CROSSED PRODUCT OF OPERATOR ALGEBRA
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Among various notions of the modern ring theory the idea of the
crossed product of an algebra by its group of automorphisms is seemed to
be not yet explicitly introduced. J.von Neumann’s method of construction
of the example of factor shows us the possibility and the way of introducing
this notion.

In this paper, we define this notion in a C*-algebra (§1), in a unitary
algebra (§2), and in a special W*-algebra (§3). We shall mainly concern
with the representation of the crossed-product, and finally show that some of
the examples of factors by von Neumann can be considered as our just defined
crossed product (§4). We only interpretate the von Neumann’s example
from the view-point of the crossed product, and we don’t discuss further
problems, for example, “For what kind of W*-algebra and its group of
automorphisms, does the crossed product produce the unknown new factor ?”
(For some of these problems, cf.N.Suzuki [4]).

1. For a (discrete) group G of the *-automorphisms of a *-algebra A,
we shall consider A-valued functions defined on G, which take 0 except a
finite subset of G, and denote any A-valued function which takes @; € A at
the point a; € G for each i(:=1,2,....,m) by S;a;a;. The set © of all these
functions is clearly a linear space for the usual operations of the addition
and the scalar multiplication. Of course the zero element of & is the
function which takes 0 everywhere.

If we introduce the multiplication-operation and the =x-operafion as
follows :

multiplication : (X ;aia:)( 18:85) = i, stiBsaf’ by

*-operation : (Ziatat )* = zia,-“a’;“i"l

where a* denotes the image of a by the automorphism «, then the set &
is a *-algebra, which we call the crossed product of A by G and denote it
by (4, G).

As the mapping a(€ A)— ca(€(A, R)) is the *-isomorphism from A into
(A,G), where & denotes the unit of G, A is a *-subalgebra of (4,G).
Furthermore if A has the unit 1 then (4, G) has the unit &1.

In the following we shall study the representations of (A, G)for various
types of A. We shall begin with the following

DeFINITION 1. When ¢ is a linear functional on A, we define the linear
functional @ on (4, G) as follows:
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a(z:aiai> = Etsf'¢’(ai),
{1, if a=283

0, if a=p, and we call @

where 83 denotes the Kronecker symbol &8 =
the extension of @ on (A,G).

At first if we assume that A is a C*-algebra with the unit, then we can
prove the following proposition :

ProPOSITION 1. Let A be a C*-algebra, and G be a group of ~-automorphisms
o A. If 22{0'} is a complete set® of positive linecar functionals on A, then

2= {&}, the set of extensions of elements of 2 is also a complete set of
positive lincar functionals on (A, G).

Proor. Since the additivity and the homogeneity of ¢ € 2 are obvious,

it is sufficient to show the positivity of & and the completéness of the set 2

Since
;[(Etatai )(ziaiai)*] =a (2 wa;ajl a{”«r_l ! )
=il a ) =0,

& is positive; moreover, if & | (i )(iaua)*] =0 for all 5 € X, then
from the above computations o(a® 'a**”") = 0 for all o € Sandi=12,..
..m. Therefore by the completeness of 2 we have al;: s = .... = an=0,
so that Eiaiai =0, which shows the completeness of zon (A,G). Q.E.D.

Now, let A,G be a C*-algebra and a group of =-automorphisms of A
resp, and let 2 2 be a complete set of states of A and the set of ex-

tensions of elements of 2 resp. We denote by P the set of positive type
functionals ® on (A, G) such that

. [ ,,Gjbj Zalai 21:8151)*]
(I)(Eiasat): [ jBij zjﬁjbf) ]

where & € 2 and‘2 iBsb; is an arbitrary element of (A,G). If we in-
troduce a norm in (4,G) by

@ Sl = s [of(Saa)(Saa) ] o e )
then the completion of (A, G) by this norm is a C*-algebra, which we call

1) Ci. L E.Segal (3].
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a u-crossed product of A by G, and we shall denote it by A=C* (A, G, 2)

Without the G-invariancy of the elements of 2, it is troublesome and

fruitless to proceed the study of C*(A, G, 2), so that in the rest of this

section we shall consider a C*-algebra A, a group G of *-automorphisms of
A and a complete state o of A which is nvariant with respect to G.

