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According to the results of M.Berger (M. Berger, [1], [2], [3]), it is known
that the restricted homogeneous holonomy group of a non-symmetric, irredu-
cible N-dimensional Riemannian manifold Vy is one of the followings: SO(N)
(full rotation group), U(m) (unitary group; N = 2m), SU(m) (special unitary
group; N = 2m), Sp(n) (unitary symplectic group; N = 4n), Sp(n)Q T', Sp(n)
@ SU(2) or some other exceptions. The Riemannian manifold with restricted
homogeneous holonomy group U(m) or SU(m) is characterized by the fact
that it is pseudo-kaehlerian or pseudo-kaehlerian with Ricci tensor zero
(Iwamoto, [1]; Lichnerowicz, [8]). The purpose of this paper is to study the
4n-dimensional Riemannian manifold whose restricted homogeneous holonomy
group is the real representation of the unitary symplectic group Sp(») or one
of its subgroups. Since the group Sp(n) is a subgroup of the special unitary
group SU(2n); our manifolds in consideration are special pseudo-kaehlerian
manifolds. In Part I, we treat local properties and in Part II the theory of
harmonic forms and the cohomology theory.

PART I

In this Part I, unless otherwise stated, the summation convention will
be used and the indices run over the following ranges:

Lk ... =12, ..., ..., ..., ..., 4n;
aboc,.... =12,...., n;

oaB,y ... =12 ..., ...., 2mn;
a,B,y.... =1+2n 2+2n, ...., 4n

1. Preliminary remarks. Let C., be a 2n-dimensional complex Cartesian
space. Unitary symplectic group Sp(n) operating on C.. is a subgroup of
anitary group U(2n) which leaves bilinear form

ZEAWTT = (2w — 2% ) )2 ((2%), W*)eCuw)
invariant and it is necessarily special unitary. Hence, the necessary and
sufficient conditions that a linear endomorphism of C.,

1.1) 2 = Uga® ((Ug): complex matrix of order 2x)

be unitary symplectic are as follows:

(i) U = (Uj) be unitary, that is, ‘UU = Ewm (Ey: unit matrix of order 2n),
where the bar over U denotes the complex conjugate of U and ‘U the
transpose of U.

(i) U leaves the matrix ( 9 E. %‘) invariant, where E, denotes the unit
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matrix of order #.
Such a matrix U is called unitary symplectic. The condition (ii) is
equivlent to the fact that U be of the form

(1.2) U= (g '2"®>’
where 3, ® denote complex matrices of order n. If we put
S=P+Ri, ©=Q+Si (i=+—1)
where P, @, R, S denote real matrices of order #», we have a real representation
of (1.2):

P —Q —-R -8
@ P -S R
1.3 T=\r s P -@
S -R @ P

The condition (i) implies that this T be an orthogonal matrix. Therefore,
with respect to an orthogonal base [e.], a transformation of Sp(#z) is expressed
by

(1.4) & ="Te,

where T = (T%) is an orthogonal matrix of the form (1.3). With respect to a
new base [e;] which is obtained from [e;] by an imaginary transformation

(1.5) ¢ = :/1—_2: (e, —iez), €= :71-7— (ex + i2)
the transformation (1.4) takes the form
ex=T}ée,
where
P+Ri, —Q+Si 0
(1.6) D= Q+ Si, P —Ri PoRi —Q—Si - ((T)J [2)
0 Q —Si, P+ Ri

By an orthogonal matrix of the form (1.3), the three matrices

%‘ 1(2)"8 8 8 g l(i)‘"ﬁf‘) 0 0 0 Eu

[ —E, _ ' _ 0 0-—-E»0

(1.7) I—( 0 0 0 —E,.)’ ]—<—E,, 0 0 0)’ K_( 0 E,0 O)
0 0 E, O 0 —-E.,0 0 —E,0 0 0

are left invariant, that is, *TIT = 7, etc. Among these 7, ], K there are fol-
lowing relations:

I P=pF=K=—-Eum

{(II) I =°]] =*KK = Epn

) 1J=-Ji=K, JK=—-KJ=1, KI=—-IK=].
The necessary and sufficient condition that an orthogonal matrix be unitary
symplectic is that it is conjugate to a matrix which leaves the three matrices
(1.7) invariant.

1.8)

2. Characterization of V,, Let V., be a 4n-dimensional Riemannian
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manifold of class C"(r = 2) whose restricted homogeneous holonomy group A°
is the real representation of Sp(n). With respect to a suitable orthogonal

frame of reference, there exist three covariant constant tensor ﬁelds L], K
o @
of the form (1.7). Let F (components F*;), F (components F‘,), F (components
F‘, be the three tensor fields 7, J, K with respect to the natural frame of
reference of Vi respectively, then the relations (1.8) assert that
) <z) 3)

[ Fi= = = ~Eu,
ORI (3) ®
i (I1) ”F =FGF ='FGF = G,
e am 6 @O ®AO O W me @
(Ill) FF= —FF=F, FF= —FF=F, FF= —FF =F,
where G means the matrix of (g:;) of the fundamental metric tensor of Vin.
It is remarked that using the relations (I), (II) and one of (III), the other

two relations of (III) can be proved.

2.1)

M @ @ .
If we use the components of ¥, F and F, (2.1) is also written in the
following forms :

1) ) @ @ 3) ) .
J (1) FiF*y = F4WFt = iy F* = —§,
[OXY) ) (2) (3)3)
@.1) AD  gisFeFn = guF ' = 9iiF%Fh = Gy

1) (2)(1) 3 ©3) B 3 @ O ®3) (1) 1) (3) )
(i) FoF%=—F.F=F%, F4F4=—F ka;-— 5, FxF%= — FuFty—F,
If we put

o @ @ @ ®, ®
2.2) gixF*; = Fyy, 9uF ‘5 = Fij, g F* = Fyj,

om
then Fi;, F.;, F;;are anti-symmetric tensor fields. This fact is easily verified

from (I) and (II) of (2.1').
Now we have seen that if the reb’crlcted homogeneous holonomy group of

Vu is the real representation of Sp(n), then there exist three covariant
m 0 @ @ @
constant tensor fields F = (FJ ), (F”j) and F = (F') over V, satisfying (2.1)

or (2.1) in each coordinate neighborhood.

We shall prove, conversely, that if there exist three covariant constant
tensor fields over Vi, satisfying (2.1) or (2.1’) in a 4n-dimensional Riemannian
manifold Vi, then the restricted homogeneous holonomy group of Vi, is the
real representation of Sp(n) or one of its subgroups.

[}
LEMMA 2.1. Let w be an arbitrary non-zero vector field. Then w', Fiz#,

@ @)
Fyw and F gd are mutually orthogonal. If w is a unit vector, then the other
three are also unit vectors.

Proor. The orthogonality of #' to the other three is evident from (2.2).

o) @ . . .
The orthogonality of F*’ to F*j’, for example, is verified as follows:

) (2) (1) (2) (1) (2)
g1 5(F42é) (Fhyis®) = FuFn v 6 = —guFyFh ot wh
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® ®
= —gu Fndvtu = —Fgu*u = 0.
If #* is a unit vector, then the [other three are also unit vectors by vitue of
(II) of (2.1).
LEMMA 2.2. Let wt be an arbitrary non-zero vector field and v' be a vector
) @ [6))
field which is orthogonal to all of four vectors u', Fu', Fiy' and Figd. Then,

Q@ @)
F', Fu, F'p) are mutually orthogonal and orthogonal to all the other five

vectors.

. m o @ @ .
Proor. For example, the orthogonality of F4 v/ to #!, F,u’ Fiw!, Fyd/ is
. - ay (2)
verified as follows. By assamption, v’ is orthogonal to all of #!, Fiu', F';u
@)
and F';u', we have
gisutv’ =0,
)
_qU(F”ku")vJ = 0 or
) )
F, i5 wvi=0
and similarly
@ ) ®
Fyuwv=0, Fyuov=0.
Hence we see that

M o ORI
gt (Fptf) = Fudd v* = 0, g, 5(F% o) (Fhv*) = g v* v" = 0,

@ ) ®) 16) W @
915 (B t) (F40™) = Fuy 6* 0" = 0, g.5(F% 4*) (Fw") = — Fin s 0" = 0.
‘The others can be proved similarly. g.e.d.

