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Introduction. Let Mn be an ^-dimensional differentiable manifold. The
set of all tangent vectors of Mn constitutes, with a natural topology, the
so-called tangent bundle of Mn. We denote it by T(Mn). The set of all unit
vectors of Mn constitutes a subbundle of T(Mn) and is a sphere-bundle over
Mn. It is called the tangent sphere-bundle of Mn. We shall denote it by

H.Poincare used the tangent sphere-bundles of ovaloids in three dimen-
sional Euclidean space, i.e. the phase spaces of the ovaloids, to prove the
existence of certain closed geodesies on the ovaloids. He introduced a Rie-
mannian metric on the tangent sphere-bundles and considered the geodesic
flow on it. As the metric of tangent bundles of Riemannian manifolds seems
to be important, we would like to study differential geometry of tangent
bundles of Riemannian manifolds by introducing on it natural Riemannian
metrics. In this papar we shall do it by restricting ourselves only to the
tangent bundles T{Mn).

1. Incompressible vector fields over a Riemannian manifold Λf*.
Let ξ be a differentiable vector field over a differentiable Riemannian ma-
nifold Mn and suppose its components with respect to an arbitrary coordinate
neighborhood U be ξι. ° The following Lemma is well-known :

LEMMA 1. In order that the infinitesimal transformation Xf'= ξ1-:^ leaves

invariant volume element of the Riemannian manifold Mn, it is necessary and
sufficient that the divergence

( l . i ) ?:, = <>

identically, where the comma in ξ\ι means the couaήant deήvative.

If the divergence of a vector field ξ over Mn vanishes identically, it is
clear that the one parameter group of transformations of Mn generated by

Xf'= £'-oΓris a group whose elements are homeomorphisms which leave in-

variant volumes of all domains in Mn. On account of this fact we shall say

that ξ is an incompressible vector field if the divergence of the vector field

1) We assume that groups of indices located in the left hand side of the fol-
lowing lines take values which lie on the right hand side of the corresponding lines.

h, i, j , k, I a, b, c\ _^ 2 n

λ. μ. v, p, σ a, β, 7 I ' ' '

Ht I, J, K; A, B, C = 1 . 2, 2n.
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vanishes identically.

EXAMPLE 1. A Killing vector field ξ of Mn is characterized by the dif-
ferential equation

(1.2) &,J + ?Λ« = 0,

where ξi=gijξj, gtj being components of the fundamental tensor of Mn. So,
ξι satisfies

(1.2)' £ , = <>.

Hence, every Killing vector field of Mnis an incompressible vector field.
This is geometrically evident, because the infinitesimal transformation

3f
Xf=ξi~χf, where ξ% are components of a Killing vector field, generates a

one-parameter group of isomeίries. It is well known that (1.2) is also written
as

(1.2)"

EXAMPLE 2. A harmonic vector field ξ is characterized by the differen-
tial equations

(1-3) fι,j = ?Λi, ft = 0,

where fi = gijξ5. Hence, every harmonic vector field of Mn is also an incom-
pressible vector field.

LEMMA 2. Let ξ and η be two incompressible vector fields in a Rieman-
nian manifold Mn, then their Poisson bracket [ξ,η] is also an incompressible
vector field.

PROOF. By definition the /-components of [ξ,v] is given by

Hence, we get

However, if we use the well-known relation

where Rί^ 's are the components of the curvature tensor, we can easily see
that

Rkj being the components of the Ricci tensor. Accordingly we see

lξ,vVti = ξ¥Ai - ηtpRv = 0,

which is to be proved.
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In spite of Lemma 2 it saams to us that all incompressible vector fields
of a Riemannian manifold MΛ do not generate, in general, a finite continuous
group of homaomorphisms which leave invariant volume of Mn, but do
generate an infinite continuous group.

2. Extended transformations and extended tensors. Let T(Mn) be the
set of all tangent vectors of Mn. The T(Mn\ with the natural topology,
has a bundle structure with Mn as the base space, linear vector space EΛ as
the standard fibre and the group GL(n) as the structural group. We call
this bundle the tangent bundle of Mn and denote the, natural projection
T(Mn)-+Mn by 7r. The bundle T(Mn) has a cross section corresponding to
zero vectors. We may identify Mn with this cross section.