To discuss the representation of the C*-algebra U = C*(A4, G, o), we
shall have a few preparatory discussions on the representation of C*-algebra

by its state.
Now, since o is a complete state of a C*-algebra A, A can be considered

as a pre-Hilbert space, by introducing the inner product (a, ) = o(ab*); we
shall denote by H the Hilbert space obtained by the completion of A.
Moreover if we define the operator a* on A by ba* = ba, then a* is bounded
on A, therefore % can be extended onto H; and we denote this extension
by the same notation @*, then the mapping a — a* is a faithful representation
of A on H. We say this representation a canonical representation of A by
the state o.

In the following we shall study the [relation between the canonical

representation of A by ¢ and that of (4,G) by & (the extension of o). For
this purpose we introduce the direct product Hilbert space GRH of G and H

following H.Umegaki [5].
Let F(G) be the vector space of all finite-valued numerical functions on

G and F(G)® H the algebraic direct product of F(G) and H. Putting f,
the characteristic function of the point @ and denoting /o Q@F as a @£
conveniently, all elements « ® &, a € G, £ € H generate a vector subspace
of F(G)® H. We shall denote this subspace as {G® H. For elements

Zai ®E&, 2 a;®FE,of GO H, we define the inner product by
(D@8, 3 a;0F) =2, 85 E, E),

whence G ® H is a pre-Hilbert space. The completion of this space, we
shall call the direct product Hilbert space of .G and H and denote it by
G® H. It is known that G ® H is isomorphic to I2(G)® H in the sense of

Murray-von Neumann [2].
Next, we introduce the two kinds of bounded operators on G @ H:

1°. Ry (a € A): Define Ry = 1® a*, that is,

(D @ai)Ra = X0t @ (ar a¥)
on the dense part G® A of GQ® H. It is almost obvious that the mapping
a— Ry is a faithful representation of A on G H.

2°. Us(a € G): If we define U, on G® A by the equation (Zai ®a¢)U;
= >(a)®ap, then U, is bounded, so that U, can be extended onto
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G & H; we denote this extension by Us. As easily seen, Ua is a unitary
operator on G ® H and the mapping « — U, is a unitary representation of
G on G® H such that U;'R.Us = Rs*. Moreover, by the easy computation
it follows that

(UaRa)*=U g1 Rax*~1,
and

(U,,,Ra) (Upr) = Uwﬁ Raﬁb,
therefore the *-algebra A which is algebraically generated by I = {R,,

Us:a€A, a€Gyis aset {2 U.Ru: @ €A, a;€G}. We denote by A
the uniform closure of A.
By means of these notations we have the following

THEOREM 1. If A is a C*-algebra, G is a group of *-automorbhisms of A
and o is a complete state of A which is invariant with respect to G, then the
lincar mapping

W:Etaiai-—)Ean,Ra‘

is an isomelric representation of the crossed product (A,G) of A by G onto
the *-algebra A on the Hilbert space G @ H.

Proor. At first we shall show that the above correspondence is one-to-
one. Since the implication Za, a=0c> 2; Us, Ra; =0 is clear, we shall
show the converse one. If > U,, Rs, =0, then

0=(E®@1) D Us,Ray, E®@1) D Us Ra,)
= Zu (o Qa;, a;Qay)
= 2 a(a;a.*).

Since o is a complete state of A, we have @&, = @, = ....=a, = 0, and Zt a;a
= 0.

That the mapping = is a *-homomorphism is almost obvious by con-
sidering the *-operation and the multiplication in each algebra.
The isometric property of 7 can be seen as follows:

(Z8:®8) 2 Un, Rury (Z8:® b) X U, Rar)
= 24.;,“ Brat; @ b'a;, B, a5 biiay)
= 20 881t o(b2: ava} br*s)

= 2 o(b% a, aF b)),
where 2' denotes the summation over the indices such that B,a;a;'B;'=€.
On the other hand,
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[(Z8:8,) Bt )(Z v ) (2 8 14)" ]
= 1 X im0 Botet Bt B35 B gy teat garpet ot
= 3oty a af b;).

