s < μ <; r, which is (2.7) in
Lemma 2, we have

o
Hence using (3.9), (3.10) and (3.1) we get

where o's are uniform in 0 ̂  t ^ 7r.
Here also we may suppose that 0 < 5 < 1 since the conclusion is un-

changed when 5 is an integer. Then, from (3.12) and (3. 8) it follows

\sn\ < εr+2[(naty + *Σ(n*ty]

and (n > n0),

\Rn\ < C[{natrs -f S°-Hn°trι + ε8]
for all values of t such as 0 < t <Ξ 7r, where <? = f («0) > 0 is arbitrary and C
is an absolute constant.

Therefore for a fixed n > n0, if £ > !/#*£ then

and if t < l/n»S then from the identity Rn = (S» - S.) + i??«, where
m = [fl/£ί)1/α], and from the above inequalities for the absolute value of SΛ

and Rn we have

|Λ,| < 2(r + 3)6 + 3C6'.

Hence, the series (1.1) converges uniformly in 0 < t f£ 7r, and so does in 0 ^
ί ^ 7r, since its terms are continuous in this closed interval. Thus the theorem
is established completely.

4. Proof of Theorem 2. We denote by S'n the n-th partial sum of the
series (1.2), and by R'n the remainder. Then, by AbePs transformation

, sin (n + l)t ^

and
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sin (n -f ht . ^ ,

where

υ

We see that the series Sw + i?^ converges uniformly in 0 < t <Ξ 7r by the same
arguments as the proof of Theorem 1, and in particular 2 an = 0 (/?, 1; since,
observing that sn = O^n1-") by (2.6) in Lemma 2,

when t~l/n"S, i.e, :w = |Yl

Further, clearly by the arguments used at the end of the last article
the series (1.2; converges uniformly in 0 <Ξ / < 7r if and only if

m(w + l)ί = o l ) uniformly in this interval,
\fl -\~ JL)t

which is equivalent to sn = o(l). Thus, we get the theorem.

5. Corollaries. We consider again the two series

/i IN ^? sinnt J /i o ^ sinw^

COROLLARY 1. Let 0 < α: < 1 #/z<i r > 0. //

sr

n = oίwrβ) and ^?\aμ\/v=^ Oίrr*) (n-• oo),

and ^an = 0(i?, 1).

This follows from Theorems 1,2 and Lemma 1. This is due to H. Hirokawa
and G. Sunouchi [3], of which the case r = 1 does to G. Sunouchi [1].

COROLLARY 2. If Σan is summable (C, 1 — δ) for some positive 8 < 1,

^ 2 ^ = i Is^δl ^ O^n1'8), then the series Σan is summable (Rγ) and (/?, 1)

This is due to O.Szasz [6,7]
For the sake of simplicity we assumed that aQ = 0 and σ- = 0 in Σan = cr

(i?i). But, generally when βo-σΦO also Theorems 1 and 2 are valid
provided that (1.1), (1.2) and ^ are replaced by

. 2 «̂ -t , v sin nt. ' ^ sin wί J y >ι v

cr H 2 ( s ? ι ~ °") > σ + 2 Λ n Γ" a S» ~ n<T

17 w=i n n-i W ί

respectively. Thus, the above Corollary 2 f̂ollows from Theorems 1 and 2
when r = 1 — δ, s = δ and a = 1.
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COROLLARY 3. If 2 an converges and

2a

(5.1) 2 (I a, I - av) = 0(1) (» -> oo),

/te series (1.1) <z#<i (1.2) converge uniformly in (0, 7r).

This is due to O. Szasz [5,7], and follows from Theorems 1 and 2 when
5 = 1 and # = 1.

COROLLARY 4. #" 2 α?i is summable in Abel sense and (5.1) holds, then
(1.1) converges uniformly in (0, π).

This follows immediately from Theorem 1 with r = s = α: = 1 and the
following lemma due to O. Szasz [4]:

LEMMA 3. If 2 <zn zs summable in Abels sense and (5.1) ί̂?/ύ?5, then 2 «»
is summable (C, 1) ίo ί̂ ^ SUT^^ sum. And, moreover sn = 0(1).

The last corollary holds for arbitrary s > 0:

COROLLARY 5. Theorems 1 and 2 holds also if Σan = 0 (A) flwd //'/OT' some
positive s

(5.2) 2 d s ; s l - Vs) = O(n*-) (n -»• oo).

Moreover, the series (1. 2) converges uniformly in (0; 7r) zί ̂ / ί s > 1.

For the proof, when 0 < s < 1 it is sufficient to show that 2«/» = 0 (A)

and (5. 2) imply 2 #» = 0 (Cj, and the case 5 = 1 is immediate by Lemma 3.

In the case 0 < s < 1, (5. 2; implies

(5. 3) sl-s > - On1'8, C> 0,

by Lemma 1 since 1 — s > 0.

On the other hand, letting σ-J-* = sι

n'
s/A^-s we see that by a theorem due

to O. Szasz [10], 2 anx
n = o(ΐ) implies

a - *) 2 o i" «" = "(I) (*-» i-o),

which and σ-.̂ "* > — C yield

And, this is equivalent to σl's = ofl; by the well-known relation between
Cesaro's summability and Holder's. Hence, in this case ^an = C(A) and (5.2)
imply σi" ' = o(l).

