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1. Introduction. In a given series

. Zan = Z Gn (aU = 0)1
if n=1

1) > s Slr;lm (where Su= ay)
n=1 v=0

converges for every value of ¢ (0 < < 8 =2w), and

2 <  sinnt
lim ~ s, =s
n=1

1>+0 T n

then we call that the series 3 a» is summable (R,) to s, and write
S an = s (Ry).

Similarly, we call that the series 3 a, is summable (R,1) to s, and write
S an = s(R, 1), if the series

- sinnt
(1.2) X,

-1

converges for every value of £ (0 < ¢ < 8 <2w), and

. sin nt

11;11(1) E n nt =3

The summabilities (R;) and (R,1) have been studied by many writers,
0.Szasz [4,5,6,7], G.Sunouchi [1], H.Hirokawa land G.Sunouchi [3] and
others. In this note we shall unify and extend the theorems due to the above
writers. Generally speaking, the Riemann summabilities are near to the
convergence of series and so Tauberian conditions of the above authors may
be replaced by the conditions on s;* (s > 0), which will be defined in 2 moment.

We denote by s? the n-th Cesaro sum of order 7y of the series I as, i.e.

n
st= XA a, (ay=0),
v=0

where A} is defined by the identity

(1—mrt= > A2 (lx] < 1),

n=0
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for all real v, then paritcularly we have s} = 0, s) = s, and
S71=@n, Sl = Guer — Gn = —Aan.
We restrict each a, to be real throughout this paper.

THEOREM 1. Zet 7 >0, 0<s<1l(ors=12,....), and 0<a<1.
I

1 n
(2) 2 I8l = o) (n— o),
v=1
and
(b) % 2 (Is;%] — ;%) = O(n=*%) (7 — ),
v=n+1l

then San = 0(R,). Indeed the series (1.1) converges uniformly in 0 <t <.

THEOREM 2. Under the same assumptions as Theorem 1, Sa, = 0(R,1).
Moreover, the series (1.2) converges uniformly in 0 <t <7 if and only if Sa,

sinm‘> . sinnt 1
t=0_ t=>0 -

converges. Here we suppose that ( nt nt

2. Preliminary lemmas. We require a number of lemmas.

LEMMA 1. If ¢ >0 and u,=0 then we have the following equivalent
relations :

@ > P somt) e Su = o,
1 n+1
n 2n
am 2 u, =on" & 2 u, = o(n®),
1 1+l
() S =0 & Xu, = 0,
1 n+1
(Iv) > u,=0n) & >u = 0mn"),
n n+1

as n— . O may be replaced by o, and conversely.

We prove (I). Clearly, the latter equation follows from the former.
Inversely, if the latter holds then

2n u

- o
2 ) = o(n®).
n+1

Hence, taking the integer 2 such as 2¢71 < < 2%
r-1]

n u n n/2} [n/2

4
2:” = 2 4+ 2 ...+ 2
1 [n/2]+1 (n,4)+1 [n/2"]+1

< (2% —1DE[(n/2)% + ... + (#/2)]+ G
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<é&n*+G (n > ny),

where G = 2::1 u,/v is a constant depending on 7, From this follows the
former, and (I) is proved. The proofs of (II), (III) and (IV) are analogous.

LemMMa 2.1. Let» >0, —1<b=<a-+7r,C>0 and H>0. If

2.1) st = o(n”) (1 — ),
2.2) Snem — Sn > —Cn® for m=1,2,...., [Hn] (n > ny),
then

2.3 Sp = O(n%) (n— ),
and Skt = o(nrUdkINFhrIry (n — <o),

for every p such that 0 < p < 7.

This lemma is due to Prof. S. Izumi. He pointed out that this may be
obtained immediately by replacing the condition Suim — Sn > —Kn*m in
Theorem 6 of L.S.Bosanquet [9] by Su+m — Ss > —Kn®, and the proof is quite
analogous as the Theorem 6.

Lemma 2.1 is an improvement of the well-known convexity theorem due
to Dixson and Ferrar [8] (cf. G.Sunouchi [2]). It must be noticed that (2. 3)
is a result from the two conditions (2.1) and (2.2).

LemMmA 2. Let r>0,5s>0and 0< a<1. Then, the two conditions (a)
and (b) in Theorem 1 imply the following relations

(2 4_) s};—r = O(Vll'”'“)
13 s
@.5) > 15— o),
1
(2.6) si7% = O(nt—s%),
2.7) sire = o(nl*re) (—s<pu<r),
2.8) Z 'iy—' = O(n-*2),
2.9) > sl = Om—=) (sa < 1),
as n— oo,

Indeed, (2.4) follows immediately from (a). (2.5) does from (a) and
Lemma 1. Next, from (b) we have

(2.10) $3, — s> —Cnt-%® for m=1,2,....,n (n > my).