By the aid of above two Lemmas, we prove that the restricted homoge-

neous holonomy group 7° of our Vi is the real representation of Sp(n) or
o @ @
one of its subgroups by showing that F, F, F can be taken in the form (1.7)

by choosing a suitable orthogonal frame of reference [e, &, ...., ey].

At first, choose an arbitrary unit vector as e, then its components are
m 6 ®
8. The three vectors (components F, F, F 1) obtained from e, by performing
w @ ® .
collineations given by F, F, F respectively, are mutually orthogonal by

Lemma 2.1. If we choose these vectors as — €,:1, — @mi1, — €m41, then
with respect to such frame of reference, we have

) (2) @3) 1
Pty = 1, Bty = 1, Fy = ]

W @ ®
and the other F4, F4, F4 are all zero.
Next, choose a vector which is orthogonal to all of the above e, e,

em+1 and ;.41 as e;. Then the components of the last vector are 8%. The three

on @ . i . o e @
vectors (components F%, F';, F%) obtained from e, by collineations F, F, F

respectively are mutualy orthogonal and orthogonal to e, €..1 @m.1, €ms1 by
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Lemma 2.1 and 2.2. If we choose these three vectors as — €j.2, — €ma2,
— e3ns0, then with respect to such a frame of reference

) 2) (3)
I;‘n+12 — _1, F‘2n+12 — __1’ I,‘3n+12 —_— _1

o @ 6
and the other F%, F%, F'% are all zero.
Repeating similar process # times, we get an orthogonal frame of refe-

rence. Taking account of the fact that with respect to this orthogonal frame
o @ @)
of reference, F'; F'; and F'; are anti-symmetric with respect to the upper
[ I N C) W ) e ®
and lower indices, we see that F=(F%), F=(F) and F = (Fy) are of the
forms

0 E. 0 O 00 E, 0 0 0 0 E,
(Il'l__ —E"X: X X3 1(5’)_ 0 V1Y Ys 1(73‘)— 0 7, Z, Zs
- 0 X\ X, X; )" |\-EY Y, Y, )| 0 Z Z Z,
0 X' X, X; 0Y, Y'Y/ -E, 2" Z} Z
respectively, where X1, X5, ....; Y, Yy, ....; Z1, Z:.... denote real matrices
of order . From (I) of 2.1, we have
_En AXI X.’ X3
©) — X
F= _ Xi * = —FEu
— Xl’
hence
X=X=X=X,=X'=0.
(2) )
Similarly, from F? = F*= —F,, we get
Y=Y =Y,=Y,=Y, =0,
Z:;:Z:;:Z;/':Z2”=Z;=O.
o © @ .
So, F, F and F have the following forms:
0 E,0 O 0 0 E,0 0 0 0 E,
1(;]‘)= -E, 0 0 O g?z 0 Y0 Y, OF 0 Z, Z, 0
00X, X3/ -E.,00 O ) "7\ 0 Z Z 0}
0 0 XXy 0 Y'0 Yy —E. 0 0 0
. 0we  ®
By virtue of (III) of (2.1), that is, FF = F, we have
0 Y1 0 Y5 0 0 0 E.,
“Fl(‘-’)_ 0 0 —-E., O _%_ 0 Z Z, 0
\-X, Xy, 0 XxXy/) T\ o0 Z, Z, 0 ),
—X, XY, 0 XY, —E, 0 0

hence we get
X‘;:O, X;,=E,., Y. =0, Ys=FE., Z1=0, Z:= —E,, Zé':o

. O @ 3) . .
Since ¥, F, and F are anti-symmetric, we find
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Xo=—En, Y, = —En, Z = E,.
Hence, from X; ¥; =0 and X; Y. =0, we get
X/ =0, Y/ =0

respectively.

@ @ 3
Consequently, we find finally that F, F, F are of the form

0 E, 0 0 0 0 E.0 0 0 0 E
o [-E,00 0 )\ @[ 0 0 o0&\ @[ 0 0E0
F=l "0 0—£ )=l 0 00 7=\ 0 E. 0 0

0 0 En 0 0—FE, 00 —E,0 0 0

These three tensors being covariant constant, hence left invariant by the
restricted homogeneous holonomy group #°, which means that #° is Sp(n) or
one of its subgroups as mentioned in §1.

THEOREM 2.1. If the restricted homogeneous holonomy group of V. is the
real representation of Sp(n) or one of its subgroups, then there exist covariant

o @
constant tensor fields F*;, F', and F';over Vi, satisfying (1), (II) and (III) of (2.1’).
The converse is also true.

3. An example of 4-dimensional case. We shall show an example
of 4-dimensional Riemannian manifold V. with homogeneous holonomy group
Sp(1), following to Prof.T.Otsuki’s method.?.

At first, we shall investigate the necessary condition for such a V..
Introduce in V. an orthogonal frame of reference [P, ¢] (: =1,2,3,4), then
the connection of V. is given by
3.1) dP = wle;, de; = (A)"jei ,
where of, »'; are Pfaffian forms with respect to the coordinate neighborhood
(#*, 2%, %3, %) of Vi. The structural equations are given by
3.2) do' = o’ \ 0, do'y= 0" A\ os+ QY (G, ka=1,23,4).
We can easily see from the remark of §1 that

ol = 0%, 03 = —0% o= o,

since the homogeneous holonomy group is Sp(1). If we put

oh =0’ =60, o= —w’=~0; oiy=ws=_0,,
then the structural equation can be written as
dow® = > A+ 0 A\ b+ ot A Gy
(33) dw2=—w1/\02 +w3/\04—w4/\93
) do® = —w' N\ 0 — o \ O, + ot A 0,

dw*= —w' AN Os+ o> NO; —0® A\ O,

1) Prof.T.Otsuki set forth some examples of fundamental forms of 4-dimensional
Riemannian manifolds with homog. holonomy group Sp(1) (Otsuki, [6]), but it
seems to contain some errors. The details of his method should be referred to his
paper.
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and

df, = 20; A\ 6, + QF,
3.4 dfs =20, \ 0.+ Q'

ld& =20; \ 6; + Q%
Let 7, j, 2 be the imaginary units of quaternions and put

o = o' + o + jo? + ko, T = 10, + j0; + kO,
If we define formally dw, I' A ®, then (3.3) can be represented by
3.5 do =T Nw
We can see that o is reducible to the form
o = a{dx' + idx* + II(d¥® + i dx*)}

where I is a quaternic function and @ is a real function. Substituting w, I"
in (3.5) and eliminating 6,, 6; and 6,, we have a differential equation for II:

oll — oIl oIl oIl .
U+ oalli— 55— 25 i=0,

where II is the qua‘ernic conjugate ot II.
Put II = b, + b, + jb, + kb, then the fundamental form of V, becomes

3.6)

4
ds? = a@[(dx')? + (dx®)? + 2 b{(dx®)? + (dx%%}
r=1
+ 2B (dx' dX° + dx® dxb) — 2b, (dx dxt — d® dad)],
we may put b =0 and consider the special case where b, = 0. Then the
dfferential equation (3.6) for b, and b; becomes

R _ b A
Roy =%k RE =34,
81? _ abl abl_
lRoxs“ o B+ 25
oR _ abl b,
where R? = b + b2. These are satisfied for example by

1
b =cx+ ', by = {2(cxt + ¢'2%) + (cx® + 2} 2,
where ¢ and ¢’ are non-zero constants and we have

! = ada? + ab, dx® ,

(3- 7) } o? = adx® + ab, dx“,
wf = ab, dx®,

ot = — ab; dx*

Putting 6, = p: d¥*, 6; = qidx', 0, = r.dx* and substituting these and (3.7) in
(3.3), we get after long but straightforward calculations,

' ol 91 _ ol
3.8 ;=00 0= 2080 p= 8L p = - CEE,
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_,_1¢ ologa _ 2loga) _

(3.9) D=R= g, (bl oxt ox? )* 0,
' t=n= A (n2l8a _ Dlogay_,
! ! b, ' ox? oxt ’

c ologa ologa

(3.10 &= "5 —bs _'ax%_ =-n=b _é‘x%“ ’

10 _,,M_ = _ ¢ _p Ologa
s=03 "5 =N = b, s ot -

From (3.9), we see that log @ must be a solution of differential equations
oS _F o 5P