Now, let U bs a coordinate neighborhood of Mn with n variables tf as
coordinates. Then every tangent vector of Mn at P € U, can be expressed
by 2n variables (x\ vι) where xi are coordinates of the point P with respect
to the coordinate neighborhood and υ% are components of the tangent vector
in consideration with respect to the natural frame of reference at P, i. e.

the frame constituted by the vectors ^—rat P- So> w e m a y consider U x En

as a coordinate neighborhood of T(Mn).
Let {/(**), TT{ρίa) be two coordinate neighborhoods of Mn such that U f] IT

is not empty. Then, the intersection of two coordinate neighborhoods
U x ETitfyV1) and IT x En(xfa

f v'a) of T(Mn) is not empty too. To the coor-
dinate transformation

(2.1) ^^od\x\ ....,*")

of U Π U\ there corresponds the coordinate transformation
α = x?a(x\ ....,ΛiI)

of (ί/ x En) Π (C/' x £"). We shall say that (2.2) is the extended transfor-
mation of (2.1).

For every coordinate transformation of Mn, there corresponds a matrix

("s" 1 /' Ma*rin£ use of this matrix, the transposed matrix (-~ â ) and their

Kronecker products, we used to define tensors of Mn. If we put

(2.3) Λf-̂ ΞΞz;*, xfn+a~v'a,

for the sake of convenience, we may write (2.2) as

(2.4) odA = ^(Λ: 1, . . . . ,x", x^+\ . . . . ,ΛΓ2W).

So we may define tensors of T(Mn) by making use of a matrix

/ o
(2 5) ^

its transposed matrix and their Kronecker products. They are special cases
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of extensors developed extensively by H.V.Craig and A.Kawaguchi.
Let ξ be a contravariant (covariant) vector field on Mn and ?*(?<) be its

components with respect to a coordinate neighborhood E/(a*). If we put

(2.6) N E ? w + i Ξ | | - ^

(2.7) f £ Ξ ^ ; , fw+ί=£,

then we may easily verify that ψ (ξi) are components of a contravariant (co-
variant) vector field of T(Mn) with respect to the coordinate neighborhood
U x En (**, vι). We shall call the vector field ξ of T(Mn) thus derived from
the one of Mn an extended vector field or an extension of a contravariant
(covariant) vector field ξ of Mn.

In the same way, if ξij (ξ) and f^)'s are components of a contravariant
(mixed and covariant) tensor field of Mn with respect to U(tf), then ξlJ(,ξj
and f/j)'s defined by

(2.8) ξίj = 0, f*w+' = Jn+i j = f i j, fn+ί n+> = - | | r ^fc»

fcn+i „

(2. 10) "ft, = ^ ^ li n+j = Fn+ ί / = ζij, ζn+i + / = 0,

are components of a contravariant (mixed and covariant) tensor field of
T(Mn) with repsect to U x En

 (Λ?,^). We shall call this ξ the extended tensor
field or an extension of the contravariant (mixed and covariant) tensor field
ξ of Mn.

When ξvs are components of a contravariant vector field of Mn, then
(0, I*) are components of a contravariant vector field of T(Mn). Hence, it
follows that (0, ξ*jVj) are components of a contravariant vector field of T(Mn\
If we subtract the last vector field from the extension of ξ, we can see that
the following Lemma is true.

LEMMA 3. If ξvs are components of a contraυaήant vector field of Mn, then

(0, ξι) and (ξ1, —\L\ ζ5vk) are contravariant vector fields of T(Mn).

COROLLARY. Suppose that U be a coordinate neighborhood of Mn and take
a contravariant vector field of T(Mn) whose components with respect to U x E*

are (v\ ~ \L\ vjvk). Then, the vector field in U x E" has the same form in

(U x EP) Π (V x En) for every coordinate neighborhood F x F such that U f] V
is not empty.

In the same way we can state the following Lemma.

LEMMA 4. If ξiS are components of a covariant vector field of Mn, then
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(f,, 0) and ( {fyξiP5, h) are covariant vector fields of T{Mn).