Next, we suppose that 1 < s <: 2. Then, applying Lemma 1, (IV) to (5.2)
we get

(5.4) s]r+% - s\-s > - On*- for n > nΰf p = 1,2, . . . . ,

which implies the existence of lims1^*, and this limit must vanish by the
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condition 2 CM? = 0(1) which is equivalent to

(1 - xY's 2 slnsxn = o(l) (x-* 1 - 0).

Hence, again from (5.4) we see in turn that s£-* <Ξ Cw1-*, i.e. s-c-v <i
Cn-v-v, and

Σ (Is;'8"1'! + s^5"") = Ofa1-*"0) (o<s-isi).
v= n

Thus, the above case is reduced to the case 0 < s <; 1, and so on.
Further, applying Lemma 2.1 to (5. 4) and 2 ^ = 0 (C) we see that sn =

0(1) when s > 1. Hence, we get the corollary.

6. THEOREM 3. (I) If

(6.1) — X M =
n v~x

and if for two some positive s and 8 < 1

\,~s\ — Sy~s) = O(n~δ) (n —> oo),

- 2n

2v=n+l

then ^an = 0(i?,), #WU? indeed the series (1.1) converges uniformly in (0,τr).
(II) Under the same assumptions as in (I) 2 #»» = 0 (/?, 1), U:WJ moreover

the series (1. 2) converges uniformly in (0, TΓ) 2/ dmd 0^/y z/ 2 tfra converges.

Here, we notice that s may be as large as we wish.
In fact, (6.1) yields ŝ  = o(n). On the other hand, letting 8 = sα we may

suppose that α is small and 0 < a < 1 since 8 may be replaced by any
smaller positive number. Then, s\ = o(n) and (6. 2) imply

n

(6.3) ŝ - = Oin1'8*) and V | S ; S | = O(nι-'«)
i/ = l

by Lemmas 1 and 2.1 since 1— sα = l — δ > 0 . Further, in these circum-
stances we may suppose that 5 is an integer, for (6. 3) implies

σα') and

for every σ and αr such that σ > s and σa! ~ sa ~ δ, and of course 0 < cd
< 1

Hence, observing that (6. 3) implies (2. 6), (2.7), (2. 8) and (2.9) in Lemma
2 we have (3. 8; in the proof of Theorem 1, i. e.

(6.4) Rn = 2 s* ^ ^ = 2

where O's are uniform in 0 < t ^ TΓ.
Now, we proceed our arguments by O. Szasz's method which was used
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to prove Theorem 5, [5J. Observing that (6.1) is equivalent to 2,,.i I5»Ί ~

o(n/logn) as (I) in Lemma 1, let
n

(6. 5) 2 1SΛ < &n/log n (n > n0),

where £ > 0 is given. And, we define the number λ = \(n, t) such that

(6.6) λ - 1 + l/8nt,

corresponding to n > n0 and positive i <Ξ mr.

Letting m = [w1/*], we have from (6.4) Rm = 2*_i O'mtYK On the other

hand, if λ < 2 then (6. 6) yields (nt)-1 < 8, and so

(6.7) R
m
 -

If λ ̂  2 then dividing R
n
 into three parts

ΠΛ no oo

R = 2 + Σ + Σ = R' +
rt+l ?2i + l W2+I

where Wj = [λn] and ^ 2 = [nf*9*-11^], we have

IΛ'l S * 2 Is*K ^ a »i/ l o s wι ^ a -1)?*
n+l ^ '

since λ >̂ 2. And

IΛ"K 2 1**1/*
Wl + l

Applying AbeΓs transformation to the right hand side we see easily that by
(6.5)

\R'\ < £2 log (log n2/log nd + ε^/log w3,

from which we have by the definition of nL and n 2

\R"\ < ε + ε*.
Further, from (6. 4) it follows

s s

R'» = 2 0{n«tr - 2 O(̂ ) = 0(8),

by the definition of ^ 2 provided that cte11* > 1. Hence, i?^ - 0(6) for w > n0.
From this and (6.7) we see that Rn = 0;<9j for n>mύ~ [n]i*] uniformly

in 0 < t g 7r when α^1/e > 1. This proves (I). The proof of (II) is analogous
as above and the proof of Theorem 2.

COROLLARY 6. If 2 ,=i IS Ί = o(n/logn), and if for some poistiυe δ < 1,

(6.8) Σ ( l * l - * ) = (»1"') («-* oo),
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then Σan^0 (Rτ) and 2 an = 0 (R, 1)

This is a theorem of O. Szasz [4] when (6. 8) is replaced by 2 " - w I*7"' =

7. REMARK. Disregarding the uniformity of convergence we have in the
place of Theorems 1 and 2 the following theorem not depending on the value
of s > 0, the case a = 1 is Corollary 5.

THEOREM 4. Let r > 0, s > 0 αwd 0 < a < 1. 7/"

and

1 ^ n ,ι Λ

n VT^+1

 v

then Σ an = 0(/?Ί) «w</ Xβ« = 0(i?, 1).

Finally, I wish to express my heartfelt gratitude to Professors S. Izumi,
G. Sunouchi and Mr. H. Hirokawa for their suggestions and kind advices.
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