ON THE PROJECTION OF NORM ONE IN W*-ALGEBRAS, III

JUN TOMIYAMA

(Received November 10, 1958)

This paper is a continuation of the author's preceding papers [8], [9], in which we discuss certain existence-problems of σ -weakly continuous projections of norm one of different types of W^* -algebras.

By a projection of norm one we mean a projection mapping from a Banach space onto its subspace whose norm is one. In the following we concern with the projection of norm one in a W^* -algebra M. We denote by M_* the space of all σ -weakly continuous linear functionals on M. On the other hand M^* means the conjugate space of M and the second conjugate space of M is written by M^{**} usually. However, in case M is a W^* -algebra M^{**} is the W^* -algebra that plays a special rôle for M (cf. [3], [7]) so that we denote especially by \widetilde{M} . A positive linear functional φ on a W^* -algebra is called singular if there exists no non-zero positive σ -weakly continuous functional such as $\psi \subseteq \varphi$. The closed subspace of M^* generated by all singular linear functionals is denoted by M^*_* . Then we get $M^* = M_* \oplus M^*_*$: the sum is ℓ^1 -direct sum. A uniformly continuous linear mapping π from a W^* -algebra M to another W^* -algebra N is called singular if $\ell^*(N_*) \subset M^*_*$ where ℓ^* means the transpose of π .

All other notations and definitions are referred to [7] and [8]. Before going to discussions, the author expresses his hearty thanks to Mr. M. Takesaki for his valuable suggestions and co-operations.

1. General decomposition theorem.

THEOREM 1. Let M, N be W^* -algebras, then any uniformly continuous linear mapping from M to N is uniquely decomposed into the σ -weakly continuous part and the singular part.

PROOF. Let π be a uniformly coninuous linear mapping from \mathbf{M} into \mathbf{N} , then ${}^t\pi$ is the mapping from \mathbf{N}^* to \mathbf{M}^* . Consider the restriction of ${}^t\pi$ to \mathbf{N}_* . The transpose of this restriction is a σ -weakly continuous linear mapping $\widetilde{\pi}$ from $\widetilde{\mathbf{M}}$ to \mathbf{N} and clearly $\widetilde{\pi}$ is a σ -weakly continuous extension of π to $\widetilde{\mathbf{M}}$. Denote by \mathbf{M}^0_* the polar of \mathbf{M}_* in $\widetilde{\mathbf{M}}$, then we get a central projection z in $\widetilde{\mathbf{M}}$ such as $\mathbf{M}^0_* = \widetilde{\mathbf{M}}(1-z)$.

Put $\pi_1(a) = \widetilde{\pi}(az)$, $\pi_2(a) = \widetilde{\pi}(a(1-z))$ for each $a \in M$. We have, clearly, $\pi = \pi_1 + \pi_2$. Moreover we get

This completes the proof.

 $< a, \ ^t\pi_1(\varphi)> = <\widetilde{\pi}(az), \ \varphi> = < az, \ ^t\widetilde{\pi}(\varphi)> = < a, \ R_z{}^t\pi(\varphi)>$ for all $a\in \mathbf{M}$ and $\varphi\in \mathbf{N}_*$. Hence ${}^t\pi_1(\mathbf{N}_*)\subset \mathbf{M}_*$ i. e. π_1 is σ -weakly continuous. Similarly, we get $< a, \ ^t\pi_2(\varphi)> = < a, R_{(1-z)}{}^t\pi(\varphi)>$ for all $a\in \mathbf{M}$ and $\varphi\in \mathbf{N}_*$ so that ${}^t\pi_2(\mathbf{N}_*)\subset \mathbf{M}_*$. On the other hand the unicity is clear.

COROLLARY 1. 1. Let \mathbf{M} be a W^* -algebra, \mathbf{N} a W^* -representable *-subalgebra of \mathbf{M} and π a projection of norm one from \mathbf{M} to \mathbf{N} . Then π is uniquely decomposed into π_1 , and π_2 where π_1 is a positive normal \mathbf{N} -module homomorphism from \mathbf{M} to \mathbf{N} and π_2 a positive singular \mathbf{N} -module homomorphism from \mathbf{M} to \mathbf{N} .