By the above computations
(ZB @) X Ui Ray (X By @8y ) Ui, Ra)
=5[(Z80)( D a ) Zaa) (28, 0,)7],

therefore by the definition of norm ()
l‘: Xaa M = |2 Us, Ra,l ( = operator bound).

REMARK. Since the representation 7 is isometric, it can be extended as
the representation of % onto A ; we use the same notation to denote this
extension.

CoROLLARY. Under the same conditions on A,G and o as in Theorem 1,

the canonical representation of W = CX(A,G,a) by the state & is unitarily
equivalent to the representation w defined in Theorem 1.

Proor. If we define the mapping ¢ from (A,G) onto GO A:
b Zatat—* 2a¢®at

then ¢ is linearfisometric. In fact.
(Baa) (Baa)) =7(Ziaa)Ziaa)]
=5 (aap af‘?la,*“Tl)
= Do (aat) = 2 (@, a)
=(Sa®a Za®a).

Since (A,G)iand G® A are dense in $ and G ® H respectively, ¢ induces
the unitary operator from § onto G ® H, we use the same notation ¢ to
denote it. Whence it is easily verified that

¥
¢_l (Zt 44 at) ¢ = 2¢ Ua‘Ra‘ = (21 a; dt) T
is valid on G ® A @ Since the representation 7 and the [canonical representa-

tion are both continuous, the proof is completed.

ReMARK. Though in Theorem 1 and its Corollary we assume that the
C*-algebra A has a G-invariant complete state o, we can show the similar
results, by passing the direct sum method, when A has a complete set

> = {c} of G-invariant states; but we don’t enter into the detail.
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2. In this saction we shall develop the similar discussions for a unitary

algebra and its group of *-automorphisms.
Lot A be a unitary algebra?; that is, A is an associative x-algebra over

the complex field and simultaneously A is a pre-Hilbert space with respect
to the inner product (,) satisfying the following conditions :

1 (a, b= % a*) (a, be A),

2) (ab, ¢)= (b, a*c) (@, b,c€A),

(3) for any @ € A, the mapping b— ba is continuous,

(4) {ab: a, b < A} is dense in A.

We denote the Hilbert space obtained by the completion of A by H.

The mapping b&— ba can be extended onto H by the condition (3), we
denote this extended operator by a* and call the right multiplication operator
by a. Similarly by the conditions (1), (3), the mapping & — ab can be extended
on H and call this extended operator @’ the left multiplication operator.
We call the W+-algebra R(A) [resp. ¥(A)] which is generated by the right
[resp. left] multiplication operators, a right [resp. left] W*-algebra of A. At
last since the mapping @ — a* is continuous by (1), we can extend this mape
ping onto A which we denote by j, and call the involution. We can easily
show the following relations:

(ab)¥ = g b¥*, (ab)® = B® @, a* D’ = b’ a¥
Jja¥j=a*, j*=1
FR(A)j = LA).

Now let G be a group of *-automorphisms which preserve the inner
product : (@*, *) = (a, b) for every a € G, a, b € A. Then since the mapping
a— a® is continuous on A, it is uniquely extended on H, which we denote
by #(a); thus G is a group of unitary operators on Z, and satisfy the fol-
lowing relations

wa)j = juer), a** = u(a) 'a¥u(a)
which one can find without difficulty.
Under these assumptions, if we define the mapping ¢: Ei a; a; —>

21 a; @a; from the crossed product (A, G) onto the pre-Hilbart space
G® A, ¢ is linear and one-to-one; therefore if we define the inner product
in (4,G) by the following way :

(= aa, Zfﬁfbf) = ((2: aa,)P, (21:31171)95) = (Zz a; ®az,2;ﬁj®bf),

then (A,G) becomes a pre-Hilbert space and satisfy the conditions (1)-(4) of
a unitary algebra at the beginning of this section. In fact,

Ad . (Saca, D8by) = S 6a b =385 03", aro-)