~

o T ot

1o T ol
Solving these we find

= 0.

loga = —%logb3

as one of the solutions. This satisfies (3.10) and some other relations imposed
to pi, ¢ and 7 by (3.3). Hence we find finally
o e € _Ch by
Pi=—ogprs 2= gpr P gy D= g
a=q@=n=n=0,

4 C
43=—7’4=“‘§b;s Q4=7'3=—‘2—b:.

’

Consequently, the structural equations (3.3) are fulfilled by (3.7) and
0y = — —2%7(0'(1:0 —cdx* + ¢ b, dx* — ch dxy)
3
loo 1
0;= — %, (cd®® + ¢’ dx%)
1 s
0, = % (c'dx® —cdx®

where

a=bF = {2ew + OH) + (o + )T

1
L1 =cx + c'xt, by = {2(ct + ¢'*%) -+ (cx® + ¢’ x4} 7,
Furthermore, from (3.4) we see that
QL+=0, Q%0 Q4 =*0,

for non-zero c,c’. Therefore, we consider each domain of the 4-dimensional
number space separated by a 3-dmensional cylindrical surface

2ex + 22+ (¥ + ¢’ )2 = 0.
Then
ds? = a’[(dx")* + (dx®)? + 2{cx' + ¢'2* + (cx®* + ¢'¥)2} {(d¥®) + (dx9)*}
+ 2(cx® + c'x%) (dat dx® + dx’dxt)]

1
(@ ={20cx + ') + (e + )}~ 4, coc’ +0)
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gives an example of an analytic Riemannian metric which defines a Euclidean
connection with homogeneous holonomy group Sp(1) in such domain.

4. Root spaces. The characteristic roots of the equation [2‘)— PE| =0
(E: uait matrix of order 4n) for # = (F;) being ¢ and —i (multiplicity 2)
respectively, there exist two 2xn-dimensional imaginary root spaces L(;‘)) and
Z((}g‘) corresponding to the two characteristic roots 7 and — 7 respectively. A

)
vector x in the tangent space at a point of Vy, balongs to L(F) at the point
if and only if

(65}
F-—-1Erx=0 A=sv=2n ,

but this condition is equivalent to
o))
(F—iE)x=0
6)
by virtue of F?2 = —E.
. . @ o @ o @ 3 3 O
There exist also root spaces L(F), L(£) (F = (F)); L(F), LF)(F = (F)4));

@ o) . o ) O —® .
L(F), L(F) correspondingz to characteristic roots 7 and L(F), L(F) to —i.
These root spaces form (imaginary) parallel fields of 2xn-dimensional
. c oy . . . M @ G
planes respectively which is easily verified from the fact that F, F, F are
covariant constant and from the above remark.
These 2n-planes have no intersections in common except the origin, for,

[¢)) @
if, for example, L(F) and L(F) coatain a vector x in common, we have

(1) (2)
Fx = Fx,
0] ) . ) m .
from Fx = ix, Fx = ix. Operating F to the above equation from the left and
) me @
taking account of F?2= —E, FF = F, we get

@)
—x = Fx.

®) .. C . . L.
This means that £ have a caaracteristic root — 1, which is a contradiction.
a) (2) )
Next, consider a vector x € L(F) and operating F to Fx = ix from the

left we have

®) (&)} @ @
— Fx=1iFx or Fx=iFx

O G
From this and from FF = F, we see that

M @ ©) @
F\Fx) = Fx= —iFx ,

[COR)) a
that is, for a vector x € L(F), Fx is a vector in L(F). This means that
Q@ = @ _m
FL(F)) = L(F).
@@ —
We can sez analogously that F(Z(F)) = L(F) and so on. Accordingly, we get
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the following

o _m (O 3 _®

TaeOREM 4.1. Let L(F), L(F); L(F), L(F); L(F), L(F)be 2n-dimensional

[ORRCING I o) @ )
ro0t spaces determined by F, F, F; L(F), L(F), L(F) corresponding to the cha-
Wm0 @

racteristic root i and L(F“), L), L(F) to —i. These are imaginary parallel
Jields of 2n-planes which have no point in common except the origin and the
Jollowing relations hoid good :

2 1) G M - @ _ @ 3 Q) (1)

( F(L(F)) = FIL(F)) = L(F), HL(F)) = F(L(F)) = L(F),
3 (@ OIS (2 @) _ @ ) __ 2
(FIL(F) = FIL(F)) = L(F), FL(F) = KL(F) = L(F),
[ IREL @ 3 M __ 2 ) _(3) — 3
FL(F)) = FIL(F)) = L(F), FL(F)) = FL(F)) = L(F),

@ O . o)
where F(L(F)) designates the 2n-plane obtained from L(F) by operating the
@ ®
collineation F = (F;), ec.
5. Connection in complex form. For each point of our V., associate
an orthogonal frame of reference [e], then the connection in V,, is given by

(5. 1) dP = w{et, dej = (Dije/,, (wij = —(t)i[)
where the matrix (o'y)( = —w’) is of the form
® —wt* —o — o
. o~ ~
(5.2) (@)=2 @ T @
123 w* 0w —o*
k;* - w* [} ’

w, o*, ®, o* bzing matrices of order #. Hence, of course, wé see that
5.3) w% = 0%, % = —%
If we perform an imaginary transformation for the base [¢;]:
e, = (e, —ie)IN2, €a = (ey+ie)/n/2,
and we write again [e] instead of [¢]], then (5.1) can be written as
(5.4) dP = mo%e, + mae;, de; = mw'ye,, (and compl. conj.)
where we have put

7 = (0% + i 0%)[/2 = e s

mhs = W% + W = 0% — L% =T,

mag = 7oz = 0.
From (1.2) of §1, the matrix (7w%g) have the form
(5.5) () = (” T ) = (@),

~

T T

where 7, 7 denote matrices of order n: 7 = (7%), = = (7% and (7%s) being
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unitary, we have

(5.6) 7y + 70 = 0, 7 — w0 = 0.
The tundamental form is given by
ds® = &ymim? = 2w aore

0 E 2n>

where (&iy) = ( E 0

Now, if we put
drty = 7y Nl — QY
then Q! satisfies the following relations similar to (5.5):

Q;p = Q"‘E =0,
G.7) } Q) = (9 - 8) = (@%3), @ =(Q%), O =@%)
0

Q%+ 0 = 0, 5"‘1; —5”:; = 0.

A manifold with pseudo-kaehlerian connection (5.4) have Sp(z) as its
restricted homogeneous holonomy group if and only if (7w%) be of the form
(5.5) with (5.6). Then the curvature form {'; satisfies (5.7). We have espe-
cially
(5.8) Py = Q% + Qau =
and the structural equation becomes

am® = 7B N\ 7
(.9 { dmy = 7% A :wy + 0,
under the condition (5.5), (5.6) and (5.7).
If we put

(and compl. conj.)

0% = R¥n7* N\ 7" (conj.), Rip = R ,

it is easily verified that the non-zero components of Regn are R% s =
—R*gsy)and appearently non-zero components of the Ricci tensor Rsy are zero
by virtue of Rgy = R%ys = —R%x37 = 0 and (5.8). So Vi is of Ricci tensor
zero, which is also verified from the fact that Sp(n) < SU(2n).

6. Sectional curvatures. Return to the real natural frame of reference,

(6))] 1)
then F'; satisfies the equation F;x = 0, where the semi-colon denotes the
covariant differentiation with respect to the Christoffoel symbols obtained

Lo . o)) [0) (o))
from g;;. From the Ricci’s identity, we have F\,RYyu = F jRun or Fi Ry =
1)

F4Ru  and hence
(1) (1)

(6.1) F' F™ Ry = Rijin
(Sasaki, [1]; Yano, K and I. Mogi, [2]). Let ¥, 3* be components of two arbitrary
vectors. Then the sectional curvature K with respect to the 2-plane 7 spanned
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by & and ¥ is given by
Rijun, 29 59"

K= — T .
(axgn — Jing w )Xy i xEyh

This quantity being independent from the choice of two vectors in =, we

choose especially two orthogonal unit vectors ¢, ¥ in 7, then K is given by

6.2) K = — R jn #yixtyh,

For two orthogonal unit vectors ¢, 3%, we have again orthogonal unit vectors

o) )

Faf, F4y and the sectional curvature with respect to the plane spanned
) @

by Fiw, F4y! is equal to K, which is easily seen from (6.1) and (6.2).