Hence, applying Lemma 2.1 to (2.4) and (2.10) we have (2.6) and (2.7), and
then (b) is equivalent to

> Is.7f] = O(n'=2%) (n— ),

n+l
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which yields (2.8) and (2.9) by Lemma 1.

3. Proof of Theorem 1. We denote by the capital letter S, the »n-th
partial sum of the series (1.1), then

s",:zs,,Si—nywi =§R(f$s,,e‘"“du)=——ﬂi‘(f ;sye‘”“du)
0 t

v=1

From the identity

v
— —1 o— —
so= 2 AT}y w=12 . )
p=1
we have
n n 14
Un= 2] sve™ = 2, ¢ 2, ATLs.",
v=1 v=1 Mm=1
-and

3.1 Sr.:m(ft Undu>=—§ﬁ(flUndu).

Changing the order of summation we get, in the case 0 < s< 1

n n
U= 3 e 3 A eomnr

p=1 v=p
-2 e (Z- 32

p=1 V= v=n+l
ie.
(3.2) Un=(1—e™) X s, eirv —Q,

m=1
where
Q=252 Anle =2+ 2 =Q,+Q,.
=1 v=n+! =1 p=m+1

Here, we define m such as
3.3) n —m = [En%] (0< &< 1/2).

If s is an integer, then applying Abel’s transformation s times to

Up = 2::1 s, e we see easily that

s

(3.4 Qn= > s (1 — eiw)~I giniu,

s=1

If 0 < s< 1, then by Abel’sTtransformation

m oo m
Q.= (11— e"‘)"’[z ;¢ 2 Aiev o+ AL s ef(nﬂ)u],
m=1

n=1 1=n+1
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n

n o
1-8 §=2 fvi ] -8 -1 '3
D s 2 At XA e

M=1m41 v=n+l v=m+1
— piuy—-$§ 1-58 pi(n+1 — Q15 pi ’
+ (1 e'“) [sn ea(z+ Ju sm s ez(m+1)uJ,

and by (2.6) and (2.9) in Lemma 2

(8.5) sy = 0= and 2 [s;°| = O(n'=™),
m=1
Therefore, integrating by parts

o T

x m
f Quu= 3 s;* X A f (1— eyt e du
t =1 ¢

v=n+l
m

+ DA ‘Msﬂsf (1 — e¥)-1einrnu gy
=1

m

o(F 511 3 i) oz

v=n+l

= 0<§: Isz*l(nt,"(n +1— msﬂ) + 0((n - m,s'l(nt)—lﬁ = l)
= 0<(nt “(n —m)*~ 12 s s|>

ey
= O{(nt)~* (en®y=1 mi=*) by (3.3}, (3.5),
= O(&1 (n%t)~1).

Similarly, integrating by parts and observing that m ~ n we have

fQ';Ldu=0<Z EX> ]Ajj‘;’L|u"l>
1 p=m+l v=n+1

(ls1 | 2 As-l l)"‘O(lS}f"lnt‘*‘)

vam+1

= 0( > [s:‘“sln“l(n+1——/u)s‘1\)

p=mal
+ O(|sk s [n~i(n — m)) + O(]s,~*| [ nt?)
= O(n=*en=X(n — m)) + O(n'~**/nt*) by (3.5),
= O(n="%&n®)") + O(n*t)~* by (3.3),
= O0/&) + On®t)~5.
Thus, when 0 < s< 1 we have

(3.6) f Q. du = O(n*t)~* + O(E~Y(n"t)~1) + O(E).
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When s is an integer, from (3.4) and from s!-7 = O(n!-/*) for j= 1,2,
.,s, which is (2.6) and (2.7).in Lemma 2, it follows

(3.6 f Qudu =3 Ont)~.
¢ j=1
Further, we see that by > [s7*|/u = O(n="%) which is (2.8),

i n+p oo
f 1 —e") > s du = 0( > ,lﬁtsl ): O(n"t)~*
7’
12

p=n+1 p=n+1

for every integer p > 0. Hence, by (3.1) and (3.2) it holds
(3.7) Suip — Su = On*t)~* + SR( f (@nsr — Qu) du>,
L

for every p > 0. Now, we put

i sin vt
Ri= 3 s S0
v=n+1

Then by (3.7), (3.6) and (3.6) we have
On%t)=s + O(E~Y(n%)~1) + O(&%) O<s<1)
R'Il = {