1) For a unitary algebra, cf. J. Dixmier: Les algébres d’opérateurs dans I'espace .
hilbertien, Paris(1957). :




CROSSED PRODUCT OF OPERATOR ALGEBRA 361

*
= (<Zj:31bj) ) (2{ a; ai>*)-
Ad @) (Zeawa)(Z8:6:), S o) = Soo 81k @by, 00)
= 28;4]-—1)% (by, @* Tk gy) = (2 B;0b;, <2ai ai>*( Zrykc/c».
Ad @) (2850 ) (2, ai i) IIF = X 88520 (62 ay, b7 a)
= Gra, bpra) = 2, (58, ) lat 2
= M| 2B, b))%, where M = m Max |af|.
=ism
Ad (4). Since A is a unitary algebra, for any @ € A there exist 5,
¢ in A such that the distance between ¢ and bc is arbitrarily small, therefore
the distance between ae and abc in (A,G) is arbitrarily small for all a € G.
Since abc = (a b)(&c), the finite linear combinations of the members of
{(BB)(¥0): B,¥ € G, b, c € Ay are dense in (4,G), so {(Z8,8)(Zecx)}
is dense in (A,G).

In this way, we see that the crossed product (4,G) is also a unitary
algebra.

Now, let § be the Hilbert space obtained by the completion of (4,G)

and let (20(,- ai)# and (Zai ai>h denote the right and left multiplication
operators respectively. We define the following two kinds of operators on §:

1°. 7 (@ € A): Since the mapping Eat a; —+2a, (a; a*) is clearly con-
tinuous, it is extendable on §, we denote this extension by 7. (Clearly 7 =
(éa)¥*, and since A is isomorphic to €A, a— 7 is a representation of A on
gf) 1 §urthermore 7o = pR.P~', where R. is the operator defined on GQ H in

2. us (@ €G): If we define #, on (A,G) by the equation (X a;a: )%,

= Z(ai a)a?, then », is bounded, so that #' can be extended on Sj,\ we
define #u, by this extension. (Clearly #. = ¢U,$~!, where U, is the operator
defined on G® H in §1, so that & —#, is a unitary representation of G on
9$.)

Then we have the following

THEOREM 2. Let A be a unitary algebra, and G a group of *-automorphisms
which preserve the inner product invariantly, then the crossed product (A,G) is
also a unitary algebra and the right W*-algebra is generated by {7, u,: a € A,
a € G).

Proor. The first half has been proved before stating the Theorem, and
the last half followes from Theorem 1 considering the weak closure instead
of uniform closure. :

~ REMARkK. It may be interesting to clarify the structure of (A,G) in the
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relation to that of A, but we could not obtain the concrete results. Under
suitable restrictions on G, we want to determine the structure of the unitary
algebra (A4, G) elsewhere.

3. In this section we shall discuss a case of a W*-algebra which has
a faithful normal trace as a special case of §2, and define the weakly closed
crossed product algebra which is a factor under the suitable restrictions.
(Def.2 and Theorem 3.)

ProPOSITION 2. Let A be a +-algebra which has a faithful trace. If G is a
group of x-automorphisms of A which preserve the trace ir ) invariant, then the
extension tr of tr is also a fatthful trace of (A,G).

Proor. By means of Proposition 1, it is sufficient to prove the equation

tr(aa) (BB)] = t(B) (ata)].
Now, A (aa) (Bb)] = tr(aB aPb) = 548 tr(afb) = 88« tr(baP) = 8 trbea) = i (Bar)
bea] = tA(Bb) (aa)], which is desired.
In the sequel we use the following notations:
A: A W+-algebra acting on the Hilbert space H, with a faithful normal
trace i7a) = (E.a, &), and &, is a generating and separating vector for A.
G: A group of =-automorphism of A, and we shall assume that #7 is

G-invariant.
As the mapping @ — &2 is one-to-one, A can be considered as a unitary

algebra and G as a group of *-automorphisms of a unitary algebra A which
preserve the inner product invariant. So we use the same notations as in §2

without to refer.
Then the crossed product (4,G)is also a unitary algebra by Theorem 2.

