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According to the results of M.Berger (M.Berger, [1], [2J, [3J), it is known
that the restricted homogeneous holonomy group of a non-symmetric, irredu-
cible TV-dimensional Riemannian manifold VN is one of the followings : SO(N)
(full rotation group), U(m) (unitary group N = 2m), SU{m) (special unitary
group,- N=2m\ Sp(n) (unitary symplectic group,- N= 4ri), Sp(n)®T, Sp(n)
®S£/(2) or some other exceptions. The Riemannian manifold with restricted
homogeneous holonomy group U(m) or SU(m) is characterized by the fact
that it is pseudo-kaehlerian or pseudo-kaehlerian with Ricci tensor zero
(Iwamoto, [1J,- Lichnerowicz, [8]). The purpose of this paper is to study the
4/2-dimensional Riemannian manifold whose restricted homogeneous holonomy
group is the real representation of the unitary symplectic group Sp(ri) or one
of its subgroups. Since the group Sp(ή) is a subgroup of the special unitary
group SU(2n) our manifolds in consideration are special pseudo-kaehlerian
manifolds. In Part I, we treat local properties and in Part II the theory of
harmonic forms and the cohomology theory.

PART I

In this Part I, unless otherwise stated, the summation convention will
be used and the indices run over the following ranges:

i,j,k, . . . . = 1,2, . . . . , . . . . , . . . . , in;
a,b,c, = 1, 2, .. .., n

a,β,y, . . . . =1,2, . . . . , . . . . , 2 / Ϊ ;

a,β,y.... = 1 + 2/2, 2 + 2n, . . . . , 4/2.

1. Preliminary remarks. Let Cm be a 2/ί-dimensional complex Cartesian
space. Unitary symplectic group Sp(ri) operating on Cm is a subgroup of
unitary group U(2ri) which leaves bilinear form

za Λ wa4 .. = (Znwa f« _ ^ » ^ ) / 2 ( (z«), (w«) 6 C2,t)

invariant and it is necessarily special unitary. Hence, the necessary and
sufficient conditions that a linear endomorphism of C>n

(1.1) 2** = U%z3 ({Up: complex matrix of order 2n)

be unitary symplectic are as follows:

(i) u = (up be unitary, that is, fΠu — Em (E2n: unit matrix of order 2ή),
where the bar over U denotes the complex conjugate of U and fU the
transpose of U.

(ii) U leaves the matrix ( n " η{'1) invariant, where En denotes the unit
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matrix of order n.
Such a matrix U is called unitary symplectic. The condition (ii) is

equivlent to the fact that U be of the form

(1.2)

where Σ, ® denote complex matrices of order n. If we put

2 = p + Ri, Θ = Q + Si (i = x / ^ Ί )

where P, Q, R, S denote real matrices of order n, we have a real representation
of (1.2):

IP -Q -R - S \

π<n τ-\Q p ~S * '
u.^ \R s p

\S - # Q
The condition (i) implies that this T be an orthogonal matrix. Therefore,
with respect to an orthogonal base [et], a transformation of Sp(ή) is expressed
by
(1.4) e* = T)eit

where T = (TJ) is an orthogonal matrix of the form (1.3). With respect to a
new base [e't] which is obtained from [e{] by an imaginary transformation

α J-J j p —— ('n _ _ *'p—Λ /?.— — , [ p 1 - iP'z i

Λ/2 ' A/2

the transformation (1.4) takes the form

e* — T'y e

where

IP + Λf, -Q + Si 0

(i.6) (ro=| 0 + s ' p " " ^ U/̂• —Λί, -Q-Si
0 β - Si, P + /?/

By an orthogonal matrix of the form (1.3), the three matrices

/ 0 £ w 0 0 \ / 0 0 En 0 \ I 0 0 0 En\
M 7λ τ__ ~En 0 0 0 \ / 0 0 0 En) rr __ 0 0 -J5n 0 \
U.O / - I o 0 0 - j ? J ' - / - l - f i . 0 0 0 }> κ - \ 0 En0 0)

\ 0 0 En 0 / \ 0 — £•„ 0 0 7 —-En 0 0 0/

are left invariant, that is, *TIT = /, etc. Among these I,J,K there are fol-
lowing relations:

(1.8) (Π) tII=tJJ=tKK=E»
((III) //= -JI=K, JK= -KJ=I, KI= -IK = J.

The necessary and sufficient condition that an orthogonal matrix be unitary
symplectic is that it is conjugate to a matrix which leaves the three matrices
(1.7) invariant.

2. Characterization of F4W. Let F4 w be a 4^-dimensional Riemannian
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manifold of class C{r > 2) whose restricted homogeneous holonomy group h°

is the real representation of Spin). With respect to a suitable orthogonal

frame of reference, there exist three covariant constant tensor fields /, /, K
(1) (1) (2) (2) (3)

of the form (1.7). Let F (components Fj), F (components FS), F (components

O 1 Λ I CO (1) O) (2) (3) (3)
λ > (II) F^FΪ PF' F

F*j be the three tensor fields /, /, K with respect to the natural frame of
reference of F4« respectively, then the relations (1.8) assert that

/ σ> (2) (3)

' m F2 = F2 = p. = _Einf

0) 0) (2) (2) (3) (3)

ΨGF = ΨGF = ΨGF = G,
(i)(2) (2)(1) (3) (2)(3) (3)(2) (1) (3)(1) (1)(3) (2)

FF=-FF=F, FF=-FF=F. FF=-FF=F,
where G means the matrix of (gij) of the fundamental metric tensor of F4t».

It is remarked that using the relations (I), (II) and one of (III), the other

two relations of (III) can be proved.
( 0 (2) (3)

If we use the components of F, F and F, (2.1) is also written m the
following forms:

0). (11. (2) (2) (3) (3)

(Π)
0)(2) {2)(l) (3) (3) (3) (3) (2) (1) (3) (1) (1) (3) ( 2 )

(III) F1^^ -F'kF*i=Fιj, Fι

kF'cj^ - F ' * F I J = / Λ Λ FJCFCJ= -FW^-FΊ.

If we put
(1) (1) (2) (2) (3) (3)

(2.2) gikFkj = Fij, gthF^j = Fij, gncFkj = F%j,

0) (2) (3)

then Fa, Fij, Fa are anti-symmetric tensor fields. This fact is easily verified
from (I) and (II) of (2. Γ).

Now we have seen that if the restricted homogeneous holonomy group of
V±n is the real representation of Spin), then there exist three covariant

(1) (1) (2) (2) (3) (3)

constant tensor fields F = (F/), F = (F^) and F = (F\,) over F 4 w satisfying (2.1)
or (2. Γ) in each coordinate neighborhood.

We shall prove, conversely, that if there exist three covariant constant
tensor fields over Ftn satisfying (2.1) or (2. V) in a 4#-dimensional Riemannian
manifold F4w, then the restricted homogeneous holonomy group of V*n is the
real representation of Spin) or one of its subgroups.

(1)

LEMMA 2.1. Let u% be an arbitrary non-zero vector field. Then uf, F^u5,
(2) (3)

P'jU1 and Fju1 are mutually orthogonal. If u1 is a unit vector, then the other
three are also unit vectors.