3.8
@-8) S O(net)- (s=1,2....),

J=1
where O’s are uniform -in 0 < # < 27r. In particular, (3.8) shows that the
series (1.1) converges uniformly in 0 < § <¢ < 27w — é.
Next, from the expression (3.2) of U, replaced s by —» we have

Un=(1— e”‘)"z s, e — P,
w=1
where

Pom X5 3 A e
1

w= v=n+1

Clearly, integrating by parts and using > [sp|/u = o(n™®)which is (2.5)

il = |
in Lemma 2, we have

f (1— ey 2 s eidu =0 (t’ 2 L L) = o(n°t)y",

and then

t 2
3.9 f Undu = o(n*t)y — f Pudu.
0 0

Here, we suppose that 7 is not an integer, since the case r an integer
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may be proved by the same arguments. Applying Abel's transformation
successively [7] + 1 times to the second sum of P, we have
n o ]
(3 10) P, = (1 . eﬁu,)[r]+1 2 S; 2 A‘t:l;r et — 2 slj‘+1(1 — edu)" el e
p=1 v=n+1 Jj=0
Concerning the first term of the last expression

n

- e*u)mﬂ(Z + > ) =P, + P,/
m=1

m=m+l
say, where we define m such as
3.3y n—m = [n*/2].
Then again by Abel’s transformation

(1 __em)m[z 2 A'r. -1 givik . EA[r,— srei(n-u)u]

w=1 yen+l
» co
— (l_e‘.u)‘mlﬂ[ 2 swi:r 2 A[‘;‘]—;r—leévw_l_ 51”:7' Y‘ Alr]— eivu:'
w=m+] v=n+l v= m+1
ez 1 {
+ (1 — e u)r[szl-c-r e;(m nw  __ ”-:-r e (m+1)u]‘
Observing that
n

(3.11) 2 [si] = o(n*™®) and s,*" = o(n!*"¥),

=1
which is (a)?"and (2.4) in Lemma 2, we have

f P,du = 2 sl Y‘ Al 1[ (1 —e™ineduy
v= n+1
14

LA f (1 — @) ghens 0w gy
p=1

v

= (ZIS | Z {rl-r—lltlﬂ/”> + 0<2A[1 s lt“‘/">

v=n+l p=1

m
= 0((n _ m/[r]—rt[r]n—lz ls,ll ) = 0 (n®)r)-7 grlgra) = o(nog)r),
p=1

since n —m == [#n%/2] by (3.3Y. Again, using (3.3) and (3.11)

12
[ Pran=0( 3 1501 3 1azzien)
0

p=m+l v=an+l

+ O(IS‘" v_'l:..lt["]“/”) + (Olsytr|#7/n)

v=m+l

- 0( S (st amin + 1 — ,,,)[r]—r>

pm=m+l
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+ O(lszn-r-y.lt‘lr]q-ln—x(n — m;[T]—H—l) + O(IS;"’lt”/n)

= o( pLATELTIL -l é (n 41— pyr-r )
p=nl
+ 0(n1+7'w i+ n—l(n —_ m:[r]—rH) + O(nl-l-r'atr/n)
= o(propri+1 (nw)[r‘,—r-;—l) + o(n“t)’
= o(not)r 1 + o(n%ty.

Further, observing that sj** = o(n'*#¥) for —s < u <7, which is (2.7) in
Lemma 2, we have
t
f siHH (1 — e™)let D% gy = o(nt 7=0,1,....,[r]

0
Hence using (3.9), (3.10) and (3.1) we get

[r1+1

(3.12) Sp = o/n*t) + 2 ont),
j=0

where o’'s are uniform in 0 < ¢ < o

Here also we may suppose that 0 < s < 1 since the conclusion is un-

changed when s is an integer. Then, from (3.12) and (3.8) it follows

[r1+1
ISn] < 87‘+2[(nwt;r + Z(nLtt),f]

J=0

and (n > ny),

[Ra| < C[(n*t)=% + &-Yn%,~! + &%)
for all values of # such as 0 < ¢ <7, where & = &@y) > 0 is arbitrary and C
is an absolute constant.
Therefore for a fixed n > n,, if + = 1/n%¢ then

[Rn| < 3C€°,

and if #< 1/n%¢ then from the identity R,= (S, —S:) + R, where
m = [(1/&)*], and from the above inequalities for the absolute value of S,
and R, we have

|Ra| < 2(r + 3} + 3C&*.

Hence. the series (1.1) converges uniformly in 0 < ¢ <, and so does in 0 <
t <, since its terms are continuous in this closed interval. Thus the theorem
is established completely.