PROOF. In this case, the σ -weakly continuous extension of π to $\widetilde{\mathbf{M}}$, $\widetilde{\pi}$, is also a projection of norm one from $\widetilde{\mathbf{M}}$ to \mathbf{N} . Therefore the above decomposition shows that all postulates on π_1 and π_2 are satisfied.

Theorem 2. Let π be a positive linear mapping from a W*-algebra \mathbf{M} to a W*-algebra \mathbf{N} , then π is singular if and only if there exists no non-zero positive normal linear mapping π' such as $\pi'(a) \leq \pi(a)$ for every positive element $a \in \mathbf{M}$.

PROOF. Suppose π is singular and π' a positive normal linear mapping from \mathbf{M} to \mathbf{N} such as $\pi'(a) \leq \pi(a)$ for positive $a \in \mathbf{M}$. Take a positive normal linear functional φ of \mathbf{N} . We have, from the assumption, $0 \leq {}^t\pi'(\varphi) \leq {}^t\pi(\varphi)$. Since ${}^t\pi(\varphi)$ is a singular linear functional, ${}^t\pi'(\varphi) = 0$ so that we get ${}^t\pi'(\mathbf{N}^*) = 0$. Therefore $\pi' = 0$.

Now suppose π has the property stated above. By Theorem 1, we have $\pi = \pi_1 + \pi_2$ where π_1 is σ - weakly continuous and π_2 singular. Moreover π_1 and π_2 are positive in this case. Therefore $\pi_1(a) \leq \pi(a)$ for positive $a \in \mathbf{M}$ which implies $\pi_1 = 0$. Hence $\pi = \pi_2$ i. e. π is singular.

2. Existence-problems of the σ -weaky continuous projection of norm one on different types of W^* -algebras. If N is a semi-finite W^* -algebra and M a purely infinite W^* -algebra, then thier direct product $N \otimes M$ is purely infinite by [4] and there exists a σ -weakly continuous projection of norm one from $N \otimes M$ to N. Similarly, we can see that there may also exist a σ -weakly continuous projection of norm one from a W^* -algebra of type I to its W^* -subalgebra of type I. Now in the following we study on the converse existence-problems of these facts. The next theorem is essentially due to Sakai [4].

THEOREM 3. If there exists a projection of norm one π from a semifinite W*algebra M to its purely infinite W*-subalgebra N, then π is always singular.

To prove this theorem we need the following

LEMMA 3. 1. Let π be a projection of norm one from a W*-algebra \mathbf{M} to its W*-subalgebra \mathbf{N} and $\pi = \pi_1 + \pi_2$ the decomposition in Corollary 1. 1., then π_1 is strongly continuous on the unit sphere of \mathbf{M} .

PROOF. By the relation $\pi_1((a-\pi_1(a))^*(a-\pi_1(a)))$ for each $a \in \mathbf{M}$, one can get $\pi_1(a^*a) \geq \pi_1(a)^*\pi_1(a)$ ($2I - \widetilde{\pi}(z)$) where $\widetilde{\pi}$ is the σ -weakly continuous extension of π to $\widetilde{\mathbf{M}}$ and z a cental projection of $\widetilde{\mathbf{M}}$ in the proof of Theorem 1. By [8], we see easily, $\widetilde{\pi}(z) \in \mathbf{N}^{\natural}$. Hence $\pi_1(a)^*\pi_1(a)$ ($2I - \widetilde{\pi}(z)$) $\geq \pi_1(a)^*\pi_1(a)$. Therefore π_1 is strongly continuous on the unit sphere of $\mathbf{M}(\text{cf. }[2:\text{Chap. }1\ \S4])$.

PROOF OF THEOREM 3. Let π_1 be the σ -weakly continuous part of π . By the above lemma and the property of π_1 , we can proceed the same argument as in [4: Proof of Theorem 2] concerning π_1 and get $\pi_1 = 0$.

PROPOSITION. Let \mathbf{M} be a semi-finite W^* -algebra and \mathbf{N} its finite W^* -subalgebra. We denote by \mathfrak{M} for the definition ideal of a faithful normal semi-finite trace τ_0 on \mathbf{M} (cf. [2]). If there exists a non-trivial σ -weakly continuous \mathbf{N} -module homomorphism π from \mathbf{M} to \mathbf{N} , we have $\mathbf{N}' \cap \mathfrak{M} \neq \{0\}$.