PROOF. The orthogonality of w* to the other three is evident from (2.2).
0) (2)

The orthogonality of P'jU3 to Fι

5u
5, for example, is verified as follows :

0.) (2) (1) (2) (1) (2)

=-FJkF
Jh^uh= -gttF'jFΉif &
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(3) (3)

= — gik Fιhwufι = —Fkhu
kuh = 0.

If u{ is a unit vector, then the [other three are also unit vectors by vitue of
(II) of (2.1).

LEMMA 2.2. Let u1 be an arbitrary non-zero vector field and v* be a vector
(1) (2) (3)

field which is orthogonal to all of four vectors u\ Fι

3u\ F W and Fί

ju
j. Then,

(1) (2) (3)

F)v\ F'p\ F^v5 are mutually orthogonal and orthogonal to all the other five
vectors.

CO (1) (2) C3)

PROOF. For example, the orthogonality of Fί

jv
i to u\ FjU1 F'jtf, Fι

su(1) (2)

verified as follows. By assamption, vj is orthogonal to all of u\ FιjU\ F^
(3)

and F'ju\ we have

(jij uι v3 = 0,

I1)
= 0 or

(1)

Fij u{ v3' = 0

and similarly
(2) (3)

Fij u* v} = 0, Fίj uι vi = 0.

Hence we see that
(1) (1) (1) (1)

9tj «* (Fi vk) = Flhu
(vk = 0, gl5{F\ u1*) (F>h v

h) = gm u« vh = 0,
(2) (1) (3) (3) (1) (2)

9tj iFj

k u
h) (FΊv*) = Ft* uk vh = 0, g ι5{F\ uk) (FJ

hv
h) = - F,h u

k v* = 0.

The others can be proved similarly. q.e.d.
By the aid of above two Lemmas, we prove that the restricted homoge-

neous holonomy group h° of our Van is the real representation of Spin) or
(1) (2) (3)

one of its subgroups by showing that F, F, F can be taken in the form (1.7)
by choosing a suitable orthogonal frame of reference [elf e2, — , e4/j.

At first, choose an arbitrary unit vector as eu then its components are
(1) (3) (2)

SΊ. The three vectors (components F\ FΊ, Fi) obtained from eγ by performing
(1) (2) (3)

collineations given by F, F, F respectively, are mutually orthogonal by
Lemma 2.1. If we choose these vectors as — en+i, — e2n+i, — e3n+i, then
with respect to such frame of reference, we have

(1) (2) (3)

F«+\ = - 1 , F2«+ 1i = - 1 , F 3 w + I i = - 1
(1) (2) (3)

and the other FΊ, F\, FΊ are all zero.
Next, choose a vector which is orthogonal to all of the above eu en+i,

e2n+i and e3n+i as e2. Then the components of the last vector are δ*2. The three
(1) (3) (3) (1) (2) (3)

vectors (components Ff

2, F*2, F'2) obtained from e2 by collineations F, F, F
respectively are mutualy orthogonal and orthogonal to ft, en+1 e2n+i, e3n+ι by
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Lemma 2.1 and 2.2. If we choose these three vectors as — en+2, - e2n+2,
- e3n+2, then with respect to such a frame of reference

(1) (2) (3)3w + l

(1) (2) (3)

and the other F'2, F*2, F2 are all zero.
Repeating similar process n times, we get an orthogonal frame of refe-

rence. Taking account of the fact that with respect to this orthogonal frame
(1) (2) (3)

of reference, Fj, Flj and Fιj are anti-symmetric with respect to the upper
(1) CD (2) (2) (3) (3)

and lower indices, we see that F = (F*j), F = (F^) and F = (Fj) are of the
forms

0 En 0 0 \ I 0 0 En 0
Z7J1 V xr V \ (2) / ft V V V

-tL Λl Λi A3 1 τpl_ I U 2 i JΓ 2 -ϊ 3
Λ l Λ 2 Λ 3 I \ ~ ί ^ n l ι l 2 ^ 3

O Y"" V ' V" / \ Π V" V V" I
Λ.λ A 2 A 3 / \ \ J I ι Y 1 I ^ I

respectively, where Xι, X2, Yi, Yi, Zi, Z2 denote real matrices
of order w. From (I) of 2.1, we have

— En Xl Xl -

hence
Xι = X2 — X$ = Xλ = -X̂  = 0.

(2) (3)

Similarly, from F2 = F 2 = - F ^ we get
y 2 = y; = y = y = y;- = O j

z3 = Zg = z;' = z^ = z;r = o.
0) (2) (3)

So, F, F and F have the following forms:
0 F w 0 0 \ / 0 0 & 0

-En 0 0 0 \ g?_| 0
0 0 Jζ X; ' ^ - | -E

0 0 x x v \ 0

S i - E n 0 0 0 \ g? 0 Γi 0 y,
1 0 0 x j x ; ' ^ ! ~ j ? n 0 0 0

( ) ( ) (3)

By virtue of (III) of (2.1), that is, FF= F, we have
0
0

hence we get

x 2 = o, x2

f = F W , y i = o, y 3 = j?n> z x - o, z 2 = - F W , Z ; - o.
(1) (2) (3)

Since F, F, and F are anti-symmetric, we find



0
0
0

~En

0
0

En
0

0
En

0

0

En

0
0

0
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X, = -En, Y; = -En, Z\ = En.

Hence, from Xζ Y[' = 0 and X; 7 " = 0, w e get

respectively.
0) (2) (3)

Consequently, we find finally that F, F, F are of the form

0 En 0 0 \ / 0 0 En 0

-fi.0 o o \ « / o o o
0 0 0 -En\ F~\-En 0 0 0
0 0 £ w 0 / \ 0 -En 0 0

These three tensors being covariant constant, hence left invariant by the
restricted homogeneous holonomy group h°, which means that hQ is Sp(n) or
one of its subgroups as mentioned in §1.

THEOREM 2.1. If the restricted homogeneous holonomy group of F4 w is the
real representation of Sp(n) or one of its subgroups, then there exist covariant

0) (2). (3)

constant tensor fields F\h F\Ί and F'jOverVin satisfying (I), (II) and (Πϊ) of (2.T).
The converse is also true.

3. An example of 4-dimensional case. We shall show an example
of 4-dimensional Riemannian manifold F* with homogeneous holonomy group
Sp(X), following to Prof. T. Otsuki's method.α).

At first, we shall investigate the necessary condition for such a F*.
Introduce in Ft an orthogonal frame of reference [P, et] {i — 1,2,3,4), then
the connection of F 4 is given by

(3.1) dP = ωιeh dej = ω ? > t ,

where ω\ ωι

5 are Pfafϊian forms with respect to the coordinate neighborhood
(tf1,*2,*3,:*?) of F*. The structural equations are given by

(3.2) dωι = ω> Λ ω*Λ d ω'j = ωaj Λ ω\ + Ωιj (i9 j, k, a = 1,2,3, 4).