Thus we get

LemMA 6.1. Let V., be a psevdo-kaehlerian manifold with pseudo-kahlerian
structure F = (F'), then the sectional curvature with respect to an arbitrary 2-
plane  is equal to the one with respect to 2-plane F(r).

. ) [ I
Now, in our V, there exist three covariant constant tensors F = (FY),

@ @ e . L. .
F = (F), F=(F') and hence if a vector &' is given, we can determine a 4-

dimensional linear space L4x) spanned by mutually orthogonal four vectors
o)

@ @)
xt, Fuywd, Fyx) and F;%. An arbitrary vector »* in L,(x) being given in the
form

[T @, e .
¥y = axt + BFY + yFi'x + OF4x (¢, B, vy, &: scalar functions).
)
Hence if we perform a collineation F to &/, then we have
0) o)) ® @
Féyt = aF® &t — Bx* + yF* xt - OF% &*
©)
by virtue of (III) of (2.1). This means that if a vector ¥y € Ly(x), then F(y)
@ O
€ L{x) and we get similar properties for F, F.
THEOREM 6.1. ZLet x be an arditrary vector and L«x) be a 4-dimensional
OIRS) ©)
linear space spanned by mutually orthogonal four vectors x, F(x), F(x), F(x). If =
) (2) @
is an arbitrary 2-planed in L(x), then F(w), F(w), F(m) are also in L(x), fur-

I @ 3)
thermore the sectional curvatures with respect to w, F(w), F(mw), and F(mw) are
all equal.

Using (III) of (2.1), we can see that if 7 is a 2-plane spanned by any
two of x, Ig’()x), %)‘(x) or }72(x) and 7’ is the one spanned by the other two,
then, the 2-plane obtained from 7 by operating 1(51‘3 1(;3)01. Ig)is 7r itself or #'.

COROLLARY 6.1. Let x be an arbitrary vector and w the plane spanned by

0) @ ©)
any two of x, F(x), F(x), F(x) and ©' the one spanned by the other two. Then,
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Lo @ . ,
the plane obtained from = by operating F, F or F is = itself or w' and the
sectional curvatures with respect to m and w' are equal.

PART II

7. Preliminary Remarks. Let Vy be an N-dimensional Riemannian
manifold whose class of differentiability is assumed sufficiently high (so far
as the Hodge’s theorem concerning the harmonic integrals of Riemannian

manifolds be true).
The indices run from 1 to IV unless otherwise stated and the summation

convention is adopted.
To a p-form

@ = j}f@l...w dax....dx'v = @ug,..5, dxM. ... dXFPV < .... < ky)

of the manifold V» we introduce the following operators.
d: exterior differentiation.
p+1

(d71)!1---ip+1 = 2 ('_ l)a Pi, ... ;a-.-ip-;—l,’a

a=1
where ( )iy..:,., denotes the components of the (p + 1)-form in the parenthesis
and the semi-colon denotes the covarinnt differentiation and A the absence
of the undermentioned component.
*: adjoint operator.
(* (/))jh«-jn—p = ’\/Ui Eityaniphiee. in—p @it
= a9 Eiriiph 9 g D,
(i1 < .... < ip; not summed with these indices)
where &i,., iyp...50—p €quals to 4+ 1if 2;....%p fi....Ju-p iSs an even permutation
of 1....N and equals to — 1 if it is an odd permutation and equals to zero

if otherwise.
With repect to this *-operation, we see that the relation

xx = (— 1)@-np
holds true.
S = (__ 1)Np+N+1 *dx -
(8¢)i1...i,,._1 = (_ l)p gjk Piy...ip—1f ; k

A=ds+6d:
V4
A@)ir..i, = —9F @iy Ligiim + 2 Rii, @u...is_1prtp
(7.1) P
»
4 2 Ro* i Py tyey Jigma ikt iy
s<t

2) In the following the products of differential forms designate the exterior
products unless otherwise stated.
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where R, = g¥* R, and R, is the curvature tensor and Ri; = g R*; is
the Ricci tensor.

If Ap =0, the pform ¢ is called a harmonic form and the coefficients
@u...1, are called components of a harmonic tensor. If the support of ¢ is
compact, the condition Ap = 0 is equivalent to the following two conditions :

dp =0, dp=0
or
81’::::{5:-: P i1 Jpifp+1 = 0, gjk Pit...1p—140k = 0,
where &jr--Jr+1 equals to + 1 if (fi..../p+1) iS an even permutation of (7....

Teeebp+1
1p+1) and ecfuals to —1 if it is an odd permutation and otherwise equals to
Zero.
If especially Vi is orientable, we can define an inner product (@?, ¥?)
of two p-forms @® and ¥? whose supports are compact by

@.2) @ ¥ = [ = [ <y, ¥ >av

where the integral be extended over the whole manifold and
< @Y > =@y i, Y iy,
dV = /g dx"....dx.
(@?,¥?) possesses the all properties as an inner product, that is,

C1? + 208, ¥?) = c,(@8, ¥?) + (@8, ¥?), (c1, ¢»: constants),
(p?, ¥ =", @),
(@*, @") =0,
(@% @") =0—>9"=0.

Furthermore, if N =2m and V., is a 2m-dimentional pseudo-kaehlerian
manifold, we can introduce the following important operators where F;; are
the components of the pseudo-kaehlerian structure of V., and

Fiy= g'* Fry, FY = g/*F%,
the indices runing from 1 to 2m.

L : the exterior multiplication of Q = % F;;dx* dx’ to an arbitrary form.

A: %1 Lx=(—1)P@m-D x[x = ( — 1)? *L*, where p is the degree of the
operated form. We can see that

(7.3) (AP tps = 5 F* Pratyase
for a p-form
P
and the following theorem is known:
THEOREM 1. L and A transform harmonic forms into harmonic forms.

This theorem is showed by the relations
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LA = AL, AA =AA

which are proved as follows.?
At first, we can easily see that

7.4 dL = Ld
by virtue of the property: dQ2 = 0. Then if we define an operator d by

do’ = (TiT)v Fix @i, 1, dx* dx'. dx's

for a p-form @? = % @u...i, dx". . . .dx'», we have
(dd + dd)p? = @—j—z)' Fle o ;50 A3 ¥ dzh.. . dio
(7.5) + (p_iz)' Frx iy 1ysn 5 dab di't ...

= @—_iz)"!' Fl(pu...ig; 550 — Pir..ipin; ) X dxF dxtr. | .dxtv = 0.

Cosider a normal coordinate system with center P,, we see that
(SLp?)r, = (Ldp® — dgp”)r,

thesefore, at each point of the manifold
(7.6) SL=I8—d
holds good.

By (7.4), (7.5) and (7.6) we can verify the equality

LA = AL.
The latter equality AA = AA is proved by using the former and relations
*A = A%, xL = Lx, *A = Lx,
Let Z" be the iteration of L r times, then we have

7.7 AL"=L'AN+7rm—p—7r+ 1)L, P=Z<m—27
especally if »= 1, we have
(7.8) AL =LA + (m — D)E,

where E denotes the identity operation.
A p-form @? is called effective or of class 0 or primitive if
Ap? = 0.
A p-form L*pE-** is called of class h, where @5-? is an effective (p — 2h)-

form.

Then, the following decomposition theorems hold good, which are proved
by Hodge for Kihlerian manifold for the first time and extended by Lichne-
rowicz to pseudo-kaehlerian manifolds (Hodge, [1]; Lichnerowicz, [3]).

THEOREM II. An arbitrary pform @* can be decomposed uniquely in the

3) For example, see Guggenheimer, [3] Anhang.
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following form :

@ = g + Lot~ + ... + PP (n=[2])
where @%, ...., @t~ are effective forms.
From this theorem, we have

THEOREM III. AL is an isomorphism of the linear vector space ®° spanned
by all pforms (p =m —2). And therefore L is an isomorphism from P’ into
PP+ (p<=m — 2).

Cosequently, if @? % 0, then Lp? + 0(p = m — 2). Since L and A transform
harmonic forms into harmonic forms, Theorem II turns into the decomposi-
tion theorem of the p-th cohomology group (coefficients real), if Vi, is
compact and orientable.