On the other hand, the unitary algebra (A,G) has a faithful trace t:by
Proposition 2, so that the canonical representation of (4,G) by tr can be
taken, but as easily seen, the canonical image of Zi a; a; € (A,G) coincides

with the right multiplication operator (Zi o at)# of the unitary algebra
(A,G), so we don’t distinguish each other in the following.

Since €1 is a unit element of (4,G), it is a central element of the
unitary algebra (A4,G), so (EVT, (€1)) (T € R(A4,G)) gives a trace of the
right W*-algebra of (4,G), and (E1)T, (€1)) = ¢KT), and moreover €l is a
generating vector for the right W*-algebra of (4, G).

DerFINITION 2. For such A, G as above, we call the right W*-algebra of a
unitary algebra (A,G) a w-crossed product of A by G and denote it by
W*x(A, G, t7).

By Theorems 1,2, W*(A, G, t?) is unitarily equivalent to the W*-algebra
W generated by I ={U,, R,: « €G, a <€ A} on the Hilbert space G® H,
where H is the completion of A, and U,, R, are the same as in §1. Of course
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H is isomorphic to H,.
In order to analyze W we introduce the following operators op G Q H:

J: If we define J by the equation (Za, ® a;) J = Ea,"‘ ® g+, then

J is continuous on G ® A, so it is extendable onto G @ H, we shall denote
this extension by J; then J2 =1 holds, and J is unitarily equivalent to the
involution of the unitary algebra (4, G).

V., (o € G): Define V, by the equation JU,J=V,, then V, acts on G
A as follows:

(Eai ®a )Va, =2(a“a;)®a¢.
L, (a € A): Define Lq by JR.+J, then L. acts on GQ A as follows:

(Ba®a)li=F a @@ a).

The matrix representation of the operator on G @ H due to von Neumann
{2] is as follows:

T = (T*#): T=# is a bounded operator on H,
and <PE:BEGCG>T=<ET*F:B€CG>.
Under these definitions and notations we have
U TU,, = (u(a) ™ Tewo" P g(ary)), Vo TV, = (T%0baof),
JTT = (ju(@)= T=£7" w(B) ),
R.T = (a*T*#B), L.T = (g*° T*#),
TRs = (T*Ba%), TLs= (T*#a™).

‘Therefore, if we define [ ={U,, Ri: ¢« €G, a€ A}, J ={V,, Ls: a €G,
a < A}, then I’ and J’ can be characterized as follows:

ProPoSITION 3. T = (T*8) belongs to ' if and only if there exist ta, B) €
A such that T*8 = jt(a, B)¥* = u(at,) ' Haa,", Bay )* u(a,) for all a, € G ; and
8 = (S%P) belongs to d' if and only if there exist s(a,8) € A such that S*P =
wa)sat, BN*uB) and s(a, B* = ula,) s(aay’, Boy ¥ u(a,) for all a,
€G.

Proor. If T =(T*f) eI, then U, TU,, =T for all &y €G and R,T =
TR, for all a € A, hence a¥T*B = T*Pa%* i.e., T%B € A¥ = jA¥j, there-
fore there exist #(a, B) € A such that T%f =jt(a,B)%; and U_TU, =T
implies jt(a, BY¥ j = (o)™ jt(aery”, Ba™ ¥ julat)=jul@s) 'Haay", Boy ' Yu(at,)j,
hence #(a, B)¥* = u(at,) ey, Ba )Yula,) for all a, € G.

Conversely, if T = (T*#), T*8 = jt{(a,B)%*j, and ¥ «, 3) satisfies the condi-
tions, then clearly T € I'.

For the case of J’, the proof is accomplished by considering the involution
7.

ProposiTioN 4. ' =J", §' =1"(= ¢ W¢), W=W*(4, G, 7).
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Proor. This is easily seen from the commutation theorem for the right
and the left W*-algebra of a unitary algebra (4,G), but here we prove it
as an application of Proposition 3.