We can easily see from the remark of §1 that

ω\ = ω\, ωh = — ω\, ω\ ~ ω2

3,

since the homogeneous holonomy group is Sp(l). If we put

ω X

2 = ω34 = θ2, O)l3 = —ft)/ = 03, Cό1^ — ω23 = θί,

then the structural equation can be written as

(dωι = ω2 A #2 + ω 3 Λ θs + ω 4 Λ
(3 3Ϊ jfi?ω2= - ω 1 Λ(?2 + ω 3 A (94 - ω 4 A (?3
V * } dω*= - ω 1 A & - ω 2 Λ ^ + ω 4 A 0 2

ω* = - ω 1 Λ 04 + ω 2 A 03 - ω 3 A 02,

1) Prof. T. Otsuki set forth some examples of fundamental forms of 4-dimensional
Riemannian manifolds with homog. holonomy group Sρ(l) (όtsuki, [61), but it
seems to contain some errors. The details of his method should be referred to his
paper.
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and

ldθ2 = 203 Λ θ, +

(3.4) \

Let z',.7, £ be the imaginary units of quaternions and put

ω = ω1 + iω2 + ji»3 + to4, Γ = iθ2 + i0 3 + kθ^ .

If we define formally dω, Γ Λ ω, then (3.3) can be represented by

(3.5) dω = Γ Λ ω .

We can see that ω is reducible to the form

ω = a{dxι + i dtf + Π(<fc? + *W)}

where Π is a quaternic function and a is a real function. Substituting ω, Γ
in (3.5) and eliminating θ2, θ3 and θiy we have a differential equation for Π :

_
where Π is the qualernic conjugate ot IT.

Put Π = bγ + ib2 + jb3 + ^δ4, then the fundamental form of F 4 becomes
4

+ 2Z)1 (JΛΓ1 dx* + ί/Λr2 ̂ JV4) - 2b2 (dxι dx* - dx2 rf*8)],

we may put 64 = 0 and consider the special case where b2 = 0. Then the
dfferential equation (3.6) for bx and bs becomes

where R2 = ^ + 6f. These are satisfied for example by

where c and c' are non-zero constants and we have

ω1 = adx1 -f- obi dx? ,

(3.7) ω2= "d*2 +<&(&,
ω*= ab,dx\

' ω4 = — abs dx* .

Putting θi = pi dtf, θ3 = φ dtf, θ4 = n dot and substituting these and (3.7) in
(3.3), we get after long but straightforward calculations,

(3.8) px--
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nr 1 (h 3 1 ° g * BlOgαV π

( 3 1 0 ) I 6 a ioga = r 8 = c' bά a log a

From (3.9), we see that logα must be a solution of differential equations

Solving these we find

as one of the solutions. This satisfies (3.10) and some other relations imposed
to pi, Qi and rt by (3.3). Hence we find finally

ί Pi = - "OXΓ i Λ = OA2" , Λ = ~ «"«- , ί>4 = όTΓ >
UC/Q Cil/o CιU > tilso

Consequently, the s t ructural equations (3.3) are fulfilled by (3.7) and

V Λ Z N .. c'hdx* -cbλdx*) ,

I 4t>3

^ 4 = - oΓ

•c'Λc*) ,

where

lx = CΛr3 + c ^ , 63 = {2(CΛ^ + C'Λ2) -f

Furthermore, from (3.4) we see that

Ωh Φ 0, ΩS Φ 0, O1* Φ 0,

for non-zero c,c'. Therefore, we consider each domain of the 4-dimensional
number space separated by a 3-dmensional cylindrical surface

2(cxι + C'Λ )̂ + (c tf + c' Λ^)2 = 0.

Then

)2 + (Λ2)2 + 2{C^ + C'tf + (CΛ3 + C'tf*)2} {(ί/Λ )̂2 +
1 4-

ΛI = {2(cxι + C'Λ?) + (CΛ̂  + c'tffY τ
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gives an example of an analytic Riemannian metric which defines a Euclidean
connection with homogeneous holonomy group Sp(l) in such domain.

(1)

4. Root spaces. The characteristic roots of the equation \F — pE\ = 0
(i) 0)

(E: unit matrix of order 4n) for F = (F*j) being * and — i (multiplicity 2ri)
(1)

respectively, there exist two 2w-dimensional imaginary root spaces L(F) and

Z(F) corresponding to the two characteristic roots i and — i respectively. A
(1)

vector x in the tangent space at a point of V** belongs to L(F) at the point
if and only if

(1)

(F -iEfx=0 ( lS i/g 2ή) ,
but this condition is equivalent to

(1)

(F
(1)

by virtue of F2 = - £ .
(2) __(2) (2) (2) (3) _ _ (3) (3) (<)

There exist also root spaces £(F), Z(F) ( F = (F,)); £(F), L(F)(F= (F)*, ));
(2) (3) _ ( ) _ (I)

Z(F), £(F) corresponding to characteristic roots / and L(F), L(F) to — i.
These root spaces form (imaginary) parallel fields of 2w-dimensional

(1) (34) (3)

planes respectively which is easily verified from the fact that F, F, F are
covariant constant and from the above remark.

These 2w-ρlanes have no intersections in common except the origin, for,
(1) (2)

if, for example, L(F) and L(F) coatain a vector x in common, we have
(1) (2)

Fx = Fx,
(1) (2) (1)

from Fx = ix, Fx = ix. Operating F to the above equation from the left and
CO 0 ) (2) (?)

taking account of F 2 = —E, FF = F, we get
(3)

— x = Fx.
(3)

This means that F have a characteristic root — 1, which is a contradiction.
ί1) (2) (1)

Next, consider a vector # € L(F) and operating F to F r = ix from the
left we have

(3) (2) (2) (3)

- Fx = ϊF# or FΛΓ = /FΛ: .
(1) (2) (3)

From this and from FF= F, we see that
(1) (2) (?) (2)

F\Fx) = F*r= -/FΛΓ ,
(1) (2) (1)

that is, for a vector * € L(F), Fx is a vector in L{F). This means that
(2) * (1) _ (1)

F{L(F)) = Z(F).
(3) O) __0)

We can sea analogously that F(L(F)) = IJ^F) and so on. Accordingly, we get
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the following

0) _ 0) (0 _ O) (3) _ ( 3 )

THEOREM 4.1. Z*tf Z(F), Z(F); Z(F), Z(F); Z(F), L(F)be 2n-dimensional
(1) (2) (3) (1) (2) (3)

root spaces determined by F, F, F; L(F), L(F), L(F) corresponding to the cha-
_ _ (1) _ _ (2) _ ( 3 )

racteristic root i and L(F), L(L), L(F) to —i. These are imaginary parallel
fields of 2n-planes which have no point in common except the origin and the
following relations hold good:

(2) (1) (3) (I) _ ( 1 ) ( Ό _ (1) (3) _(1) (1)

F(L(F)) = F\L(F)) = Z(F), i F(L{F)) = F(L(F)) = L{F),
(3) (2) (1) ( ί) _ ( > ) ] ( 3 ) _ ( 2 ) (1) _ ( 2 ) (2)

(FiL(F)) = F(L{F)) - L(F), F(L(F)) = F(Z(F) = Z(F),
0) '3^ (2) (3) _ 0 ) l ( l ) _ ( ? ) (0_(3) _ (3)

FiL{F)) FZ(F)) = Z(F), F(Z(F)) ^Z(Fj) £(F)
(2) C) (1)

F(L(F)) designates the 2nplane obtained from Up) by operating the
(2) (2)

€θllineation F = (F

5. Connection in complex form. For each point of our F4w, associate
an orthogonal frame of reference [et], then the connection in Vm is given by

(5.1) dP = ω^, dβj = ω ^ 4 , (ωS = -ω\)

where the matrix (ω ;^( = — ω^) is of the form

<5.2)

ft) — ω — ft) — co

ft)* ft) — ft)* ft)

ft)* ft) — ft)*

V ft)51' — ft) ft)* ft)

a), ft)*, ω\ ω* baing matrices of order n. Hence, of course, we see that

{5.3) ω«β = ω jr, ω ^ = - © V

If we perform an imaginary transformation for the base [et]:

and we write again [£t] instead of [^], then (5.1) can be written as

(5.4) J P = 7r*2α; + 7r«β«, dej — π'jet, (and compl. conj.)

where we have put

7Γa β — TΓaβ — 0 .