3. The Riemannian metric of T(Mn). Let g51c be the fundamental
metric tensor of Mn with respect to a coordinate neighborhood U(xι). Then

(3.1) ds? = gjk(x)d4d*

is the line element of the Riemannian manifold Mn. Now we shall define a
line element of T{Mn) in U x En by

(3.2) tf<r2 = g^xyW&fi + gJk(x)D^Dvk

f

where Z> j means the covariant differential of v\ i.e.

(3.3) .D* = dv>

{lint b e i n £ ChristoffeΓs symbols. It is clear that the right hand side of

(3.3) is invariant under coordinate transformations of Mn and positive definite.

In the following we shall consider the tangent bundle T(Mn) as a Reiman-

nian manifold endowed with the metric (3.2).

Now, the components of the fundamental (covariant) metric tensor of
T(Mn) with respect to U x En(x\ υι) can be obtained by putting (3.2) in the
form

(3.4) do-2 = GJKdxJdxκ.

We can easily see that

(3 5 )

where [λ/, k], \ Λ are ChristoffeΓs symbols of the first and second kind of

Mn respectively.
We can explicitly give the contravariant components of the fundamental

tensor of T(Mn). This is easily done by solving the equation

(3.6) G,*G«=δJ»

thinking Gτκ as unknown variables. The result is as follows:

= g>*,

(3.7)

The condition of orthogonality

GBcdxBBx° = 0

of two vectors dxA, BxA of T(Mn) can be written also as

(3.8) gjtdtfSxfi + gjjcD&Δv* = 0,

provided that
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Tangent vectors of the fibre at a point P(x\ vl) ^U x E" have components

of the form (0, hvι). Hence, we can easily see that vectors at P which are

orthogonal to the fibre at P have components {dx'\ dυι) such that

(3.9) dυ* + {jk} = 0.

The last equation is nothing but the defining equation of the parallel dis-
placement, so the w-dimensional plane Hn in the tangent space of T(M)n at
P and orthogonal to the fibre at P is nothing but the horizontal plane in the
sense of modern theory of connections based on the theory of fibre bundles.

The set of all horizontal planes Hn of T(Mn) constitutes an w-dimensional
distribution H in T(Mn).

THEOREM 1. The distήbution H in T(Mn) is involutive if and only if the
Riemannian manifold Mn is flat.

PROOF. By virtue of (3.9) we see that

Xa:

are n vector fields of T(Mn) such that they span the w-dircensional plane of
H at every point of T(Mn). So, to prove Theorem 1 it is sufficient to show
that [Xa,Xh] is a linear combination of Xc, i.e. a relation of the form

[Xa, Xb] = OC^hXc

holds good if and only if M is flat, where [Xa, Xb] means the Poisson bracket
of T(Mn).

Now, we can easily verify that

[Xa, XυY - 0,

[Xa,Xf>y^-R\abv\

Hence, if H is involutive, then we may easily see that R^ = 0.
Conversely, if Mn is flat, it is clear that H is involutive. Q.E.

Let U be a coordinate neighborhood of Mn with coordinates ΛΓ* and

(3.10) C: xι = x\t) a^t^b

be a curve of class C1 in U. Through any point (λ*(0), #'(())) of U x E™, there
passes a curve

(3.11) C: xι^X{t\ v'^υKt), aStSb,

which satisfies the differential equation

The curve C is characterized geometrically by the fact that the projection
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of the point P(t) corresponding to the value t of CΊies on the fibre passing
through the point Pit) of Mn corresponding to the same value of t of C and
the tangent vector of C at P(£) lies in the horizontal plane at Pit). We shall
cajl such a curve C as a lift of C. Every lift of a curve C of Mn induces a
vector field v\t) along C, which we shall call the induced vector field by the
lift.

Of course the notion of a lift of C can be naturally extended to any
curve C of class C1 which is not contained in a single coordinate neighbor-
hood of Mn. The following theorem is an immediate consequence of our
definition.

