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0. In the paper [5] the author defined the replicas in the case of algebraic
group denned over a field of characteristic 0 and characterized algebraic
subalgebras of Lie algebras of algebraic groups. Now we shall define replicas
in general case and show that these two definitions are same if the field of
definition is of characteristic 0 and that in the case of algebraic groups of
matrices the replicas defined here are same with those which were defined in
[2] by means of tensor invariants.

We shall use the terminology in [5].

1. Let G be a connected algebraic group with the Lie algebra Q let ίl(G)
be the field of rational functions of G for a field k of definition for G let
k{G) be the subfield of ίl(G) consisting of all rational functions defined over
k. For D € Q the subset ΩD(G) of those / € ίl(G) such that Df = 0 is a
subfield of ί2(G). Let g(D) be the subalgebra of g consisting of those D' € 9
such that Df = 0 for any / € ί2D(G).

DEFINITION Any element of Q(D) is called a replica of D in Q.

In the section 2 we shall show that if the characteristic of the ground
field is 0, the concept of replicas is independent of the ambient algebraic Lie
algebra β. For simplicity we shall take one fixed algebraic group G and
consider replicas in the Lie algebra 9 of G without reference to the ambient
algebraic Lie algebra g.

For a field k of definition for G, put k\G) = k(G) Π ίlD(G). Suppose that
D is defined over k. Clearly the compositum of kD(G) and O is contained in
ΩD(G). Conversely any / € ίlD(G) is expressed as a rational function of
elements of kD(G) with coefficients in K, where K is any extension field of
k such that / is defined over K.

In fact we may suppose that K is finitely generated over k. It is suf-
ficient to show the fact in the next two cases (i) K is finite algebraic over
k, (ii) K is simply transcendental over k. For the case (i) let aly ar be a

£-base for K, then we may express / = aλf-\- + α r / r for some f € k(G).
So we have Df — aιDfι

Jr +arDfr = 0, and Df = 0 since Df is in k(G)
and K and k(G) are linearly disjoint over k. For the case (ii) let t be a



288 τ

transcendental element over k such that K = k(t). Since K and k(G) are
linearly disjoint over k9 t is transcendental over k(G). We may express / =
F(t)/H(t) for some F(t) = S,//, H(t) = X,Λ/ € k(G) M such that F(*) and
H(t) are relatively prime in k{G) [t]. As Df = 0, we have

(1) DF(t)-H{i) = F(t)-DH(t).

If one of DFO) and DJF/(ί) is 0, (1) implies that the other is 0. So DF(t) =
ΣtZyW* = 0 and DH(t) = ^Dhft* = 0, i. e. Dfi = 0 and DA, = 0. Thus we
may suppose that DF(/) + 0 and DH(t)φO. Since F(ί) and H(t) are relati-
vely prime, (1) implies that DF(t) is divided by F(t). But degree of DF(f) ^
degree of F(f). So there exists c in &(G) such that DF(t) = £-F(/), and therefore
DH(t) = c//(0 We have Dfi = c/t and Dfej = chό. So Dffh,— ffDh5 = 0.
Since we may suppose ft Φ 0, we have / = 2 4 {tι/^<j{hjfi)t5\, where

zXV/t) = o.
Thus we have shown

LEMMA 1. Let kbe a field of definition for G. If D € g is defined over
k, ΩD(G) is the compositum of kD(G) and ίλ

And therefore

PROPOSITION 1. Let k be a field of definition for G. Then for D and
D € Q defined over k, D' is a replica of D if and only if kD(G) is contained
in kD\G).

Let H be an algebraic subgroup of G let k be a field of defintion for G
and H let kH{G) be the subfield of k(G) consisting of / such that L*f = /
for any point A on H, then we have

LEMMA 2. Let Hi and H2 be algebraic subgroups of G let kbe afield
of definition for G, Hγ and H2. Then Hx contains Hz if and only if kH2(G)
contains kπι(G).