From (1.2) of §1, the matrix (7τΛβ) have the form

(5.5) (V'V = I I = C77* W)>
\7Γ 7Γ /

w h e r e TΓ, T7 denote matr ices of order n: TΓ = (τrαb), 7? = (7r?& and (77%) being
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unitary, we have

(5.6) τr% + π\ = 0, π\ - £>α = 0.

The ίundamental form is given by

Now, if we put

ώπι

5 = w*j Λ Λ - Ω',

then Ωtj satisfies the following relations similar to (5.5) :

n*β = Ω V = o, ^

(5.7) J (β β) = ( 2 ~ S ) = (Ω%), (O - (Ω%), Ω = (ίK))

Ω \ + n&a = o, na

b - n\ = o.
A manifold with pseudo-kaehlerian connection (5.4) have Sp(n) as its

restricted homogeneous holonomy group if and only if (7rαβ) be of the form
(5.5) with (5.6). Then the curvature form Ω'j satisfies (5.7). We have espe-
cially

(5.8) Ω*, = Ω"a + Ωα

α = 0

and the structural equation becomes

(5.9) \f*a = "**"*". ^ O α (and compl. conj.)

under the condition (5.5), (5.6) and (5.7).

If we put

Ω ^ = RΛ

βmΊrk A πh (conj.), R^ = R^M ,

it is easily verified that the non-zero components of Raβkh are RΛβyδ( =
—Ra

β£Ϋ)and appearently non-zero components of the Ricci tensor Rβ^ are zero
by virtue of Rβy = R"βy« = —R*ccβy = 0 and (5.8). So F 4 w is of Ricci tensor
zero, which is also verified from the fact that Sp(ή) a SU{2n).

6. Sectional curvatures . Return to the real natural frame of reference,
(1) (1)

then Fιj satisfies the equation F'j,* — 0, where the semi-colon denotes the
covariant differentiation with respect to the Christoffoel symbols obtained

(1) (1) (1)

from gfJ. From the Ricci's identity, we have PiR1^ = FjRιιkh or Fϊ RIJTCH =

FιjRukh and hence

(6.1) f\Fm>Rιmkh = Rim
(Sasaki, [1] Yano, K and I. Mogi, [2]). Let Λ*, y be components of two arbitrary
vectors. Then the sectional curvature K with respect to the 2-plane TΓ spanned
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by of and y* is given by

This quantity being independent from the choice of two vectors in 7r, we
choose especially two orthogonal unit vectors of, y* in TΓ, then A" is given by

(6.2) K= -R, jio. ofyWyh.

For two orthogonal unit vectors of, y%, we have again orthogonal unit vectors
(1) 0)

FjXj, Pjyj and the sectional curvature with respect to the plane spanned
(1) (1)

by FL}%\ Fι

sy
5 is equal to K, which is easily seen from (6.1) and (6.2).

Thus we get
LEMMA 6.1. Let V2m be a pseυdo-kaehlerian manifold with pseudo-kahlerian

structure F = (F'j), then the sectional curvature with respect to an arbitrary 2-
plane TΓ is equal to the one with respect to 2-plane F(τr).

0) (i)

Now, in our F 4 w, there exist three covariant constant tensors F = (F^ ),
(2) (2) (3) (3)

F =z (F[i), F = (F-j) and hence if a vector of is given, we can determine a 4-
dimensional linear space Z4(#) spanned by mutually orthogonal four vectors

(1) (2) (3)

of, Fljxj, FljXj and F3x
3. An arbitrary vector y* in L4(x) being given in the

form
(1) (2) . (3)

y == ouf + βF1^ + yFw + BFιjXj (a, β, y, δ : scalar functions).
Hence if we perform a collineation F to of, then we have

0) 0) (3) (2)

F * , / =* aFkι of - /3A* + γF*i Λ;4 - δFfci of ,
(1)

by virtue of (III) of (2.1). This means that if a vector y € L^x), then FCx)

€ Z4(ΛΓ) and we get similar properties for F, F.
THEOREM 6.1. Let x be an arbitrary vector and Z4(#) be a ^-dimensional

0) ω O)
linear space spanned by mutually orthogonal four vectors x, F(x), F{x), F{x). If TΓ

(0 (2) (3)

is an arbitrary 2-planed in Z4(#), then F(ττ), F(w), F( 7r) «rβ also in Z4(ΛΓ), /wr-
(1) (2) (3)

thermore the sectional curvatures with respect to IT, F(τr), F(τr), and FXpr) are
all equal.

Using (III) of (2.1), we can see that if ΊΓ is a 2-plane spanned by any
0) (2) C )

two of #, F(x), Fix) or F(Λ;) and π' is the one spanned by the other two,
(1) (2) (3)

then, the 2-ρlane obtained from TΓ by operating F, F or F is ir itself or 7r'.

COROLLARY 6.1. Let x be an arbitrary vector and π the plane spanned by
(1) (2) (-)

any two of x, Fix), F\x), F(x) and πf the one spanned by the other two. Then,
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fl) (2) (2)

the plane obtained from π by operating F, F or F is nτ itself or ΊΓ' and the
sectional curvatures with respect to ΊΓ and ΊΓ' are equal.

PART II

7. Preliminary Remarks. Let VN be an iV-dimensional Riemannian
manifold whose class of differentiability is assumed sufficiently high (so far
as the Hodge's theorem concerning the harmonic integrals of Riemannian
manifolds be true).

The indices run from 1 to N unless otherwise stated and the summation
convention is adopted.

To a p-ίorm

φ = ^ - < p i l . . . i p d x ι * . . . . d x ι v = < p k l . . . t p d x k * . . . . d x W (&i < . . . . < kP)

of the manifold VN we introduce the following operators,
d: exterior differentiation.

p+l

where ( )t 1...£/J+1 denotes the components of the (p + l)-form in the parenthesis
and the semi-colon denotes the covarinnt differentiation and Λ the absence
of the undermentioned component.

* : adjoint operator.

(* <P)jU..Jn-p

(iι< < /„ not summed with these indices)

where εilm% ίpjΊ...Jn-p equals to + 1 if iτ ip j \ jn-P is an even permutation
of 1 N and equals to — 1 if it is an odd permutation and equals to zero
if otherwise.