THEOREM IV. If V., is compact, orientable, the p-th cohomology group H®
(p < m) can be decomposed into the form:

H? = Hp + LHP™ + ... + L' Hp™, (r=[2])
where HY, ...., H!™ are subgroups gendated by p-, ...... , and (p —2h)th

effective cohomology classes respectively.
The products mean the cup products. From this theorem, we have
THEOREM V. Let dP be the dimension of the linear vector space spanned
by all effective harmonic p-forms and By be the p-th Betti number, then
df)':Bp—Bp—ng (P§m)
And the odd dimensional Betti numbers are even and the even dimensional
Betti numbers are = 1.

Using the above theorems, we treat differential forms in our V,, which
is orintable but not necessarily compact unless o‘herwise stated.

8. Harmonic forms of degree odd. In this section, the indices 7,7, %,
. run over 1,...., 4n.
Since the three pseudo-kaehlerian s‘ructures

@ (W

F=(FJ) (u=1’2’3)
are covariant constant, the integrability conditions are given by
® W
RiminF's F™5 = Rigen (# =1,2,3; not summed)
or
OO .
8.1) Rmn FYy Flm = R (# =1,2,3; not summed).
And furthermore
W) (%)
8.2) Riyy F'y Fy = R,

) (w) (# =1,2,3; not summed)
(8.3) R Fly = Rig Fy
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hold good.
Let $? be the linear vector space spanned by all harmonic p-forms of
Vi and put
) @) (w)

8.4) Fuy . Firy, = Fireloy (# = 1,2,3;not summed).

For a harmonic p-form ¢? = pll D1, X1 ... dX? € P, we define a p-tensor
(8.5) O ot = Fhedey % =1,2,3)

and consider the transformations

8.6) A = e By it i w=1,23).

%)
LeMmMmA 8.1. The transformations zg} (# =1,2,3) are automorphisms of the
linear vebtor space §* spanned by all harmonic pforms of V. That is to say,

. )
if Pir..i, 1S @ Mon-zero harmonic p-tensor, then the p-tensors (;)11..‘5, =123
are also non-zero harmonic p-tensors.

Proor. Using (7.1), (8.5) and the equation

o Ioipsige = 0, (#=1,2,3)
we can see that
W, ()
(Aq) )11 Ly = _gkhF'h"""h...i,,¢_;1...jp;k;h
2 <)
+ Z R is Fjl'""ptl...i,—lkix+1...ip D1 ~Jp
s=1
? B O
+ zR igy B Ioiy gy Rty bma B iy Py gy
s<t
By virtue of (8.1) and (8.2), we have
() (u) (n) (n)
R* ”Ff:kF’tn = RbJiy F¥y, FY,, (= 1,2,3; not summed)

therefore, we get
o)
Ry, F” T -1kt 1 i B et Pty
= Ry, F’l""‘“""'"’l’i,..f,-li,i,+1...t,-11:,1:,+1...ip Pite. sp #=1,2,3)

()
= Rkhfs.ngh"”pij...ip Pj1 ..k jp
from (8.4). And we also have

(w)
%
R, FIviog o kighr. dp Pl g

()
= RigFrFdoy i tittip Phredp (#=1,2,3)

()
— Pk
= R¥; F jpi[...tp¢j1...k...jp~

Consequently, it becomes that
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(u)
(A¢p)[1.. ip

() »
— ..l — qkn K
= Fh pil---fp[ 9 Py gpsksn + 2: R, ... . j-1kst1. wip

§=1

»
2
+ 2 RY5, @i gk syvr -1 s -fp:l

<t

()
= Ffl".jp f1...ip (A¢p)j1...jp3 (u = 17 2! 3)
from which we see that

Ag? =0 Apy =0 (x=1,2,93).

The transformation %«‘) are non-singular, that is, if (22" =0, then p? =0« =
1,2,3), which is easily seen from the definition.
q.e.d.
We consider the case in which p is odd and for the sake of brevity, we
put
() o)
Fueto, ip = an (#=1,2,3)
where £ = (4;....7), 7= (i-...%»). And similarly, we put

Gin- - ipw = G gy . gy = Gy
gl .. . gtee = Git- .91 0P = Gém’

where & = (41....4,), 7 = (i1....7») as in the above. Then, we can easily see
that

Ggq G = 82

u)
where &8¢ is the Kronecker’s delta. Since p is odd, by the definition of 1(4‘5,7 =
Fi-w2, 5 and by (2.1) of §2, we see that

) (u)
an F”g = —3‘2,

@) (u) =123
®@.7) | Gy, Ff Fr1e = Gy, ( )

%%'7(;%"{ = Sm,w(F)f , (#,0,w =1,2,3; any two of them are not equal and
not summed in w)
where Eun is equal to + 1 if (wvw) is an even permutation of (123) and —1
if it is an odd permutation.
If we put
@ W
G, Fy = Fy, =%=1,2,3)
then from the first two equations of (8.7), we see that Fy is anti-symmetric
with respect to & and {. We say two differential forms @?, ¥? whose supports
are compact to be orthogonal, if

(90”,1!'”)=f< @?, ¥? >dV =0,
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where dV is the volume element of the manifold.
It is easily verified that non-zero mutually orthogonal p-forms are linearly
independent in real constant coefficients.

LeEMMA 8.2. In Vi, (of class CT, r= 1), if @” is a differential p-form where
o Q) ®)
D is odd and if the support of @® is compact, then @°, Fo*, Tp?, and Fp® are

mutually orthogonal.

Proor. For brevify, put
Puin = P: pt =Gt g,
then we have

(@] () ()
G P irop = (gfpp)f = F: p, (#x=1,2,3)

where & = (41....2p).
Using (8.7) and in the similar way as the proof of Lemma of §2, we get

Q) @ ) o,
(@*, Tp*) = f<¢”, Sp® >dV = f(G5"¢ean¢;)dV=f(Fenqo@")dV: 0,

[Q)] Q) ()] () (&) (v)
(B, °§<p”)=f< Sp*, i?¢”>dV=f(G‘5’7F='e¢; F< @) dVv

()
=& [ ptpnav =0,
wo,w=123;u+xv+w; E=+1 or —1)
which is to be proved.

LeMmMA 8.3. In Vy, (of class C7, r =1), let @" be a non-zero differential
pform with co>mbact subport ani ¥® bz a nin-zero differential p-form with

@

compact support which is orthogonil to four p-forms @¥, Fo* (u = 1,2, 3), where
(e ®

p is odd. Then ¥?, FY?, F¥? ani §¥° are mutually orthogonal ani orthogonal

()
to the four p-forms @®, Fp® (u=1,2,3).

)
Proor. The orthogonality of any two of ¥?, FY* (#=1,2,3) is already
proved by Lemma 8.2.

Since ¥? is orthogonal to @* and 1&;;)" (#=1,2,3), we have
(@ ¥?) = f(GEn(P Y dv =0,
@, ¥ = — Fog'¥mav = 0.
From these relations, we see that

(%, §¥0) = f (Gt ¢ % ¥ av = f Fry ¥y dv = 0,
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w)

o e [ Gy 9t 1) AV =0
Bp?, DY) =1 °

a (for u,v,w =1,2,3)
e [(Ff,,gzﬁ«pn)dv =0
(&&= +1or —1)
which proves the Lemma.
From Lemma 8.2 and Lemma 8.3, we have

THEOREM 8.1. In our Vi (of class C, r=4), if the number of linearly
independent (in real coefficients) harmonic forms with compact suppotrs of odd
degree is finite, then it is =0 (mod 4).

o Q
Proor. If there exists a non-zero harmonic form ¢?, then Fp?, Fp® and

%)q)” are also harmonic by Lemma 8.1. And these are mutually orthogonal
by Lemma 8.2, and so linearly independent in real coefficients.

If furthermore there exists another harmonic p-form Yr? linearly indepen-
dent from the four p-forms mentioned above, we can find a harmonic p-form
orthogonal to them. Then we can find 8 mutually orthogonal and hence 8
linearly independent harmonic p-forms by Lemma 8.3. Repeating similar
process we get the conclusion of the theorem.

If especially Vi, is compact and the class of differentiability is sufficiently
high®, this theorem can be lead to the following Corollary.

COROLLARY 8.1. Let Vi, be compact and the class of differentiability be
sufficiently high® and let Bj..., be the odd dimensional Betti numbers of Vi,
then

ng.;.], = O (mod 4).
For the 1-dimensional Betti number we can study more precisely, if Vi,

is compact.
The following theorem is known.