4. Proof of Theorem 2. We denote by S, the n-th partial sum of the
series (1.2), and by R, the remainder. Then, by Abel’s transformation

, sin(n + 1)t <
Si=0S (1 1y +§§,Af(t)

and
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sin (n + 1;t <
R, = —sq miDr T > sAM,

v=n-+1

where

t

_ sinpt _sin(v+ Dt _ 1<f gty givu

afe) = =0 T m(t (1—eme du>.
U

We see that the series S, + R, converges uniformly in 0 < # < 7 by the same
arguments as the proof of Theorem 1, and in particular 3, a@. = 0 (R, 1) since,
observing that s, = On'~%) by (2.6) in Lemma 2,
sin (7 + 1)
" m+ Dt

when t~1/n%€, i.e, n = [(1]/&t)*].

Further, clearly by the arguments used at the end of the last article
the series (1.2) converges uniformly in 0 <? < = if and only if

sin(n + 1)t _ . . . .
S 1 = O 1 uniformly in this interval,

= O(1/n"t) = O(€)

which is equivalent to s, = o(1). Thus, we get the theoren.
5. Corollaries. We consider again the two series

o, sinnt o sinnt
(1.1) s and (L2)Xan .
n=1 n=1

CorOLLARY 1. Zet O<a<landr>0. If

sy = on™) and Zla.,l/v = 0n~?) (n— ),

v=mn

then 3 an = 0(R,) and = a, = O(R,1).

This follows from Theorems 1,2 and Lemma 1. This is due to H. Hirokuwa
and G.Sunouchi [3], of which the case » = 1 does to G.Sunouchi [1].

COROLLARY 2. If 3 an is summable (C,1 — 8) for some positive § < 1, and
if ., |57 = Omi=%), then the series San is summable (R) and (R,1) to
the same sum.

This is due to O.Szasz [6,7]

For the sake of simplicity we assumed that ¢, =0 and ¢ =0 in Sa, = ¢

(R;)). But, generally when a, = oc+0 also Theorems 1 and 2 are valid
provided that (1.1), (1.2) and s) are replaced by

P
n=1 n=1

o+ 2 2 (sn — o) Sl?ll*t‘:, o+ Sa, sin nt and sY — Ao
T n nt

respectively. Thus, the above Corollary 2 'follows from Theorems 1 and 2
when r=1—39, s=8 and a=1.
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CoROLLARY 3. If 3 an converges and

2n
(5.1) > (al —a)=0Q1) (n— o),

yv="n

then the series (1.1) and (1.2) converge uniformly in (0, 7).

This is due to O.Szasz [5,7], and follows from Theorems 1 and 2 when
s=1 and a=1.

COROLLARY 4. If S a. is summable in Abel sense and (5.1) holds, then
(1.1) converges uniformly in (0, ).

This follows immediately from Theorem 1 with » = s =« = 1 and the
following lemma due to O.Szasz [4]:

LemMmaA 3. If 3 an is summable in Abels sense and (5.1) holds, then 3 an
is summable (C,1) to the same sum. And, moreover s, = O1).

The last corollary holds for arbitrary s >0:

COROLLARY 5. Theorems 1 and 2 holds also if 3 a, = 0(A) and if for some
positive s

(5.2) > (s;] =57 = O(nt-?) (1 — ).

Moreover, the series (1.2) converges uniformly in (0,7) when s > 1.

For the proof, when 0 < s =<1 it is sufficient to show that 3a, = 0(A4)
and (5.2) imply 3 a, = 0(C), and the case s =1 is immediate by Lemma 3.
In the case 0 < s < 1, (5.2) implies
(5.3) si7¢ > —Cni~%, C >0,
by Lemma 1 since 1 —s > 0.

On the other hand, letting o.~* = s}~*/AL-* we see that by a theorem due
to O.Szasz [10], 3 axx" = o(1) implies

1 -2 ol 2" = o) (x—1-0),

n=0

which and ol-* > — C yield

- i I Sol-t=0(1) (1 — o0).

And, this is equivalent to o2-% = o{1) by the well-known relation between
Cesaro’s summability and Hélder's. Hence, in this case 3 a» = 0(4) and (5.2)
imply 2% = o(1).

Next, we suppose that 1 < s <2. Then, applying Lemma 1, (IV) to (5.2)
we get
(5.4) sizs, —si > —Cn!~* for n>my, p=12,....,

n+p

which implies the existence of limsl-*, and this limit must vanish by the

n

=)
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condition 3 an.x" = 0(1) which is equivalent to

(1 — 2 DV s~ %" = o(1) (x—>1-0).
n=0
Hence, again from (5.4) we see in turn that s}-* < Cnl-%, ie s;6-D<
Cn-¢-1  and
2n

2 (576D 4 s76-0) = Oni-¢-D) O0<s—1=1).