PROOF. Without loss of generality we may assume that **N** is countably decomposable. Take a faithful normal finite trace τ on **N**. We have $\langle xy, t^{\prime}\pi(\tau) \rangle = \langle \pi(xy), \tau \rangle = \langle \pi(xy), \tau \rangle = \langle y\pi(x), \tau \rangle = \langle y\pi(x), \tau \rangle = \langle yx, t^{\prime}\pi(\tau) \rangle$ for every $x \in \mathbf{M}$ and $y \in \mathbf{N}$.

Now $\langle x, {}^t\pi(\tau) \rangle = \langle x \cdot a, \tau_0 \rangle$ for all $x \in \mathbf{M}$ where a is an operator belonging to $L^1(\mathbf{M}, \tau_0)$ and $x \cdot a$ the strong product defined in [5] and $\langle x \cdot a, \tau_0 \rangle$ means the extended value of τ_0 (cf. also [5]). We get $\langle xy \cdot a, \tau_0 \rangle = \langle xy, {}^t\pi(\tau) \rangle = \langle y \cdot x \cdot a, \tau_0 \rangle = \langle x \cdot a \cdot y, \tau_0 \rangle$ for every $x \in \mathbf{M}$ and $y \in \mathbf{N}$, which implies $a\eta \, \mathbf{N}'$. Here we may assume, without loss of generality, that a is self-adjoint. By [5: Corollary 12. 6] we can find a non-zero spectral projection e of a such as $e \in \mathfrak{M}$. Since it is clear that $e \in \mathbf{N}'$, we have $\mathbf{N}' \cap \mathfrak{M} + \{0\}$.

THEOREM 4. If there exists a projection of norm one from a W^* -algebra M of type I to its W^* -subalgebra N of type II, then π is always singular.

PROOF. It is sufficient to prove this theorem in case that N is of type II_1 , because if there exists a projection of norm one which is not singular

from M to its W^* -subalgebra of type II_{∞} we see, by [4: Proposition 3], that there also exists a projection of norm one which is not singular from M to its certain W^* -subalgebra of type II_1 .

If $\pi_1 \neq 0$ in Corollary 1. 1., we can choose a non-zero projection $e \in \mathfrak{M}$ \cap \mathbf{N}' by the above proposition (\mathfrak{M} being taken as in the preceding proposition) and e is easily seen to be a finite projection of \mathbf{M} . We have $e\mathbf{M}e \supset e\mathbf{N}$.

Now $e\mathbf{N}$ is isomorphic to a W^* -algebra $z(e)\mathbf{N}$ which is of type \mathbf{II}_1 where z(e) denotes the central envelope of e in \mathbf{N}' . On the other hand $e\mathbf{M}e$ is a finite W^* -algebra of type \mathbf{I} . Therefore $e\mathbf{M}e \supset e\mathbf{N}$ is impossible, which is a contradiction. Hence $\pi_1 = 0$ i. e. π is singular.

REMARK. As Theorem 3 concerns with the direct product of a semi-finite W^* -algebra and a purely infinite W^* -algebra (cf. [4]) this theorem is also closedly related to the direct product of a W^* -algebra of type \mathbf{I} and that of type \mathbf{II} .

LEMMA 5. 1. If φ is a positive singular linear functional on a W*-subalgebra N of a W*-algebra M, any positive extension of φ to M is singular.

PROOF. Denote by ψ the positive extension of φ to M and let $\psi = \psi_1 + \psi_2$ be the decomposition into its normal and singular parts. Since ψ_1 is normal on M, it is also normal on N. But, as $\varphi = \psi \ge \psi_1$ on N, we get $\psi_1 = 0$ on N. Therefore $\psi_1 = 0$ on M, whence $\psi = \psi_2$ is singular.

LEMMA 5. 2. Let **M** be a W*-algebra, **N** a W*-subalgebra and π a projection of norm one from **M** to **N**, then ${}^t\pi(\mathbf{N}_*^+) \subset \mathbf{M}_*^+$.

PROOF. Take a singular positive linear functional φ of N. Clearly ${}^t\pi(\varphi)$ is positive and ${}^t\pi(\varphi) = \varphi$ on N. Hence ${}^t\pi(\varphi)$ is singular by the above lemma. Since N_+^* is generated by its positive elements, we get ${}^t\pi(N_+^*) \subset M_+^*$.