THEOREM. In a compact Riemanian manifold, in order that a harmonic
vector @' satisfy
Ryl p* =0
it is mecessary and sufficient that ¢* is a parallel vector field, that is @' satisfy
@45= 0 (for ex. Yano, [1]).

Since Ry = 0in our V., the above theorcm is applicable if V4, is compact,
and hence a vector ¢* is harmonic if and only if it is parallel vector field.
Then from Corollary 8.1, we get

B, = 4r (r=0)
for the 1-dimensional Betti number B.

4) So far as the Hodge’s theorem concerning the harmonic integrals of Rie-
mannian manifolds be true.



294 H. WAKAKUWA

The linear vector space ' of all harmonic 1-forms is spanned by 47
linearly independent (in real coefficients) harmonic forms whose coefficients
are components of a harmonic vectors. These 47 vectors @y, .. .., Py are
linearly independent with respect to coefficients of scalar functions. For, if
otherwise, we can put without any loss of generality,

Perani = Q) Pay + oo T Qe Py,
(8.8) A (7' < 47)
Punt = Poy@wi + ..o Pen Py
where aqy, .. .., &¢n, -+ -+, Pay ---.» Pen are scalar functions and @qy, .. ..,
@y are lenearly independent with respect to coefficients of scalar functions.
Since @y, -.--, @ury are harmonic and hence parallel vector fields, by diffe-
rentiating (8.8) covariantly, we get
0=aqw,;Pay+ .. + A,y Pori <  Ba® TN )
.................... a(l)vj = o’ P(l)', = o , .
0=papuni+t -+ Pun 1 Pan

Multiplying an arbitrary vector v/ and contracting, these become

i 0=ay @a + ... + &)y @0y,

‘o= P @wit - Pun P

where @q) = aw, ;07 ... Aoy = Qe Pw) = PwV%s - Pery = Po
v’ are scalar functions. Since @quyi. ..., Py are linearly independent in scalar
functions, we have
a(1)=0,....,a =0 ---- p(l)zo,....,p(rl):()’
that is
w0 =0,...., Aen ;¥ =0,...., poyyv? =0,...., per ¥’ =

As v is arbitrary, we get Ay =0, ...., Aun,;= 0, ..., puy,;= 0,...., Py, 4
= 0 and hence aqy = const., ...., ¢y = const,, ...., poy = const, ...., puny =

const.,, which contradicts by (8.8) to the fact that ¢@qy:, ...., @u~: are linearly
independent in constant coefficients.

Consequently, V., admits 4r linearly independent perallel vector fields,
hence V4, decomposes locally into the form

V4n = Er X V4(n—r)

where E, is a 4rdimensional compact flat manifol and Viu-» is a Rieman-
nian manifold whose resricted homogeneous holonomy group is Sp(nz — 7) or
one of its subgroups which does not fix any directions. If o*herwise, Vim-r
admits a parallel and hence harmonic vector fields, hence there are more
than 4» harmonic vector fields, contradictorily to the fact that B; = 47.

Conversely, if Vi, decomposes into the above form locally, then we can
easily see that B; = 47.

THEOREM 8.2. Let Vi, in consideration be compact and denote the 1-dimen-
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sional Betti number by B, then
B = 4r (r: non-negative integers).
Furihermore, V., decomposes locally into the direct product :
Vin =E X Vin-p

where Eu, is a 4r-dimensional compact flat manifold and V- is a compact
Riemannian manifold whose restricted homogeneous holonomy group is Sp(n — 7)
or one of its subgroups which does hot fix any directions. The converse is also true.

We see therefore that B; < 4n. And if V4, is irreducible, then B; = 0.

9. Harmonic forms of degree even. Let R be the Grassmann ring of
differential forms of Vi, For a suitably chosen orthogonal frame of reference,
we can take

0 E.O O 0 0 E, O . 0 0 0 E,
E)=\"3"0 0-z.) ®=_g0o o T) @ 0 £ o0
0 0FE, O 0—-E,0 O —E. 0 0 0
In this section the range of indices are set forth as follows:
abyc,....=12,...., n;
‘a*,b*,c*, v.=a+n b+n c+mn.... (=2n)
‘ a b ....=a+2nb+2nc+2n .... (=3n)
La*, b*, c*, ....=a+3n b+3nc+3n,.... (Z4n)
M 1w @ 1@ @ 1 ® . .
Then, O = ) Fjol e, Q= 9 Fjiotw, Q= 5 Fij0' @’ can be written in the

following form
O
Q — Faa*wnwa* + 61 — Zwawr* + 01

)] (2) N
9.1) Q = Fop 00" + 6, = Zw"‘w“—l— 4.,

[OREN©)] Wk *
Q=Fa*o'w' +60;= Ew"w“ + 0,
a

where 6., 6., 65 are the sum of the terms which do not contain «* (a =1,
R ON
Consider the 2rform of the type
RO
9.2) @ = Q Q0 A+pt+rv=7
u ()
where iQ)'\ (# = 1,2,3) designate the exterior product of Q A times and = n.
2

There are 3H, different forms of the type (9.2), where :H, = (r—; ) We

denote the set of such forms by @®%. In ¢® the sum of the terms which
contain just 7 of (@ =1, ...., m) is given by

X £ = = c T
Ew“l....w"hm"l....w”"w"l....m%(m"l....w“ 0. o )
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(@....,a0nby, ....,b, €1, ....,c,=1,....,;m; any two of them are not equal).
Next, let
o, 0,0, , , ,
Yr = QN Q- Q¥ N+p+v=7

be a form in ®¥ different from @*. In 4" the sum of the terms which contain
just r of ®* (@ =1, ....,n) is given by

* _ R "
* r G
E: 0., . .0™ 0. ... 0"o%. .. . 0w .... 0", .. .00 ... .0 )

(@....,av, by, .....0y, €1, ..., =1, ...., m; any two of them are not equal).
Since @* and Yr* are different, at least one of ‘the pairs (A, \), (g, ), v, 7v)
is not equal, for example, A == A’. Therefore, In ®*, there are no forms

which contain just A of ®%, w of w”, v of »™* other than @*. In other words,
a form in &> contains some bases of R which are not contained in any other
forms in ®*. Consequently, the forms in ®* are linearly independent with
respect to constant coefficients.

And all forms in &% are non-zero harmonic by Theorem I and Theorem
III of §7. Therefore we have

THEOREM 9.1. In Vy, (of class C", r=4), let h,. be the number of linearly
independent (in real constant coefficients) harmonic 2rforms. Then, hi = s H,

_(r+2
- ( r )

COROLLARY 9.1. If the Vi, is compact, orientable and the class of differen-
tiability is sufficiently high, then the 2rth (r<n) Betti number B, satisfies
the inequblity :

7+ 2

BZr 2311;-: ”

10. Decomposition theorem. In the similar way to pseudo-kaehlerian

case, we introduce the following operators for a p-form @* = Z}' PDiy...p AX
..dxt

o o)
L : exterior multiolication by O = < F; dx' dv

) 1@
Ley: ——— by Q = o Fiydo dw
@ 10
Lg: —— by Q = > Fidx dw,

Aw: * 1Ly * = (—1)P% Lay *
Ay # P Ly x = (—1)P% Ly *
Agy: ¥ 1L % = (—1)"* Lg,) *,
then, we can see that
1)
(10.1) A @iy, viyey = % F*% @iy yqtins

(10.2) A(u) LZu) PP = L(ru)A(u) Q'+ 12n—p—r+ 1) Lf,:)l (p”,

(#=1,2,3)
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analogously to the pseudo-kaehlerian case.
(OIS ©)
And since the linear combination aF + BF + vF (a, B, 7y : scalar functions;

a’ + 3%+ y* = 1) is also a pseudo-kaehlerian structure, we can introduce the
operators

T a y L
R v v
The operators L, Ly, A, Awy transform harmonic forms into harmonic
forms. We call a p-form ¢ such as
Aw 9p? =0
Aw-effective and call A-effective if Ag® = 0.