Thus, the above case is reduced to the case 0 < s <1, and so on.
Further, applying Lemma 2.1 to (5.4) and 3 a. = 0(C) we see that s, =
o(1) when s > 1. Hence, we get the corollary.

6. TueoreMm 3. (I) If

2n

1
(6.1) . > s, = o(1/log n) (n— o),
Vv=n+1
and if for two some positive s and & < 1
1 2n
6.2) " 2 (Is,°] —s,7%) = O(n~?) (n — o0),
v=n+1

then 3 an, = 0(R\), and indeed the series (1. 1) converges uniformly in (0, ).
(I) Under the same assumptions as in (I) 3 an = 0(R,1), and moreover
the series (1.2) converges uniformly in (0,7) if and only if S, a, conver ges.

Here, we notice that s may be as large as we wish.

In fact, (6.1) yields s.= o(n). On the other hand, letting 8 = sa we may
suppose that «a is small and 0 < a <1 since & may be replaced by any
smaller positive number. Then, s, = o{z) and (6.2) imply

n
(6.3) si=s = O(m=**) and > [s;°] = O(n'-*)
v=1
by Lemmas 1 and 2.1 since 1 —sa =1 —8 >0. Further, in these circum-
stances we may suppose that s is an integer, for (6.3) implies

77 = 0w~°¥) and X [s;7| = O(m~o*)
v=1
for every o and «’ such that ¢ >s and ¢’ = sax = 8, and of course 0 < &’
<1
Hence, observing that (6. 3) implies (2.6), (2.7), (2.8) and (2.9) in Lemma
2 we have (3.8) in the proof of Theorem 1, i.e.
oo . t s
(6. 4) Ri= 3 s % = 3 0met),
v=n+l Jj=1
where O’'s are uniform in 0 < ¢ < 7.
Now, we proceed our arguments by O.Szisz’s method which was used
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to prove Theorem 5, [5]. Observing that (6.1) is equivalent to 2::1 |s,| =
o(n/logn) as (I) in Lemma 1, let

(6.5) 2 |s,] < &*n/log n (n > ny),

v=1
where & >0 is given. And, we define the number A = A (n, ¢) such that
(6.6) A =1+ 1/&nt,
corresponding to » > n, and positive ¢ < 7.

Letting m = [n!*], we have from (6.4) R, = ZSH O!nt)-’. On the other
hand, if A < 2 then (6.6) yields (n2)-! < & and so

6.7 Rn= 2,0(&) = 08 (m > my = [n}/*]).
J=1

If A =2 then dividing R, into three parts

m ne oo
Ri=2+ 2 +2 =R+R'+R",
n+1l ny+1 Ny+1

where #, = [An] and n, = [#,***U/9], we have
n

IR St |s.] < tem Jlogm <

n+1

since A = 2. And

&
O —1)m An/log (An) < 2€,

IR’ < 3 Isu] /.

ni+1
Applying Abel’s transformation to the right hand side we see easily that by
(6.5)
|R"| < & log (log n./log n,) + &2/log n,,
from which we have by the definition of »#, and #.
[R"| < & + &2
Further, from (6.4) it follows

R" = 2 0mst~ = > 0E) = 0@),
J=1 J=1
by the definition of », provided that « e = 1. Hence, Ry = O(&) for n > n,.
From this and (6.7) we see that R, = O&) for n > m,; = [n)/*] uniformly
in 0 < ¢ <7 when ae!s = 1. This proves (I). The proof of (II) is analogous
as above and the proof of Thesrem 2.

COROLLARY 6. If 2;]_ |s,| = o(n/logn), and if for some poistive & < 1,

6.8) S (@l —a) = %) (n— o),

v="n
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then Y a, = 0(R) and 3 a,=0(R,1)

This is a theorem of O.Szész [4] when (6. 8) is replaced by 2:; lay] =
O(nt-%).

7. REMARK. Disregarding the uniformity of convergence we have in the
place of Theorems 1 and 2 the following theorem not depending on the value
of s >0, the case a« = 1 is Corollary 5.

THEOREM 4. Let r >0, s>0and 0 < ¢ < 1. If
1 2n

; > Isi] = o(n) (n — o),
v=n+l
and
1 2n
7 = (s =87 = 0 (11— o),
v=n+l

then S an = O(R,) and 3, a, = O(R, 1).

Finally, I wish to express my heartfelt gratitude to Professors S.Izumi,
G. Sunouchi and Mr. H. Hirokawa for their suggestions and kind advices.
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