PROOF. Suppose that kHι(G) is a subfield of kHo(G). Let ψ% be the
natural mapping of G into the homogeneous space G/Hι which is generically
surjective rational mapping defined over &such that for two generic points
yx and y2 over k on G, <Pi(yi) = 4̂(3̂ 2) if and only if ^ € Hty2 (cf. [6] theorem
2). Since kΉl(G) is a subfield of kHί{G\ there exists a rational mapping p of
G/H2 into G/Hx such that φx —p°ψ2. Let H2j be any irreducible component
of H2 let h X x be a generic point over & on iί 2 j X G, then φx{hx) = />
(<Pz(hx)) = p{φ2{x)) = £>iGr) hence Λ.r € i ί ^ and h €: Hx therefore i/2 i

is contained in i/Ί. The converse is trivial.
q. e. d.
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2. In this section we assume that the characteristic of the universal domain

is 0. For D € 9, let G(D) be the algebraic subgroup of G consisting of all

y such that h%f = f for any f € ί l^G). If k is a field of definition for G and

D, by the Lemma 1, G(JD) consists of all y € G such that L*f = f for any

/ € ^ (G) and therefore G(D) is ^-closed. Hence the connected component

of G(D) containing the unit element is defined over k. On the other hand

kD(G) is right invariant i. e. for any rational point p over k on G, R% maps

kD(G) into itself and kD(G) is algebraically closed in k(G) in fact, let

/ € £(G) be algebraic over kD(G) let P(X) be the irreducible polynomial in

kD(G) [X] of f then, the characteristic of k being 0, Z)P(7) = P'(f)*Df= 0

implies £)f = 0. Since by the Lemma 1 G(D) consists of all y such that

L*f = f for any / € P(G), the theorem of [1] shows that G(D) is connected.

Thus we have

LEMMA 3. For any D € Q, G(D) is connected, and if k is a field of

definition for G and D, G(D) is defined over k.

Let g(D) be the Lie algebra of G(D), then we obtain

LEMMA 4. "β(D) is contained in $(D)

PROOF. Let k be a field of definition for G and D let h X x be a

generic point over k on G(D) X G for / € kD(G\ from the definition of

G(D), /(&c) = / C Z ) . Hence Rtf - f(x) is in *(*) (G) Π mΛ, where mΛ is the

maximal ideal of the local ring oh of h in ίl(G). For any D' € g(D) defined

over K D\Rtf-f(x)) € *(*) (G) Π mΛ and D\Rtf - f{x)){h) = 0. But £>'

( i ? ί / - /(^)) (A) = (D'iϊί/) (A) = (RΪD'f) (h) = (D'f) {hx). Since hx is generic

over k on G and Z)'/ is in £(G), we have D'f = 0. The Lie algebra g(D) over

ί l having a base consisting of invariant derivations defined over k, we have

the lemma.
q. e. d.

LEMMA 5. // an algebraic subalgebra ΐ) of g contains D, ϊ) contains

80).
PROOF. Let // be the connected algebraic subgroup of G whose Lie

algebra is f) let k be a field of definition for G, H and D let ks(G) and

kσ(D)(G) be the subfields of £(G) consisting of all / such that L*/ = / for

any y ζ H and G(D), respectively. By the definition of G(D\ kD(G) is a

subfield of fe(jD)(G). Let A X x be a generic point over k on H X G. If

/ € kn(G), the notations being as in the proof of the lemma 4, Rtf — f(x)
€ £U) Π mA. £> being defined over £ and in ί), D(i?£/ - f{x)) € *0r) (G) Π
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mΛ. As in the proof of the lemma 4 we have Df = 0. Thus we have proved

that JZH(G) is contained in k°(G) and a fortiori in fe(jD)(G). The Lemma 2

shows that H contains G(D) and ΐ) contains Q(D).

q. e. d.

LEMMA 6. β(D) is contained in g(D).

PROOF. Let 4 be a field of definition for G and D let x X y be a

generic point over k on G X G let (?) be a coordinate functions of G

relative to an affine variety V in which the unit element e has a representa-

tive. For any /(£) € F(G) there exists L(X, Y) e k [X, Y] such that L(x,y)φO

and LCr, 3/) i/ζry) — f(y)} € £[.r, y]. Then we have an expression

(2) L(x, y) \f(xy) - f(y)\ = VikO-FiGO,

where the summation runs over some Pi(x) € k[x] and Ft(y) € k[y] such
that these finite quantities Ft(y) are linearly independent over k. From the
definition we have

(3) L(x, ξ) ί L*xf(ξ) - f(ξ) \ = ΣiPiCaO ΉCf).

Since ίl and k(G) are linearly disjoint over k, for 2: € G which has a repre-

sentative in V, Uz, £) |L?/(f) - f(ξ) I = 0 if and only if all Pt(*) = 0.