With repect to this *-oparation, we see that the relation

** - (

holds true.
8 = (-l)^+^+1*i/*:

Δ - dB

(7.1)

2) In the following the products of differential forms designate the exterior
products unless otherwise stated.
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where Rj\u = gkh R3Msιt and R3nyt is the curvature tensor and Ri} = gik Rkj is
the Ricci tensor.

If Δφ = 0, the ί :form <p is called a harmonic form and the coefficients
ψi\...ιv are called components of a harmonic tensor. If the support of ψ is
compact, the condition Δφ = 0 is equivalent to the following two conditions:

dφ = 0, δφ = 0

or

*/ί:::fcS φj^.w^i = o, ^ ^ . . . . p - ^ ^ o ,

where Sfr ^ J equals to -h 1 if (Λ Λ+i) is an even permutation of (ιΊ
fP+1) and equals to — 1 if it is an odd permutation and otherwise equals to
zero.

If especially VN is orientable, we can define an inner product {φp, ψp)
of two ^-forms φp and ψp whose supports are compact by

(7.2) (φ , Ψp) = [<p»*φp = I < φ», ψ*> > dV

where the integral be extended over the whole manifold and

dV= s/g~d&....dxip.

(φp,ψp) possesses the all properties as an inner product, that is,

l + c2φ>, ψη = cfal ψ») + c2(φξ, ψ»), (cu c2: constants),
(φ, ) OK φ),

\ (φp, φp) > 0,
(φp, φη = 0-+φp=0.

Furthermore, if N = 2m and V<2m is a 2m-dimentional pseudo-kaehlerian
manifold, we can introduce the following important operators where Fij are
the components of the pseudo-kaehlerian structure of V2m and

the indices runing from 1 to 2m.

L: the exterior multiplication of ί l = -g- Ftj doά dxj to an arbitrary form.

Λ : * - ! £ * = ( - l)^s»-*> *z* = ( - 1Y *Z*, where p is the degree of the
operated form. We can see that

(7.3) \

for a

and the following theorem is known:

THEOREM I. L and Λ transform harmonic forms into harmonic forms.

This theorem is showed by the relations
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ZΔ = ΔZ, ΛΔ = ΔΛ

which are proved as follows.3)

At first, we can easily see that

(7.4) dL=-Ld

by virtue of the property: dΩ, = 0. Then if we define an operator d by

for a ^-forrn φp = -^ φι1...ipdxil... .dx*p, we have

(7.5)

"-''**'5*^ φil Λ»^ °
Cosider a normal coordinate system with center Po, we see that

thesefore, at each point of the manifold

(7.6) 8L = LS-7

holds good.

By (7.4), (7.5) and (7.6) we can verify the equality

ZΔ = ΔZ.

The latter equality ΛΔ = ΔΛ is proved by using the former and relations

*Δ = Δ*, *Z =- Z*, *Λ = Z*.

Let Π be the iteration of Z r times, then we have

(7.7) ALr = ZrΛ + τ{m - p - r+ l)Lr~\ (p^m- 2r)

especally if r= 1, we have

(7.8) ΛZ = ZΛ + (m- P)E,

where E denotes the identity operation.
A p-ίorm φp is called effective or of class 0 or pήmitive if

Aφp = 0.

A ^-forrn ZVo"271 i s called of class h, where φv'2h is an effective (/> — 2h)-
form.

Then, the following decomposition theorems hold good, which are proved
by Hodge for Kahlerian manifold for the first time and extended by Lichne-
rowicz to pseudo-kaehlerian manifolds (Hodge, [1] Lichnerowicz, [3]).

THEOREM II. An arbitrary p-form φp can be decomposed uniquely in the

3) For example, see Guggenheimer, [3] Anhang.
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following form:

where φ%, , φl'^ are effective forms.

From this theorem, we have

THEOREM III. AL is an isomorphism of the linear vector space Φp spanned
by all p-forms (p <i m — 2). And therefore L is an isomorphism from φp into
Φ»+2 (pSm- 2).

Cosequently, if <pv =*= 0, then Lφp Φ θ ( ί S m - 2 ) . Since L and Λ transform
harmonic forms into harmonic forms, Theorem II turns into the decomposi-
tion theorem of the p-th cohomology group (coefficients real), if F 2 m is
compact and orientable.

THEOREM IV. If F 2 % is compact, orientable, the p-th cohomology group IP
can be decomposed into the form:

IP = Hg + LH»-2 + . . . .

where H% , H*'271 are subgroups generated by p-, , and (p — 2h)-th
effective cohomology classes respectively.

The products mean the cup products. From this theorem, we have

THEOREM V. Let d% be the dimension of the linear vector space spanned

by all effective harmonic p-forms and Bp be the p-th Betti number, then

dg = Bp - BP-2 > 0 ( ί S m).

And the odd dimensional Betti numbers are even and the even dimensional
Betti numbers are > 1.

Using the above theorems, we treat differential forms in our V4n, which
is orintable but not necessarily compact unless otherwise stated.

8. Harmonic forms of degree odd. In this section, the indices i,j, k,
run over 1, , 4ra.

Since the three pseudo-kaehlerian structures
(w) (u)

are covariant constant, the integrability conditions are given by

Rmxffii Fmj = Ruth (« = 1,2,3 not summed)
or

(8.1) Rίmich FΊ FL = RίJkh (u = 1,2,3 not summed).

And furthermore
(U) (W)

(8.2) RiJιmFι

kF
m

h = Rι3

kh

(H) (M) (u = 1,2,3 not summed)
(8.3) ΛF * P
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hold good.
Let ξ>p be the linear vector space spanned by all harmonic j£-forms of

Vin and put

(8.4) P1*--•$%=> Fι"'tpjι...b (u = l ,2,3;not summed).

For a harmonic ^-form φp = — φiJt..tpdxίil— dxip £ ξ)p, we define a ^-tensor

(8.5) φh...ip = F* -3»h..ΛpφΛ...jp (u = 1,2,3)

and consider the transformations

(8.6) §*: φp-*φ>= ψ $,... f, Λf1.. . .dlί* (« = 1, 2, 3).

LEMMA 8.1. The transformations % (u = 1,2,3) are automorphisms of the
linear vebtor space ξ)p spanned by all harmonic p-forms of F 4 ϊ i . That is to say,

if <Ph..Λp is a non-zero harmonic p-tensor, then the p-tensors φn...ιp (u = 1,2,3)
are also non-zero harmonic p-tensors.

PROOF. Using (7.1), (8.5) and the equation
(M)

we can see that

ΛP

F*

s<t

By virtue of (8.1) and (8.2), we have
(«) (») CO CO

RkhisitF
3°τcFhh = ΛWI*Λ FΛ/t F^/t, (« = 1,2, 3 not summed)

therefore, we get
oo

from (8.4). And we also have

= RKF^ -«'•'I*h ..t.-li.t.+ι...<pφjι...jp (u = 1,2,3)

Consequently, it becomes that



RIEMANNIAN MANIFOLDS WITH HOLOKOMY GROUP Sρ(n) 291

'Λ . jp fc Λ +*ΣKkj.<Pii. .i.-i-kj,+i...jp
5 = 1

K*U.9>* A-.»Λ + . A-..A+1..Λ.1

pΛ...^ (« = 1,2,3)

from which we see that

= 0 (« = 1,2, 3).