Since I < J’ is easily verified, we have I’ > J”, therefore it is sufficient
to show that the converse inclusion is true. Now, if 7" = (7%#) belongs to
I', and S = (S»f) belongs to J’, then by Proposition 3 we have the following :

(TSyY = 2, TP SPY = 2 jt(a, B js(e, y='B)*u(B"y)
= 2, e, vBE js(e, B )u)
= 3, (8, B jt (at, vB~)* ju(B)
= 2, 8(€, Bla)* jt (ar, B~ )* juler ™)
= 2, 5(&, Bia)* jule) 1(e, VB~ ¥u(ar) ju(et™')
= 2, 5(&, B'a)* jula) (BB, v)*uB~ Y u(aYu(B)
= X, s(e, Bla)tu(a'B)jt(B, V)i

= 23 Sw:B T8 = (ST)»7.
This completes the proof.
Now, following J.Dixmier [1], we shall have the following

DEFINITION. A group G of the *-automorphisms of a W*-algebra A is
called ergodic if and only if the operator of the center of A which is invariant
by G is only the scalar multiple of the unit.

If A is abelian, then the *-automorphism can be considered as the homeo-
morphism on the character space of A; in this case, the above ergodicity is
equivalent to the usual one on the character space of A. (Cf. ]J.Dixmier [1])

THEOREM 3. Let A be a W*-algebra with a- faithful normal trace tr such
that tra) = (Eva, &) and E, being a generating and separating vecior for A.
Moreover, let G be a group of *-automorphisms of A which preserve tr invariant.
If G is ergodic, and satisfies the condition

)] @=ua)p*, a+=Epa=b=0(@, be A
then the w-crossed product T = W*(A, G, tr) is a factor.

Proor. By Proposition 4, I3 is unitarily equivalent to the W*-algebra
I” =J, so that it is sufficient to prove that the W*-algebra 1" =4’ is a
factor. ’

If T belongs to the center of I” = J’, then T belongs to I’ N §’; whence
by Proposition 3, we have T = (T%8), T*# = ji(a, B,*¥J, i(a, B¥ = u(aj”) Haay?,
Bay Ytu(a,) for all a, € G and T*F = u(a~'B) s(a~'B, &)* for some #(«a,B) and
s(a,B) of A. If ¢ =3, we have ji(a, a)¥j = s(&,&*: that is t(a,a)* = (&, &)



CROSSED PRODUCT OF OPERATOR ALGEBRA 365

for all ¢ € G and #Hea,a)* = s(&, E) belongs to the center of A. Moreover,
s(&, E* = u(a~?) s(€, E)*u(ar), that is, s(&, &)* is permutable for all #(a). Since
{u(a): a € GY N A® ={A1} by the ergodicity of the group G, we have
s(€, &) = Al (A: scalar), i.e., T4 =21 for all @ €G.

Next if a =8, from ji(a,B)* j=u(a"'B)s(a~!B, &* and the condition
(§) we have #(a,8) =0, i.e., T»*# = 0. Consequently we have T = Al, this
completes the proof. Q.E.D.

4. In this section we shall interprete an example of the factor due to
von Neumann from the view-point of our just defined crossed product.

Let & be an ergodic m-group in the measure space (S,u) in the sense of
von Neumann [2; p.195, Definition 12.1.5] and moreover we assume that
p{s}) =0 for all s €S and u(S)=1. Let A be a multiplication algebra of
the measure space (S,w), then for fis) € A, the functional #7.() = (1/#, 1) =

f f(s)dp is a normal trace and 1 is a generating and separating vector for

A, where f#* denotes the multiplication operator by the function f(s). Define
the automorphism of A as follows:

For a € 8 f € A, f(s) > f%(s): f4(s) = f(sa~Y).

Whence, by a slight modification such that U,, V, in von Neumann’s notation
mean U;', V' respectively in this paper, we can see that G = {a} is ergodic
in our sense by [2; p. 196, Lemma 12.2.4] and satisfies the condition (§) by
[2; p.197, Lemma 12.2.3], so that the w-crossed product W*(A,G,?7,) is a
factor, this is the case discussed in [2; p.200, Lemma 12.3.4].
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