THEOREM 2. If a curve C of T{Mn) is a lift of a curve C in Mn, the vector
field induced by C is parallel along C in Levi-Civitds sense. Conversely, any
vector field parallel along C in Levi-Civitds sense can be regarded as a vetcor
field induced by a lift of C.

Any curve C of T(Mn) such that the tangent vec or at every point P(t)
of it lies in the horizontal plane at Pit), in other words orthogonal to the
fibre, is called a hoήzontal curve.

THEOREM 3. Any curve C of T{Mn) is horizontal i.e. orthogonal to the
fibres it passes, if and only if it is a lift of a curve of Mn.

4. The geodesic flow. The differential equations of geodesies in Mn

with respect to a coordinate neighborhood U(xι) can be written as

tΛ 1\
d t _ .

If we take an open covering {£/λ} (λ € / , / an index set) of Mn and consider
vector fields on U\ x En having components

(4.2) (v\ _

for every U\ of the covering, then by the Corollary of Lemma 3, we can see
that all of these vector fields for every Uk x E are unified to a vector field
over T(Mn).

Let Po be a point of T(Mn). Then, there exists one and only one solution
P(t) of (4.1) which has the initial condition "for t = 0, Pl(0) = Pb". If we
think PQ as an arbitrary point of T(Mn), then the correspondence Po -> Pit)
defines a homeomorphism Tτ of T(Mn) for every value of t. The homeomor-
phisms Tt{ — oo < t < + oo) constitute an Abelian group which we shall call
the geodesic flow of Mn. P(t) ( — oo < t < oo) describes a curve which we
shall call a trajectory of the geodesic flow.

As the vector field having components (4.2) in every U\ x E" defines the
geodesic flow, we shall call the vector field as GF-vector field for brevity.



DIFFERENTIAL GEOMETRY OF TANGENT BUNDLES 345

We get easily the following

THEOREM 4. In the tangent bundle T(Mn) of any Riemannian manifold
Mn, every trajectory of the geodesic flow is a lift of a geodesic of Mn such that
the induced vector field along the geodesic is the tangent vector field of the
geodesic. It is orthogonal to the fibre it meets.

The covariant components of the GF-vector field is easily seen to be

(gu{χ)v\ 0).

In 1 we have defined the incompressibility of vector fields. Using this
notion, we shall prove a theorem which is an analogue of a theorem of
Poincare for the case of a surface in Euclidean space E3. We begin with a
lemma.

LEMMA 5.

(4.3)

(4.4) 9 ^ . G « = o.

PROOF. If we put (3.5) and (3.7) into the left hand side of (4.3), we get

* „,,„.

which can be easily simplified and gives the value 4WΛ

In the same way we can prove (4.4), the calculation is simpler than the
case (4.3).

THEOREM 5. The geodesic flow is incompressible.

PROOF. TO prove the theorem it is sufficient to show that the GF-vector
field in T(Mn) is incompressible. We put

(4.5) ψ^v\ f»+* =

Then the incompressibility of GF-vector field is expressed as

The last equation is transformed to

ox1 ^ 2 a

Hence, by Lemma 5, we see that
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which is to be proved.

5. Theorems on vector fields.

LEMMA 6. In order that the extended vector field ξ of a coυaήant vector
field ξ of Mn be a gradient, it is necessary and sufficient that ξ itself is a
gradient.

PROOF. By virtue of the definition (2.7) of ξ we can easily see that our
assertion is true.

REMARK. The Lamina is also true if we replace T£ by the vector field
(&,0).

THEOREM 6. In order that the extended vector field ξ of a contravariant
vector field ξ of Mn be an incompressible vector field, it is necessary and suf-
ficient that ζ itself is an incompressible vector field.

PROOF. The divergence of a vector field ψoί T(Mn) is given by

By virtue of (4,3), (4.4) and (2.6), we can transform the last equation
easily to

which proves our assertion.

THEOREM 7. Let ξι be a vector field over Mn. Then, the vector field (0, ξ*)
over T(Mn) is always incompressible.

PROOF. By virtue of (4.3), (4.4) and (5.1) we can easily see that our
assertion is true.

THEOREM 8. Let Mn be a Riernmnian minifold whose Ricci tensor is
equal to zero. Then, the extended vector field of a coυaήant harmonic vector
field ξ of Mn is harmonic in T{Mn) too.