The transformation $ are non-singular, that is, if φp = 0, then ^?p = 0 (« =
1,2,3), which is easily seen from the definition.

q. e. d.
We consider the case in which p is odd and for the sake of brevity, we

put
(U) (tt)

F"'~%*Λ...jp = F*v (11 = 1,2,3)
where ξ = 0Ί ip), η = OΊ jP). And similarly, we put

9h3i 9ipjp = Gli...ip, 1i . Jp = Gf,^,

0*i l p<pjp = G^ 1 • **>><*!• ••**> = G έ ) r ? ,

where ξ = (4 zp), η = (iι yp) as in the above. Then, we can easily see
that

(u)

where 8ζ

ξ is the Kronecker's delta. Since p is odd, by the definition of F\ =
Fίι %p

h...JP and by (2.1) of §2, we see that

&

(8.7) ^
(tt) («) (W)

F f F = SUvw F
ξ

ζi (u, υ, w = 1,2,3 any two of them are not equal and
not summed in w)

where βUvw is equal to + 1 if (uvw) is an even permutation of (123) and —1
if it is an odd permutation.

If we put
00 00
F F ( 1 2 3 )

then from the first two equations of (8.7), we see that F% is anti-symmetric
with respect to ξ and ζ. We say two differential forms φp, ψp whose supports
are compact to ba orthogonal, if

(φ \ψη= f <<PP,



292 H WAKAKUWA

where dV is the volume element of the manifold.

It is easily verified that non-zero mutually orthogonal p-iorms are linearly
independent in real constant coefficients.

LEMMA 8.2. In Vίn {of class C, r> 1), if φp is a differential p-form where
(1) (2) (3)

p is odd and if the support of φv is compact, then φp, %φp, %φp

9 and $φp are
mutually orthogonal.

PROOF. For brevify, put

then we have
(W) (tt) (U)

& <P*)n... * = ®<Pp)t = F*t φn (« = 1,2, 3J
where ξ = OΊ ip).

Using (8.7) and in the similar way as the proof of Lamina of §2, we get

(φP, $φ*) = / < Ψ*> %P > dV = f(flb φi F\ φζ)dV = f(Fξη<p^) dV = 0,

(Fξv

{u, v, w = 1,2,3 u Φ v Φ w £ = + 1 or —1)

which is to be proved.

LEMMA 8.3. In Vin {of class Cr, r > 1), let φp be a non-zero differential
p-form with conpast support ani ψ* bz a nonzero differential p-form with

compact support which is orthogonal to four p-forms φp, $φp {u = 1, 2, 3), where
(1) (2) (3)

p is odd. Then ψp, uΨ***, $Ψ<P ani β'Ψ'*' are mutually orthogonal ani orthogonal

to the four p-forms φp, $φp {u = 1,2,3).

PROOF. The orthogonality of any two of ψp, t$ψp {u=l,2,3) is already
proved by Lemma 8.2.

Since Ψp is orthogonal to φp and τ$φp {u •=> 1, 2, 3), we have

(F Ψ ) ?F = 0.

From these relations, we see that

(<PP, ($Ψ>P) = f(G*ι φξ F\ Ψζ) dV = J ( F ^ ^ ^ ) tfΓ = 0,
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( 8 ^ 8 ^ ) f / (f i* t;, f* = 1, 2, 3)

(<?,£' = +1 or -1)
which proves the Lemma.

From Lemma 8.2 and Lemma 8.3, we have

THEOREM 8.1. In our Vin (of class Cr, r=>4), if the number of linearly
independent (in real coefficients) harmonic forms with compact suppotrs of odd
degree is finite, then it is = 0 (mod 4).

PROOF. If there exists a non-zero harmonic form φp

9 then vsφp, ύφp and

ϊ$φp are also harmonic by Lemma 8.1. And these are mutually orthogonal
by Lemma 8.2, and so linearly independent in real coefficients.

If furthermore there exists another harmonic p-iorm ψp linearly indepen-
dent from the four p-forms mentioned above, we can find a harmonic £-form
orthogonal to them. Then we can find 8 mutually orthogonal and hence 8
linearly independent harmonic ^-forms by Lemma 8.3. Repeating similar
process we get the conclusion of the theorem.

If especially F4 ί l is compact and the class of differentiability is sufficiently
high4), this theorem can be lead to the following Corollary.

COROLLARY 8.1. Let V^ be compact and the class of differentiability be

sufficiently high® and let B2q+ι be the odd dimensional Betti numbers of F4M,

then

B2q+1 = 0 (mod 4).

For the 1-dimensional Betti number we can study more precisely, if F4 w

is compact.
The following theorem is known.

THEOREM. In a compact Riemanian manifold, in order that a harmonic
vector φι satisfy

Rjfΰφ
jφk>0

it is necessary and sufficient that φi is a parallel vector field, that is φi satisfy
φt.j = o (for ex. Yano, [1]).

Since Rjh = 0 in our VAn, the above theorem is applicable if F4rι is compact,
and hence a vector φ* is harmonic if and only if it is parallel vector field.
Then from Corollary 8.1, we get

£i = 4r

for the 1-dimensional Betti number Bx.

4) So far as the Hodge's theorem concerning the harmonic integrals of Rie-
mannian manifolds be true.
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The linear vector space & of all harmonic 1-forms is spanned by 4r
linearly independent (in real coefficients) harmonic forms whose coefficients

are components of a harmonic vectors. These 4r vectors φ^u ,<pur)i a re
linearly independent with respect to coefficients of scalar functions. For, if
otherwise, we can put without any loss of generality,

(8.8) (r'<4r)

\ψ{&)l = P(l) ψ{\)i + + P(r') <P(r')i,

where a^, — , αV)> , pa), —» Pco are scalar functions and
ψ{r')i are lenearly independent with respect to coefficients of scalar functions.
Since φ^γ9 , φ^ry, are harmonic and hence parallel vector fields, by diffe-
rentiating (8.8) covariantly, we get

Multiplying an arbitrary vector v} and contracting, these become

i Λ-

0 = p

where α?(i) = a^^v5, — ,«(•') = ^r\)jvj, po) = Pσ)JvJ> —» ^(o = /VOJ
vj are scalar functions. Since φ^t —,ψ(r')i are linearly independent in scalar

functions, we have

α(i) = 0, , a = 0 , — , pu) = 0, — , p (r'> = 0,

that is

tfσ),;^' = 0, — , ^ (r'),j^ j = 0, — , p{i)jv5 = 0, — , P(r>)jvj = 0.

As z;* is arbitrary, we get cta)j — 0» — > α(r')j — 0, , pα),./ = 0 , , pcoj
= 0 and hence aw = const, — , α(ro = cons*\, , po> = const., — , /V) =

const., which contradicts by (8.8) to the fact that φ<\)i, — , φu-)t are linearly
independent in constant coefficients.