Let © be the set of all P{X) € ^[X] such that P(x) appears as one of

Pi(x) in some expression (3) for some / € kD(G) put 81 = Sβ + © £[X] where

5β is the ideal in k\_X] determined by V. Then for a point z of G which has

a representative in V, £ is in G(D) if and only if z is a zero of Sί in fact,

if * is in G(D), P(z) = 0 for P(X) € % if P(X) is in (£, P(X) is one of

Pi(X) in some expression (3) for some f(ξ) € kD(G) since z € G(D\ Lff(ξ)

= f(ξ) and Pt(z) = 0, hence P(̂ ;) = 0 conversely suppose that z is a zero-

of 51 let x X 3/ be a generic point over £(*) on G X G for /(£) € k\G),

f(xy) — JXy) is in the specialization ring of z X y in £(.z, y), hence there

exists L(X, Y) € k[X, Y] such that L(z, y)φθ and L(ΛT, y) \f(xy)-f(y)\

€ ^fe 3/] let L(x, y) \f(xy) — f(y)\ = 24Pt(j;) ί\(y) be an expression of the

type (2), then L(x, ξ) \L*f(ξ) ~ Λξ)\ = 2 tPtU) F,(f) is of the type (3) thus

L(z, ξ) \Lψξ) -f(ξ)\ = 0 and Lϊffi = f(ξ) since Lfe f) Φ 0.
Let Z)' be in Q(D) let ^ be a field of definition for G, D and D', then

by the Lemma 3, G(D) is defined over k let h X x X y he a generic point

over k on G(D) X G X G. We shall denote by the same letter D the &(y)-

derivation of k(y)(x) induced naturally by the ίl-derivation D of ίl(G). Let

P(X) € ©, then there exists an expression of the type (2)

Ux, y) \f(xy) - f(y) | = 2tPt(x>Ft(y)

for some /(?)•€ ^(G) such that P(.r) is one of Pt(j:). Applying D' on
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this equation we have

D'L(x, y>{f(xy) -f(y)\ + L(x, y)-D'f(xy) = ^UP^-F^y).
But Dy(xy) = (D'RΐM))(χ) = (Rm(ξ))(x) = (D'f(ξ))(xy) and since D' is
in g(D) and xy is generic over k on G, we have (D'f(ξ)) (xy) = 0, and we
have

D'L(x, y>\f(χy)-f(y)} = \ϋ Plx)^).

On the other hand, L(.r, 3/) being in k[x, y], we have

Ux, y) = V J W Γ M for some S/X), T/X) € k[X],
and DL(x, y) — ̂ jD'Sj{x) Tj(y). Since D' is everywhere finite, there exists
Q(X)€k[X] such that Q(h)+0 and Q(x)D'S3(x), Q(x)DfPi(x) € *[>]. Thus
the expression

Q(x)D'L(x, y>\f(xy)-f(y)} = ΣtQ(x)UPi(x>Fi(y)

is of the type (2). Hence, let P,(X) € £[X] such that ?,(#) = Q{x)D'Pi{x\
then P4(X) € ® and D ' J P , ^ ) = Pt(x)/Q(x) where Q(A) 4= 0. Clearly if P{X)
€ $& then D'P(x) = 0. Thus, since £)' is everywhere finite, we have shown
thai for any P(X) € SI there exist A(X) € 31 and B(X) € *[X] such that
B(h) + 0 and D'P{x) = ^(^)/JB(Λ:).

Let Q be the set of those F(X) € k[X] for which there exists L(X) €
*[X] snch that L(h)ψO and L(X)F(X) € ST. Then by the lemma 5 of [8] IΠ3

Q is ^-primary, where $ is the prime ideal in k[X] determined by G(D). So
the argument which has run in the proof of the Proposition 2 of [5] shows
that D' is in the Lie algebra Q(D) of G(D).

q. e. d.

From the Lemmas 4 and 6 it follows that Q(D) — Q(D) and Q(D) is alge-
braic. Let GD be the minimal connected algebraic subgroup of G whose Lie
algebra contains D (cf. the Corollary 1 of the Proposition 2 of [5]) let QD

be the Lie algebra of GD> Then from the definition of QD and the Lemma 5
it follows that QD = Q(D). And the Corollary 2 of the Proposition 2 of [5]
shows that GD = G(D). So by the Lemma 3 we have that GD is defined over
k if k is a field of definition for G and D. Thus we have the main theorem

THEOREM I. Let G be a connected algebraic group with the Lie algebra
g. If the characteristic of the universal domain is 0, for any D € Q there
exists the minimal connected algebraic subgroup GD of G whose Lie algebra
contains D. If k is a field of definition for G and D, GD is defined over k.
GD is the algebraic subgroup of G consisting of all p for which L%f=ffor
any / € k(G) such that Df= 0. The Lie algebra QD ofGD is the sub algebra
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of g consisting of all D' such that ifDf=0 for f € k(G) then D'f = 0, i. e.

all replicas of D.