PROOF. The conditions that a covariant vector field ξ of Mn and its
extended vector field ξ of T(Mn) be harmonic are given by

(5.3) ft.^fo.i, ff, = O (ξ
and

(5.4) ¥W = ¥J,I, & = 0 @

respectively. By virtue of Lemma 6, (5.4\ follows from (5.3)i. Although ξ

is an extension of a covariant vector field ξ of Mn, ξ is not an extension of
the contravariant vector field f because the contravariant fundamental tensor
field GTJ is not the extended tensor field of the tensor field g*K Hence, (5.4)2
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is not a direct consequence of Theorem 6. We have to prove (5.4) by another
way.

As we have seen in (5.2),

(5.5) ξr *t+ 4 ^ +

where ξι and ξn+i are given by

Replacing (2.7) and (3.7) in the right hand side of the last two equations,
we see easily that

(5.6) j * +t J
λ ' f i \ξiυkvμ

Putting these in (5.5) and making use of the relation

we get

(5.7) t',i = Rj*Pvk

By assumption Rjk = 0, hence we see that

£Γ/=.O. Q.E.D.

THEOREM 9. Let ξι be a coυaήant vector field over Mn. Then, the vector
field (ξif 0) over T(Mn) is harmonic in T(Mn) if and only if ξt is harmonic in
Mn.

PROOF. AS ξ* is harmonic in Mn, ξt is a gradient in Mn. Hence, by
the remark after Lemma 6, (ξif 0) is a gradient in T(Mn).

Now the contravariant components of (&, 0) are easily seen to be

(ξ\ — \k\\ 9***^1:?), where we put ξί=gijξj. Accordingly, we see that the

divergence of the vector field of T(Mn) in consideration is given by

ox1

Hence, '(ft, 0) is a harmonic vector field over T(Mn). The proof of the con-
verse is easy.

6. Group of isometries. Let U and U be two coordinate neighborhoods
of Mn with coordinates x1 and tfα respectively. It is well known that the
mapping/:
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(6.1) x'a=xfa(x\ ....,xn) xι € U

of U onto U' is an isometry of U onto Uf if and only if the relation

(6-2) 9jϊ) = -™a^ϊ9iM

holds good.

THEOREM 10. In order that the extended transformation f .

tf« = χ-\χ) x £ U

(6.3) ox'a t

Q/*/ is an isometry of U x En onto U' x En of T(Mn), it is necessary and suf-
ficient that f itself is an isometry of U onto Uf.

PROOF. If we put

χn+i = vt9 tfn+a = v'a

and write (6.3) as

(6.4) x/Λ = xfA(x\ . . . , , x 2 n ) ,

then it is sufficient to show that the relation

(6.5) GAB{xf) = -ξ£ ^

holds good when and only when (6.2) holds. We shall first prove the
necessity.

The case where A = n 4- a, B=n 4- b. In this case, it is clear that
(6.5) reduces to (6.2) itself.

The case where A = n + a, B — b. In this case, we can easny verify
that (6.5) reduces to

(β.β) [pb.an*)** = ft* (-IS tv. a* + a ^ r *>*,) •
On the other hand, when (6.2) holds good we can easily derive from (6.2)
the following relation:

(6.7) [bcaW) = ψ^ (-g-g; ϋk, .1 +
If we mutiply v'c to both sides of the last equation we get (6.6).

We shall remark here that we may get

\bc) W -

by virtue of (6.2) and (6.7).
The case where A = a, B = b. In this case, we can easily verify that

(6.5) reduces to
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However, the first term of the left hand side and the first term
in the bracket of the right hand side cancel to each other by (6.2). If we
put (6.8) into the second term of the left hand side, then we can easily
verify that the last equation reduces to an identity. Consequently, (6.5)
follows from (6.2), which is to be proved.

The proof of the sufficiency is clear.

The following corollaries are immediate consequences ot Theorem 10.

COROLLARY 1. Suppose f is an isometry of Mn, then the extended mapping

f of f is an isometry of T(Mn).