Consequently, V4n admits 4r linearly independent perallel vector fields,
hence Vin decomposes locally into the form

Vm = Er X Viin-r)

where E& is a 4r-dimensional compact flat manifol and V^n-r) is a Rieman-
nian manifold whose resricted homogeneous holonomy group is Sp(n — r) or
one of its subgroups which does not fix any directions. If otherwise, V^n-vy
admits a parallel and hence harmonic vector fields, hence there are more
than 4r harmonic vector fields, contradictorily to the fact that Z?i = 4r.

Conversely, if Vm decomposes into the above form locally, then we can
easily see that Bι = 4r.

THEOREM 8.2. Let V4n in consideration be compact and denote the 1-dimen
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sional Betti number by B\, then

Bι = 4r (r: non-negative integers).

Furthermore, Vm decomposes locally into the direct product:

V4n = E X V^n-rt

where Em is a Ar-dimensionάl compact flat manifold and V^n-r^ is a compact
Riemannian manifold whose restricted homogeneous holonomy group is Sp(n — r)
or one of its subgroups which does hot fix any directions. The converse is also true.

We see therefore that Bλ S 4w. And if V4n is irreducible, then Bι = 0.

9. Harmonic forms of degree even. Let R be the Grassmann ring of
differential forms of Vίn. For a suitably chosen orthogonal frame of reference,
we can take

(
0 En 0 0 \ / 0 0 En 0 \ i 0 0 0 En\

-En0 0 0 \ ω / 0 0 0 En\ ,%K / 0 0 -En 0
0 0 0-Eni (Fίj)=\-En0 0 0 , (Fj)=\ 0 En 0 0
0 0 En 0 / \ 0 -En 0 0 / \ ~ £ n 0 0 0,

In this section the range of indices are set forth as follows:
af b, c, = 1, 2, , n

a*,b*,c*, .... = a + w, ^ + w, c + w, . . . . ( ^ 2w)

α, b, cy . . . . = β + 2w, ^ -f 2w, c -t- 2w, . . . . ( < 3w)
0) i o) (2) 2. ( 2 ) ( 3 ) 1 ( 3 )

Then, Ω = ^ Fijω
i ω\ Ω = 2 F^ω^ ω3, ίl = ^ Fijω* ωJ can be written in the

following form
0) (i)

(9.1)
(1) (2)

ί2 F

0) (3) *

Ω = Fαi* ω V 4- <?3 =

where ft, 02, ŝ are the sum of the terms which do not contain ωa {a = 1,

Consider the 2r-form of the type
(i) (0 0)

(9.2) φ2r = ί2λΩ^Ω^, (λ + /a + ẑ  = r)
(u) (Ό

where Ωλ (« = 1,2,3) designate the exterior product of Ω λ times and r<^n.

There are sHr different forms of the type (9.2), where 3 # r = i^\ ). We

denote the set of such forms by Φ2 r. In φ*r the sum of the terms which

contain just r of ωa(a = 1, . . . . , n) is given by
cuc"(ioai ωa ωhl
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(aι , aκ, bi, , bμ, ch , cv = 1, — , n any two of them are not equal).

Next, let

ψ2r = $ λ ' Ω*' Ω"' (V + A*' + 1/ = r)

be a form in Φ 2 r different from φ^. In ψ ι'r the sum of the terms which contain
just r of ωa (a = 1, , n) is given by

2 «αi ω α λ ' ω 7 ' 1 ω^ωcl ωcv\ωΊΎ ωat ωfl ω V ω

c f ω°ί )

(Λi , #λ ', ^i, , £y> Ci, , £v = 1, , ^ any two of them are not equal).
Since φ23' and ψ2r are different, at least one of 'the pairs (λ, λr), (/>&, A6'), (*>, v')
is not equal, for example, λ Φ λ ' . Therefore, In Φ 2 r , there are no forms

which contain just λ of ωα*, μ of ωh, v of ωr* other than ^>2r. In other words,
a form in Φ 2 r contains some bases of R which are not contained in any other
forms in Φ 2 r . Consequently, the forms in Φ 2 r are linearly independent with
respect to constant coefficients.

And all forms in Φ 2 r are non-zero harmonic by Theorem I and Theorem
III of § 7. Therefore we have

THEOREM 9.1. In V±n {of class Cr, r > 4), let hLr be the number of linearly
independent {in real constant coefficients) harmonic 2r-forms. Then, h2r 2̂  3 Hr

COROLLARY 9.1. If the Vm is compact, orientable and the class of differen-
tiability is sufficiently high, then the 2r-th {r <: n) Betti number Bλr satisfies
the inequblity.

10. Decomposition theorem. In the similar way to pseudo-kaehlerian

case, we introduce the following operators for a />-form φp = -r,-φi1...ιP dx11

....dΦ

exterior multiolication by Ω = -^ F,j dx1 dx3

by Ω = 9 b\ydt dx3

by a = ~2

1 Z ( 2 ) * = ( -A(2)

* Λ(3) :

then, we can see that

(10.1) ( Λ w

" ^ # """"' («=1,2,3)
(10.2) Λ(u) Z(

r

tt) ^ = Z:(

r

w)Λ0o ^ p + r(2n-p-r+:' "
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analogously to the pseudo-kaehlerian case.
0) (2) (3)

And since the linear combination aF + βF + jF (a, β, y: scalar functions
a1 + β2 -f y2 = l) is also a pseudo-kaehlerian structure, we can introduce the
operators

(10.3) i ^ : a L ω + ^ ( 2 ) + ΎL'3) (a?

The operators Z, Z<», Λ, Λ<» transform harmonic forms into harmonic
forms. We call a ί-form φp such as

Λ(M) ^ = 0

Λ(«)-effective and call Λ-effective if Λ^p = 0.
An arbitrary p-ίorm <̂ p (^ ^ 2w) decomposes in the following three

manners:

lΨ = ' i ^ [_ 2 J/

+ ^(2) Ψ^2 + • • - . + [f [)(10.4) J

where ψ^2h (h = 0, . . . ., ^ ) , ^ ^ 2 Λ (Λ = 0, . . . . , q2) aud Ψ^2h(h = 0 , . . . . , φ) are
Λ(o-, Λ(2)-, Λ(3)-effective (ί—2/&)-forms respectively.

We also have the decomposition with respect to L:

(10.5) ψv = ψ»

where ψ^-^Qi = 0,1, . . . . , (?) is a Λ-effective (£ - 2/z)-form.
We call such a form as Z^α) ψ[u) where ^(α) i s Λ(tt)-effective to be of £<»-

class s.
If ©p is the linear vector space of all harmonic ί-ίorms, then ξ)p decom-

poses in following three manners:

+ LC

12.(10.6)

where Z'^} ξ)^271 (w = 1,2, 3 h = 1, , ft,) are linear vector sub-spaces of all
harmonic ^-forms of Z(ω>-class /̂ .

Now, let

Ψoo = jrΨwil..ΛPd^....dxi» («= 1,2,3)

be a Λ(t*)-effective r-form and consider the operations g (# = 1,2,3) of §8, that
is
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t&iv = ~P\....F\ψWJl...jrdx?i ...dxfr (u,v = 1,2,3)

or in tensor forms

(IVcVίi *p = $ V . . ^ % ^ ) . ή . j r . («,» = 1,2,3)

These operations are non-singular and taking account of the fact that ψ[u)

is Λ<»-effective, we see that

(Λ ό ^ [ ) = P

p (Λ) (t>) (Ό

2 l l * " " * h-2Γ p—ί T (<O;i ..jp—ijp — v

(» :

That is to say, (? (v = 1,2, 3) transforms Λ(u>-effective forms (« = 1,2,3) again
into Λ(,o-effective forms.