By this theorem, in the case of characteristic 0 replicas defined in this
paper are same with those in [5] and the concept of replicas is independent
of the ambient algebra Q.

3. Any algebraic group of matrices is an algebraic subgroup of GL(n, 12) for
some positive integer n. We shall take the Lie algebra of GL(n, ίl) as the ambient

algebraic Lie algebra as far as algebraic groups of matrices are concerned. Let

(uij) be the coordinate functions of GL(n, ίl). For any matrix A = (α^) € βί

(n, ίl), which is the Lie algebra of GL(n, ίl) defined by Chevalley [3], we denote

by d(A) an ίl-derivation of Ω(u) such that d(A)ui} = Σq=ι<xiquQj. Then A->

— d(A) is an ίl-isomorphism of Ql(n, ίl) onto the Lie algebra of GL(n, Ω)

(cf. [5]). For A € Ql(n, k) Chevalley [2] defined the replicas of A as follows
let TO be a vector space over k on which A operates such as Aut =
where u19 , un is a base of 9J2 over jfe let TOr,s = TO*®TO

-r-times

® 9ft, where TO* is the dual space of TO and

tensor product over k let Ar%Λ = ( — ίA)~j-(-ίA) + + (~^
V r-times —

4- 4- -A? where + means the Kronecker sum, then Ar>s operate naturally
—-s -timβS- '

on TOrjS A' € Qt(n9 k) is called to be a (r, 5)-replica of A if A'rsu = 0
for w € TOr,s such that Arsw = 0, and A' is called to be a replica of A if
-A' is a (r, 5)-replica for any non-zero pair r and 5. We call a matrix A to
be a c-replica of A if A is a replica of A in the sense of Chevalley. If the
characteristic of the ground field is 0, the theorem 1 shows that the two
definitions of replica are same if we identify a matrix A € Ql(n, ί2) and the

element — d(A) of the Lie algebra of GL(n, ί2). In the following we shall show

directly this fact for the non-zero characteristic case at the same time with

the characteristic zero case.

In the following sections we assume the algebraic closedness of k without

loss of generality by the Proposition 1.

For a set of non-negative integers ei5(l Ŝ i, j ^ n) let u = un

6nu12

ei2•••

... unn

βnn for a non-negative integer q let TOg = 2βll+ei2+....+βnn==(,£ we and TOg

= 2^qTOj5 then TOg and TOα are <i(A)-invariant for any A € gί(rc, k) let AQ

and Aq be the matrix representations of the restrictions of d(A) to TOq and

TOC, respectively. Then we obtain

LEMMA 7. If A is semisimple or nilpotent, then AQ is semisimple or

nilpolent, respectively.
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PROOF. If A is semisimple, we may suppose that A is a diagonal matrix

(s19 , sn). Then d(A)ui5 = SiUij9 hence d(A)ue — s(e)ue, where s(e) = ΣfJ=1

Stβij. Therefore AQ is diagonal, hence A is semisimple. Now in the set of

elements of the base (ue) for WQ we introduce an order as follows for Ώtl9

Uij < ust if and only if i < $ or i = s and j < £. For q > 1, we < we' if and

only if there exist integers s and / such that 1 ^ s, t ^ n and ei} — e'u for w^

< ust and e s ί > e'tt If Ά is nilpotent, we may suppose that cc^ = 0 iί j=fci

- 1. Then d(A)u = S 0^-^11^ Mi-i/- 1 ^ 1 wi/""1 «»»β"" = S t f i w
eiju

Tlj{β). Since wτ^(ί!) < # e , ^ g is nilpotent.

q. e. d.

Clearly Aq = Ax φ Φ ^ - Q , where φ means the direct sum. Hence

we have

LEMMA 8. If A is semisimple or nilpotent, Aq is semisimple or nilpo-

tent, respectively.

LEMMA 9. Let A and B € gί (n, k). If [A9 E] = 0, then [AQ, Bq~\ = 0

and [AQ, BQ] = 0.

PROOF. Let f(u) € k(u). Then d(A)f(u) = ^s^dffdu^Auu and d(B)d(A)

f(u) = 2ϊt,tβttmi&f/du9tdutiBu8tAutj + ΈZj-idf/duijBAuv = d(A)d(B)f(u). Hence

[ί/CA), J ( β ) l = 0 and restricting J(A) and rf(JB) to 9Jίg and Wία we have the

lemma. q. e. d.