COROLLARY 2. If a Riemannian manifold Mn admits an r-parameter Lie
group of isometries, then the tangent bundle T(Mn) admits an r-parameter group
of isometries too.

Suppose that

(6.9) tf* = x1 + ξ\x)ht

be an infinitesimal isometry of Mn, i. e. ξ\x) be a Killing vector field of ΛΓ*.
Then, the equation corresponding to (6.3)2 is easily seen to be

(6.9)' vfί = vί + ~vj8t.
ox

So, the equation corresponding to (6.4) is

* " = xι + ξ'δt

where ξι is the extension of ξι. Hence, we get the following Corollary.

COROLLARY 3. In order that an extension ξ of a contraυaήant vector field
ξ of Mn be a Killing vector field of T(Mn), it is necessary and svfficient that
ξ itself is a Killing vector field of Mn.

THEOREM 11. If a Riemannian manifold Mn admits a parallel vector field
ξ\ then the tangent bundle T(Mn) admits a Killing vector field (0, ξ *).

PROOF. Consider first a vector field of the type (0, ξn+i) and seek for the
conditions in order that it is a Killing vector field of T(Mn). In this case
the Killing equation of T(Mn) is, analogously to (1.2)", given by

(6.10) ^ e - - + %ε~GJn.t + °ξχJ-Gn+( , = 0.

When / = j and K = k, (6.10) reduces, by virtue of (3.5), to
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The last equation can be easily transformed to

(6.11)! [λ/, i]ξ^k + [λ£, φ»+J, = 0,

where we have put

μn+ι. — _^b_ L ?, £n+j

^ >* ~ a#* + (jki sr

When / = y and K = n-{- k, (6.10) reduces to

[ft k\ξ^ + ^ gkt + mi- [λΛ Φ λ = 0,

which can be transformed to

(6.11), cnciξn+f;j + ^ § ^ [λΛ ι]tΛ = 0.
When J=n + j , K = n + k, (6.10) reduces to

(6.11)3 • % * - * * + 3 ^ " , = 0.

The three equations (6.11) are satisfied if ξn+ί is independent upon v and
ξn+\k = 0. Hence, if we replace p + i by a parallel vector field ξι of Mn, we
see that (0,ξι) is a Killing vector field of T(Mn). Q.E.D.

THEOREM 12. Suppose that a Riemannian manifold Mn admits p linearly

independent parallel vector field ξι

a (a = 1, ,p) and gP be the group of transla-

tions of Mn generated by Xaf — £i^wΓ V ϋ%> *5 o,n invariant subgroup of the

maximal connected group of isometries Gr of Mn

f then the tangent bundle
T(Mn) admits an (r + p)-paranιeter group of isometries.

PROOF. Let

be differential operators which generate Gr and the first p of them generate
gP. Of course, ξ\9 s are Killing vector fields of Mn, especially the first p of
them are parallel vector fields of Mn. Then we have a relation of the form

where cKμ

v's are constants of structure of Gr

Now, we put

ax'
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then, by virtue of Corollary 3 of Theorem 10 and Theorem 11, Xk and Ya

axe r + p linearly independent Killing vector fields of T(Mn).
We want to show that these r-\-p vector fields generate an (r +^-para-

meter group.

First, as X\s axe extensions of X\, it is evident that

(6.12)! [*λ,Xμ] = <VX.

In the next place, we can show that

by virtue of the assumption that gP is an invariant subgroup of Gr. Hence
we get

Finally we can easily see that

(6.12)3 [Fα,y6] = o.

The three equations (6.12) show that Xλ, Ya generate an (r + ̂ -parameter
group of isometries of T(Mn). Q.E.D.

All isometries of T(Mn) treated in this section are fibre preserving
isometries. It may be a problem to study isometries of T(Mn) which are
not fibre preserving.