An arbitrary p-form @° (p =<2n) decomposes in the following three
manners:

I

—~
2
IA
1
N—r

(PP =Y LoV 4 o+ LY YT (ql =

(10.4) =Yl + Lo ¥t + ... + L Vi

N DO DO

L rr— —
~— N

£
IA

=Vh + Lo V05 + ... + LB Y™

where ¥2;% (h=0,....,q), ¥i5" (=0, ....,¢) aud ¥5*(h =0, ....,¢) are
Awy-, Aey, Apy-effective (p—2h)-forms respectively.
We also have the decomposition with respect to L:

10.5) @P =Y+ LYt L L™ (= [%‘])

where ¥»-?(h = 0,1, ...., q) is a A-effective (p — 2h)-form.

We call such a form as L{,, ¥, where ¥, is Aw -effective to be of Le)-
class s.

If $* is the linear vector space of all harmonic p-torms, then £” decom-
poses in following three manners:

=90 + L 9% + ... + L O™ (‘11 = [%})
(10.6) | = B, + Leo D05t ..+ Ly D™ (e=[%])
= Db+ Loy D%5% + ... + L1t P (e=[%])
where L, §l5" (= 1,2,3; h=1,....,q.) are linear vector sub-spaces of all
harmonic p-forms of Lw)-class A.
Now, let

V= Y pdit. . .de?  @=123)

w)
be a Ay-effective r-form and consider the operations 3§ (v = 1,2, 3) of §8,that
is
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(v) (v) (v)
Vi = B Vs s dd it v =123)

or in tensor forms
o ) @
(é}"k(u))tb ip = F"lil cee .F"'(T '\P'(u,)jl,,.jr. (u, V= l, 2, 3)

These operations are non-singular and taking account of the fact that V¥,

is Aw-effective, we see that
@ 1 @ () ) ™
(A DY i to2 = o F*(Fy. . Fr=2y_y FP= 5B V...

& W () (€]
-2 iy o Py, o g =0 (€ = =x=D.

@
That is to say, & (v = 1, 2, 3) transforms A-effective forms (% = 1, 2, 3) again

into A(.-effective forms.
Next, consider a form of Lcy-class s (#=1,2,3):
s - 1 1 hih/1.. R K. K, QR @,
¥ = o oy € v R By - Fun, Yok i, dX L o,

Fl 27 S
=123

where ¥, is Ac.-effective. Then, we ses that

Q] s . 1 1 @ m, @, )
2 — e R v s s, B /
l}L(w) 1#(14) - (\9—-i— r)] 27 F i1 F lL’ F (,F I} 'F”']’ 1 .- 'Fr’”r
" () ()
X (ghlh R ,lﬂ ’Fhm'1 R Y 1[/-(1‘),“[ e )dxl- .dxmr

[TUS SRR N A% O

1 1 vty (B @ B (")
= (s+ ,T)T oy El:l’ i, (Filh o By Fiy o P Ynn,., ) AV dX™
= C(qu)i}\b‘zu)) (c: non-zero const. ).

)
Since ¥, is Aw-effective, § V¥, is also A -effective. From the above, we
have

®)
TueoreM 10.1. The operations & (v =1,2,3) are automorphisms of the
linear vector space of all forms of Lw,-class s(s=0,1,....,2n; = 1,2,3).

(v)
Since ¢ transform harmonic forms into harmonic forms, we have

COROLLARY 10.1. The operations %’ (v =1,2,3) are arstomorphisms of the
linear vector spaces of all hzrmonic forms of Lwy-classs (v =1,2,3;s=0,1,....,
2n).

In particular, if p is odd and if the dimension of £* of all harmonic p-
forms whose supports are compact is finite, then we have three decomposi-
tions of the forms (10.4) for an arbitrary forms @® € $*. If there exists a
non-zero harmonic p-form L, ¥/;* of L(,-class s, then there exist in §” four

v)
non-zero harmonic p-forms L ¥7;%, FLw ¥oo¥) (v=1,2,3) by Corollary
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10.1, these being orthogonal with respect to the inner product and hence
linearly independent. If there exists another harmonic p-form of Lw-class s
independent from the above four, we can find 8 linearly independent forms
in $? in the similar way to §8.

THEOREM 10.2. Let p be odd. If the dimension of ° of all harmonic p-
forms with compact supporis is finite, then in each decomposition (10.6) of H*
the dimension of L, 9% (v =1,2,3) is =0 (mnd.4).

If furthermore V,, is compact the decomposition (10.6) of $? turns into
the decomsition of the p-th cohomology group H”:

H* = Hyy + Lo Hi* + ...+ Ly HE™ (q‘ = lL%])
10.7) = Hy+ Lo Hi* + ... + LYy H™ k)
= Hp + Ly Hyy* + .. .. + LY Hi™ (cp = [12) J)

Let B, and B,_: (r=<2n) be the »th and (»—2)-th Betti numbers of V4, and
let df,, be the dimension of the linear vector space of A -effective harmonic
p-forms, then

d;,y = B,—B,_, (% =1,23)
from which we see that the rank of the subgroups L}, H5™, L%, Hy™
and L', Hj™ are equal for every = [ W and =0 (mod 4) by the theorem.

COROLLARY 10.2. Let V., be compact. Then the p-th cohomology group H'
decomposes in three manners such as (10.7) and the rank of each corresponding
subgroups L' Hys™, L', Hy* and Ly Hi5™ are equal for every h<' [ J
If p is odd, these ranks are =0 (mod.4).

In the next place, let p be even and consider a harmonic p-form @?
whose support is compact. Then L, L3 L@ @° are harmonic 0-forms, that
is, constants for all non-negative integers r, 7, and 7 satisfying r, + 7, + 7
= p/2. Then the 3H,;» linear equations

) () 1, @ 5
(10.8) LU) L(f) ng) PP = z (L{;) L,(_%) L’(?)'l, Qa"a’ )G'(r irar’g)

141 g4 g=p )2

= X

;o
r1+rz+r3=p/2

BaBr® s B
«Q'Q*Q°’, KO0} ) oo

have a unique solution for unknown constants o¢q/yrars. To show this, for
(1), ), ®)

brevity, write the sHp: forms Q" Q*Q" (n+ 7+ 7 =25/2) as vy, v, ....0

(@ = :Hp2), and o'y as A =1, ....q). Then (10.8) can be written in the

form
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(v, v)+ (v v)+ ...+ (v, V) = d,
| €1 (@1, 2) + €2 (v, 02) + ... + ¢y Vg, 02) = ds
Cy (vl) vQ) + C: (Uz, {lQ.) + IR + C!I(vm v<1) = dq,
where ¢, ...., ¢, are unknown constants and d, ...., dy and (v, v,) (A, p =
1, ...., @ are known constants. The determinant
(1)1, Z)1) (1)37 '1)1). .- .(U.;, vl)
(1)1, 02) (1/2’ Z)z). .- -(vq; 1)2)

(10.9)

(v, vg) (U Vg)....(Ug Vg) |
is not zero, for if otherwise, there exist constants cj, ...., ¢; which are not
simultaneously equal to zero and satisfy

¢ (v, ) + C (v, 01) + ...+ ¢, (U, 1) = 0,

¢ (v, v) + e, v) + ...+ C;('Uq: V) = 0,

or
(Civr+ e+ ...+ vy, v;) =0,
(i1 +cyva+ ...+ v, v) = 0.
Since ¢;v; + .... + ¢, vq lies in the vector space spanned by linearly indepen-
dent v, ...., v, We must have
v+ ...+ =0,
from which we get
c=C=....=¢,=0,

by virtue of the linear independence of v, .. .., ;. But this is a contradiction.
Consequently, @” decomposes uniquely into the following form:

M0, :
(10.10) pr=7"+ > Q"0°Q%ceum, (0w : constants)
r1+72+Trg=p/2

where 7? satisfies the equations

)y @, B

Wy ) (g @), 3 4 i
(r Q070" = | <, QTQ"Q" > dV = e j A AR AR TP aV = 0
for all n, 7, and 7 satisfying n + n + 7 = p/2. These equations are equiva-
lent to
(10.11) AR AR AR T =0 (n+n+nrn=72/2),
since A%, A% AP, 7 are harmonic 0-forms, that is, constants.

THEOREM 10.3. ZLet p be even. If the dimension of the linear vector space
D? of all harmonic p-forms with compact supports is finite, then every p-form
" € HP decomposes into the form
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o MW@ 23 4
PP =T"+ 2 Q QO oepran (o @yrars) : COBSEtaANtS)

r1+72+.8=D[2
where T is a harmonic p-form satisfving
A AG AL T =0,
where r, n. and 1z are non-negative inlegers satisfying n, + . + . = p/2.