Next, consider a form of Z(rt)-class s (u = 1,2,3):

(« = 1, 2, 3)

where ψ*(U) is ΛO)-effective. Then, we sea that

00 I 1 0') (w) («) (υ) (v) (υ)

$ * φ ^ F h F \ F P ' F F

-I I (w) (M) (υ) (r)

= (5+75Γ ^ ^ί: : :M ; ;mi:: i r ( ^ ^ i — ^ ^ ^ V i — ^ ^ ^^ ) f c l.. *r:
(«)

= cCZ'^tϊΨcu)) ( C : non-zero const.).
(v)

Since ψ[a) is Λ(U)-effective, ^ V ^ is also Λ(M)-effective. From the above, we
have

(tθ

THEOREM 10.1. The operations $ (v = 1,2,3) «?•£ automorphisms of the
linear vector space of all forms of L^-class s (s = 0,1, , 2# u = 1,2,3).

(tO

Since $ transform harmonic forms into harmonic forms, we have
(V)

COROLLARY 10.1. The operations $ (v = 1,2,3) ara automorphisms of the
linear vector spaces of all hirmonic forms of L^-class s (u = 1, 2,3 s = 0,1, ,

2Λ).

In particular, if p is odd and if the dimension of ©p of all harmonic p-
forms whose supports are compact is finite, then we have three decomposi-
tions of the forms (10.4) for an arbitrary forms φv € &p. If there exists a
non-zero harmonica-form L\u) Ψlΰ)2s of L^-class s, then there exist in ξ>p four

non-zero harmonic £-forms Z(a> Ψpΰ)2s> &(•£(«> r f^20 (^ = 1,2,3) by Corollary
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10.1, these baing orthogonal with respect to the inner product and hence
linearly independent. If there exists another harmonic ^-form of Z<»-class s
independent from the above four, we can find 8 linearly independent forms
in ξ>p in the similar way to §8.

THEOREM 10.2. Let p be odd. If the dimension of £>1? of all harmonic p-
forms with compact supports is finite, then in each decomposition (10.6) of ξ)p

the dimension of Z^Sfo2* (u = 1,2,3) is == 0 (mod. 4).

If furthermore F4Λ is compact the decomposition (10.6) of ξ>p turns into
the decomsition of the p-th cohomology group Hp:

W = HI, + L ω Hfa* + . . . . + L'fo Hfa*» (ft ^ [ f ])

(10.7) = Hi + Lv, Htf + . . . . + L& H*f

= Hfo + Z(3) H%γ + . . . . + L% Hfc*»

Let Br and Br-2 (rS2n) be the r-th and (r-2)-th Betti numbers of l/4» and
let J[M) ba the dimension of the linear vector space of Λ<»-effective harmonic
ί-forms, then

d[u) = Br—Br-2, (ti = 1,2, 3)

from which we see that the rank of the subgroups Lh

ω H^, U[^ IP^

and L\3) Hfc2h are equal for every h S [Jr] and ΞΞ 0 (mod 4) by the theorem.

COROLLARY 10.2. Let V4n be compact. Then the p-th cohomology group IF
decomposes in three manners such as (10.7) and the rank of each corresponding

subgroups Lh

(X)Hfc2*', L\£>Hfa*h and L%)H[^h are equal for every h

If p is odd, these ranks are = 0 (mod. 4).

In the next place, let p be even and consider a harmonic £-form <pp

whose support is compact. Then Z$} Lfa ZJJ} <pli are harmonic 0-forms, that
is, constants for all non-negative integers ru n, and n satisfying rx + r2 + n
= p/2. Then the 3^/2 linear equations

(10.8) L[l, L& L% Ψ

p = 2 (£(ί> z>(ϊ) £ 3) e 1 ' ^ 1Λ" Γ ' f " V i r y ύ

= ^ ( Ω Ω 12 , 12 12 12 ) CCr'ir'ar'a)

have a unique solution for unknown constants σ-oΊrVβ)- To show this, for

brevity, write the sHPμ forms Ω r iΩ'2Ω''8 (n + r2 + *> = />/2) as ^1, vif ....vq

(q = sfli/Λ and o-cr^r^r',) as cλ(λ = 1, ... .q). Then (10.8) can be written in the
form
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(10.9)

(vu vx) + CA (V2, VJ)

(vu v2) + c2 (v2, v2)

cq {υq, vx) = dί

cq (vq, v2) = dι

u Vq) -f Ci (V>, ίlq) + + Cq(Vg, Vq) = J 7,

where cu — , cq are unknown constants and du , dq and (v\, v
1, , q) are known constants. The determinant

(vl9 vλ) (v2, V i ) . . . . ( ^ , υx)

(υu v2) (v2, v2)....(vq, v1)

(VU Vq) (Vlf Vq) (Vq, Vq)

is not zero, for if otherwise, there exist constants c[, , c'q which are not
simultaneously equal to zero and satisfy

c[ (vu Vι) + c\ (vι, Vι) + + c'q (vq, vγ) = 0,

or

c[ (vl9 υq) + c£vh vq)+....+ c'Jfrq, vq) = 0,

C2Vz + . . . . + C'qVq, VX) = 0,

I (C>i -h C>2 + + Cq Vq, Vq) = 0.

Since cί #i + .. . + c't vq lies in the vector space spanned by linearly indepen-
dent vu , vq, we must have

£ > i + . . . . + Cq Vq - 0,

from which we get

c[ = c; = . . . . = cq = o,

by virtue of the linear independence of #i, — , #«. But this is a contradiction.
Consequently, ^>p decomposes uniquely into the following form :

(10.10) φp τv + ), ( σ ( ! W ί ) : constants)

τ»dV = 0

where τ p satisfies the equations

(τP, Ωn&*$,'*) = Γ < τp, ί2riΩr*Ω 8 > c?F = 2r«+r*+

for all ri, r2 and r3 satisfying n + r2 + ft = ί/2. These equations are equiva-
lent to
(10.11) Ag} A3, Λfo τ^ = 0 (n + r, + r3 = p/2),

since A[J} Λg} AJJ} τp are harmonic 0-forms, that is, constants.

THEOREM 10.3. Let p be even. If the dimension of the linear vector space
tQp of all Harmonic p-forms with compact supports is finite, then every p-form
φp € &p decomposes into the form
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_ d)n(2) o(3) 8

φp = τv -f ^ Ω ί l ί l σ-(πr2ί3) (σoirs^): constants)
ri+r2+.B=P/2

τ p /s a harmonic p-form satisfying

where ru r± and n are non-negative integers satisfying rλ + n + 7*3 =

COROLLARY 10.3. Zeί F4« fe compact and p be even. Then the p-th Betti

number BP can be given by

Bp = Sp 4- sHpβ

where Sp is the number of lineaήy independent harmonic p-forms satisfying

Λg, Λg, Λg, r̂  = o (n + n + Λ = ί/2).
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