7. Geodesies of T(Mn). First we shall calculate ChristoffeΓs symbols
of the fundamental metric tensor GJK of T(Mn). By virtue of (3.5) and

(7.1) UK9H] = ^{-

we can verify that

'OGJ

σx'

(7.2)

[« + j n + k, H] = 0,

2 g α

a ) '

υ\

- [A «+i-[ Wϊlμh
axk

ax3

ox*

By virtue of (7.2) and
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(7.3)

we can verify, after some long calculations, that

(7.4)

n + jn + k) -° '

i \ _ 1_ Rι υ\

ίϊί = {*
n + i 1 - JL ( pi
j k ) ~ 2 \Kjκk

Now, we shall express the differential equation of geodesies of T(Mπ),i.e.

(7.5)
dσ2

ί I I dxL dχEL - a
\JK) dσ dσ ~ U

in terms of quantities of Mn.
When 7 = i, (7.5) can be rewritten, by virtue of (7.4), as

\ 4 Pi

This is easily transformed to

"rfσ- *

When I = n-h i, (7.5) can be rewritten, by virtue of (7.4), as

(7.6)

However, if we use the relations

= 0.

dσ dσ

D2vι __ dW
dσ* dσ2

dxk i\Dvι

dσ
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d2vι

and eliminate-^-2-from (7.6), we see that (7.6) reduces to a simple form

dσ2 ~ υ

Hence, the differential equation of geodesies of T(Mn) becomes as follows.

dσ2' + \jk) dσ dσ ~ Kj^ dσ V dσ >

dσ1

THEOREM 13. Every lift of a geodesic of a Riemannian manifold Mn is a
geodesic of the tangent bundle T(Mn).

PROOF. For the lift in consideration, the relations

ί ) dxj dxk

dσ2

Dvι

hold good. Hence, (7.7) is satisfied identically. Q. E. D.

By virtue of Theorem 4 we get the following

COROLLARY. Every trajectory of the geodesic flow of a Riemannian manifold
Mn is a geodesic of the tangent bundle T(Mn).

THEOREM 14. The necessary and sufficient condition that a curve C of Mn

has a lift which is a geodesic of T(Mn) is that C itself is a geodesic of Mn.

The proof is evident.

We shall call a curve in Mn which may be regarded as the image of a
geodesic of T(Mn) as a submaήne geodesic of Mn. Of course, every geodesic
of Mn is a submarine geodesic of Mn.

THEOREM 15. If Mn is a flat Riemannian manifold, then every submaήne
geodesic is a geodesic of Mn.

The proof is evident.

A curve in Mn is said to be a spacial curve if the development of the
curve in the tangent space of a point on the curve lies in a three dimen-
sional linear subspace of the tangent space. Then, we get the following

THEOREM 16. If Mn is a Riemannian manifold of constant curvature K
then every submarine geodesic is a spacial curυe.

R)kl =

PROOF. AS Mn is of constant curvature,

Hence, (7.7) reduces to
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d2x' , ( i\ dx} dxk („ dxs Dvk \ , / „ • dx> Λ Dvι

rfcr2

do-2 " υ

dxι

The last equation shows that covariant derivatives of higher orders of —* —

Dvι

are always linear combinations of υi and —. — . Hence, the 7r-image of any
geodesic of T(Mn) is a spaoial curve.

Now, as every fibre of the bundle T(Mn) is a tangent space of M" we
may speak of straight lines on a fibre.

THEOREM 17. Every straight line on a fibre of the tangent bundle T(Mn)
is a geodesic of T(Mn).

PROOF. Let C/be a coordinate neighborhood of Mn containing the point
xl which is the projection of the fibre. Then the straight line in considera-
tion can be expressed as

xι = xl υι = aH + b\

where Λ£, a1 and bι are constants. Hence, (7.7) is satisfied identically.

THEOREM 18. Every fibre of the tangent bundle T(Mn) of a Riemannian
manifold Mn is a totally geodesic submanifόld of'T(Mn).

PROOF. The induced metric on every fibre is easily seen to be Euclidean.
So any straight line is a geodesic of the fibre with the induced metric from
T(Mn). Hence, by virtue of Theorem 17, every geodesic of the fibre with
the induced metric is also a geodesic of T(Mn), therefore every fibre is a
totally geodesic submanifold of T(Mn).

In this paper we have studied only properties concerning the metric
tensor and ChristoffeΓs symbols of T(Mn). We shall leave the discussion of
properties on the curvature tensor in later papers.
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