COROLLARY 10.3. Let Vi, be compact and p be even. Then the p-th Betti
number B, can be given by

By = &)+ sHyp2

where &, is the number of linearly independent harmonic p-forms satisfying
AH) A-zg) A,('g) =0 (n+n+n=7p/2).

REFERENCES

AKIZUKI, Y.
[11 Theory of harmonic integrals, I,II (in Japanese). Tokyo (1955 and 1956)
BERGER, M. :
[1] Sur les groupes d’houlonomie des variétés riemanniennes. C.R.Acad. Sci.,
Paris, 237 (1953), 472-474.
[2] Sur les groupes d’holonomie des variétés riemanniennes non symétriques.,
C.R.Acad. Sci., Paries, 237 (1953), 1036-1038.
[38] Groupes d’holonomie des variétés riemanniennes. Applica‘ions. C.R. Acad.
Paris, 238 (1954), 985-986.
BOCHNER, S.:
[1] Vector fields and Ricci curvature. Bull. A.M.S., 52 (1946), 776-797.
[2] Curvature in Hermitian metric. Bull. A. M. S., 52 (1946), 179-195.
[3] Curvature and Betti numbers, I. Ann.of Math., 49 (1948), 379-390.
[4] Curvature and Betti numbers, II. Ann. of Math., 50(1949), 77-93.
BIDAL, P. et G. DE RHAM:
[1] Les forms différentielles harmoniques. Comm. Math. Helv.,, 19 (1940),
1-49.
CALABI, E. AND D.C. SPENCER:
[1] Completely integrable almost complex manifolds. Bull. A.M.S., 57 (1951),
254-255.
CHERN, S.S.:
[11 On Riemannian manifold of four dimensions. Bull. A.M.S., 51 (1945), 964-
971.
[2] Characteristic classes of Hermitian manifolds, Ann. of Math., 47(1946), 85-
121. ’
[3] Topics in differential geometry. Princeton (1951),
CARTAN, E.:
[1] Les groupes d’holonomie des espaces généralisées. Acta Math., 48(1926),
1-42.
DE RHAM, G.:
[1] Variétés différentiables. Act. Sci.” et Indust. 1222., Paris (1955).
ECKMANN, B.:
[1] Quelque propriétés globales des variétés kihleriennes. C.R. Acad. Sci.,
) Paris, 229 (1949), 577-579.
ECKMANN, B. AND H.GUGGENHEIMER. :
(1] Formes différentielles et métrique hermitienne sans torsion.I., C.R. Acad.
Sci., Paris 229 (1949), 464-496.



302 H. WAKAKUWA

[2] Formes différentielles et métrique hermitienne sans tovsion. II. C.R. Acad.
Sci., Paris, 229 (1949) 483-491.
[3] Sur les variétés cluses a métrique hermitienne sans torsion. C.R. Acad.
Sci., Paris, 229 (1949), 503-505.
EHRESMANN, C:
|11 Sur la théorie des espaces fibrés. Coll. Top. Alg. (1947).
[2] Sur les variétés presque complexes. Proc. Int. Congr.
EISENHART, L.P.:
[1] Cotinuous groups of tran formations. 38, Princeton (1933).
FROLICHER, A.:
[1] Saur lintégrabilité de structures presque complexes. C.R. Acad. Sci., Paris,
232 (1951), 2284-2286.
GUGGENHEIMER, H.:
[1] Sur les variétés qui possédent une forme exterieur qradiatique fermée.
C.R. Acad. Sci., Paris, 232 (1951), 470-472.
[2] A note cn curva'nre and Betti numbers. Proc. Amer. Math. Soc. 2(1951),
867-870.
[31 Uber komplex-analytische Mannigfaltigke.t mit Kdhlerscher Metrik., Commt.
Math. Helv., 25(1951), 257-297.
(4] Uber Kdhlersche und symplektische Differentialalgebren. Téhoku Math. J.,
4, No.z, (1952), 157-171.
[5] Formes et vecteurs pseido-analytiques. Ann. Mat. pura appl. (4), 36
(1954), 223-246.
[6] Variétés symplectiques. Coll. Top., Strasbourg, Janvier (1951).
HODGE, W.V.D.:
[11 Theory and Applications of harmonic integrals. Cambr. (1941).
IwaMmoToO, H.:
[1] On the structure of Riemannian spaces whose holonomy grou_ s fix a null
system, Toéhoku Math. J., 1, No.2 (1950), 109-135.
LIEBERMANN, P.:
111 Sur les variéfés presque complexes Vi munies d’un champ de z-elemen.s
reels. C.R. Acad. Sci., Paris, 233 (1951), 1971-1973.
|2] Formes différentielles sur une variété symlectique. C.R. Acad. Sci., Paris,
234 (1952), 395-397.
[3] Sur les structures presque quaternioniennes de deuxieme espéce. C. R. Acad.
Sci., Paris, 234 (1952), 1030:1032.
[4] Sur le probleme d’équivalence de certaines structures infinitésimales. Thése
(1953).
LICHNEROWICZ, A.:
111 Un théoréme sur les espaces homogénes complexes. Archiv. der Math., 5
(1954), 207-215.
[2] Théortme de réductibilité des variétés kihleriennes et applications. C.R.
Acad. Sci., Paris, 231 (1950) 1230-1282.
[3] Geénéralisations de la géométrie kihlerienne globale. Coll. geo. diff., Louvain
(1951).
[4] Formes a dérivée covariante nulle sur une variété riemannienne. C. R. Acad.
Sci., Paris, 232 (1951), 146-147.
[6] Sur les variétés riemanniennes admettant une forme a dérivée covariante
nulle. C.R. Acad. Sci.,, Paris, 232 (1951), 677-6:9.
[6] Sur les variétés symplectiques. C.R. Acad. Sci.,, Paris, 233(1951), 723-725.
L7] Sur les formes harmoniques des variétés riemanniennes localement réducti-
bles. C.R. Acad. Sci., Paris, 232 (1951), 1634-1636.
[8] Espaces homogenes kihleriens. Coll. Inter. C.N.R.S. LII, Géométrie
differentielle, Scrasbourg, 26 (1953).
[9) Un théoréme sur les espaees homogénes complexes. Archiv. der Marh.,
5(1954), 207-215.
[10] Sur les gioupes d’holonomie des variétés riemanniens et kdhleriens. Edizioni



RIEMANNIAN MANIFOLDS WITH HOLONOMY GROUP Sp(n) 303

Cremonese della S. A. Perrela, Roma (1954).
Otsukr, T.

[1] On some 4-dimensional Riemannian Spaces. I.II. Mem. Fac. Sci. Kyﬁshu
Univ.,, Ser. A (Math), 4 (1949).
SAsAKI, S.:
[1] On the real representations of spaces with Hermitian connection. Sci. Rep.
Toéhoku Univ., ser. I, 33 (1949), 52-61.
SCHOUTEN, J.A.
[1] Ricci Calculus. Springer (1954).
SCHOUTEN, J.A. AND K. YANO:
[1] On pseudo-Kihlerian spaces admitting a continuous groun of motions. Proc.
Kon. Ned. Acad. Wet.,, Amsterdam, A. 54 (1951), 200-212.
THOMAS, T.Y.:
[11 The decomposition of Riemann Spaces in the large. Monatsh. f. Math.
Phys., 47 (1939).
WEIL, A.:
[1] Sur la théorie des formes différentielles attachées a une variété analytique
complexe. Commt. Math. Helv., 20(1947), 110-116. '
YanNo, K.:
[1] On harmonic and Killing vector fields. Ann. of Math., 55 (1952), 38-45.
YAnO, K. AND S. BOCHNER:
[11 Curvature and Betti numbers. Ann. of Math. Studies, Princeton (1953).
Yano, K. AND I. MOGI:
[11 Sur les variétés pseudo-kidehleriennes a courbure holomorphique constante.
C R.Acad. Sci., Paris, 237 (1953), 962-964.
[2] On real representations of Kaehlerian manifolds. Ann.ot Math., 61(1955),
170-189.

FUKUSHIMA UNIVERSITY.