By help of these lemmas we can generalize the result of M. Takesaki (cf. [6]).

Theorem 5. Let \mathbf{M} be a W^* -factor of type \mathbf{I} and \mathbf{N} its W^* -subalgebra. In order that there exists a σ -weakly continuous projection of norm one from \mathbf{M} to \mathbf{N} it is necessary and sufficient that \mathbf{N} is the second dual of a two-sided ideal.

PROOF. Without loss of generality, we may assume that M is the full operator algebra on some Hilbert space H. Suppose π is a σ -weakly continuous projection of norm one from M to N. $M = C^{**}$ where C is the ideal of all completely continuous operators on H. By [1] one easily verifies $C^0 = M_+^*$ where C^0 means the polar of C in M^* . Consider $\pi(C)$, the image of

C by π , then $\pi(C)$ is a σ -weakly dense ideal of N by [8].

Take $\varphi \in \pi(C)^*$ and denote by ψ the extension of φ to \mathbf{N} . We can say that the σ -weakly continuous part of ψ is independent from ψ . In fact, if ψ and ψ' are extensions of φ and $\psi = \psi_1 + \psi_2$, $\psi = \psi_1' + \psi_2'$ are decompositions into their σ -weakly continuous parts and singular parts, we have, by Lemma 5. 2., ${}^t\pi(\psi_2)$, ${}^t\pi(\psi_2') \in C^0$. Hence $<\pi(a)$, $\varphi > = <\pi(a)$, $\psi > = < a$, ${}^t\pi(\psi) > = < a$, ${}^t\pi(\psi_1) + {}^t\pi(\psi_2) > = < a$, ${}^t\pi(\psi_1) > = <\pi(a)$, $\psi_1 > = <\pi(a)$, ψ_1

Now, correspond φ to the unique σ -weakly continuous part ψ_1 of the extension ψ of φ . One easily verifies that this mapping is linear and one-to-one from $\pi(C)^*$ onto \mathbf{N}_* . On the other hand the unit sphere of C is σ -weakly dense in that of \mathbf{M} as \mathbf{M} is the second dual of C, so that the unit sphere of $\pi(C)$ is σ -weakly dense in that of \mathbf{N} . Therefore the above correspondence is isometric. This completes the necessity of the theorem.

Next, let $\mathbf{N} = C_1^{**}$ for an ideal C_1 of \mathbf{N} . For any central projection z of \mathbf{N} , zC_1 is a subspace of C_1 . Hence $\mathbf{N}z = (C_1z)^{**}$, which implies $\mathbf{N}z$ must contain a direct summand of a factor of type \mathbf{I} . Therefore $\mathbf{N} = \Sigma_{\alpha} \mathbf{N}_{\alpha}$, central direct sum of those factors $\{\mathbf{N}_{\alpha}\}$ of type \mathbf{I} .

Now one verifies easily that there exists a σ -weakly continuous projection π_{α} of norm one from M to each N_{α} . Put $\pi(a) = \Sigma_{\alpha} \pi_{\alpha}(a)$ for each $a \in M$; π is clearly a σ -weakly continuous projection of norm one from M to N. Thus the proof is completed.

REFERENCES

- J. DIXMIER, Les fonctionnelles linéaire sur l'ensembles des opérateurs bornes d'un espace de Hilbert, Ann. of Math. 51 (1950), 387-408.
- [2] _____, Les algèbres d'opérateurs dans l'espace hilbertien, Paris (1957).
- [3] A. GROTHENDIEK, Une résultat sur le dual d'une C*-algèbre, Journ. Math. 36(1957), 97-108.
- [4] S. SAKAI, On topological properties of W*-algebras, Proc. Japan Acad. 33(1957), 439-444.
- [5] I. E. SEGAI, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457.
- [6] M. TAKESAKI, On the direct product of W*-factors, Tôhoku Math. Journ. 10(1958), 116-119.
- [7] _____, On the conjugate space of operator algebra, Tôhoku Math. Journ. 10(1958), 194-203.
- [8] J. TOMIYAMA, On the projection of norm one in W^* -algebras, Proc. Japan Acad. 33 (1957), 608-612.
- [9] _____, On the projection of norm one in W*-algebras II, Tôhoku Math. Journ. 10 (1958), 204-209.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.