For any matrix A € βί(#, &) there exist uniquely the semisimple matrix

S and the nilpotent matrix N such that A = S + N and [5, N~} = 0. We

shall call this decomposition of A the canonical decomposition of A. Since

for any A and B € βl(rc, k), d(A + B) = d(A) + d(B), from the Lemmas 7,

8 and 9 follows the next lemma

LEMMA 10. If A = S + N is the canonical decomposition of A, then

AQ = Sq + Nq and Aq = Sq + Nq are the canonical decompositions of Aq

and Aqy respectively.

4. Let S = diag. (51, , sn) in Qί(n, k) put s{e) = Σ^ j = 1 5 i ^ ί j for (^o ). Ano-

ther diagonal matrix S' = (sΊ, , s'n) is said to be a linear specialization

of S if λjsί + +7^ιSn = 0 for any set of integers λέ such that λ^ί + ...

Let / = Σeaeu and g = Σβeu be elements of k[u] such that d(S) / 4 = 0

and d(S)g =%= 0. Then we have

d(S)f g - f-d(S)g = Σ

where for (ei3), (eΊj)9 e ^5 e means etj ^ elj for any pair / and j . Now if there
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exists non-zero s(e) in the above equation, we express

where .r* is one of non-zero s(e) and xt =f= #j if i + i

Suppose that d(S) (f/g) = 0, then a simple calculation shows that

d(S)Qf-g - / £/(5)V = 0 for q = 1, 2,......

and

?<Q^p(aeβP-e - a?-e$e) s(ef = S^y,^* = 0

for # = 1, 2, But det(xi

3)1^i f^r = #1 *V Π, >/.Zf — . r ^ φ O . So we
have 7ί = 0.

Now suppose that 5' is a linear specialization of S. Then if s(e)
= 0, /(V) = 0 and if s(e) •= $(e')> then s'(e) = s(e). And it is easily seen
that

ΣOgβsp(tfβ/βp.β - a?.βe)s\e) = 0.

Thus we have rf(S') (//#) = 0, i. e.

LEMMA 11. Z^ί S and S' be diagonal matrices in Qt(n, k) let f and g
be in k[u\ such that d(S)f=^0 and d(S)g=ή=0. If S' is a linear specialization
of S and d(S) (f/g) = 0, then d(S') (f/g) = 0.

Now we have

PROPOSITION 2. Let S be a semisimple matrix in Ql(n, k). Then for any
matrix S' in $l(n ,k), S' is a c-replica of S if and only if d(S') is a replica
of d(S).

PROOF. We may suppose that S is diag. (sl9 , sn). Suppose that S'
is a c-replica of S, then from the Theorems 1 and 3 of [2] it follows that
5' is diag. (si, , sn) and it is a linear specialization of S. If jΓ= ΣeoLeιt

e

is in k[u] such that d(S)f = 0, then s(e) = 0 for ae =f= 0, so s(e) = 0 for
ae + 0 and therefore d(S')f"= 0. If d(S)(l/f) = 0, it is easily seen that d(S')
(1/f) — 0. Thus from the Lemmall it follows that d(S') is a replica of d(S).

Conversely suppose that d(S') is a replica of d(S). If n = 1, S' = (sί.j)
is diagonal. If ^ > 1, d(S)uiι/ui2 = 0 for z = 1, 2, , #. So we have d(S')
(uii/ui2) = 0 and d(S)uiι ui'ί — Unmd(S')ui2 = 0. Thus we have s'a = 0 for
z=f=i, i. e. S' is diag. (s[, , s»). If λ1? , λn are integers such that λ ^
+ + Xnsn = 0, then d(S) Tί^uϊί = (S?βlλ4Si) ΠΓ-iwf/ = 0 and therefore d(S')
ΠfβiM^1 = 0, and λ^ί + + \nsn — 0. From the Theorem 3 of [2] it follows
that S' is a c-replica of S.

q. e. d.

Thus, identifying a matrix A € gt(^, Ω) with the element — d(A) of the
Lie algebra of GL(n, ίl), we have shown that the two definitions of replicas
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of semisimple matrices are same.

5. For a positive integer s ^ n let 9Jί(s) be the vector sub space of k[u] span-

ned by UiϊiUitz uisS for 1 <: i3 <Ξ n, then 9Jί(s) is d(A)-invariant for any A

€ Qί (n, k). Moreover there exists a /^-isomorphism Ψs of 99ΪOS onto 9Ji(s) such

that Ψsiuiτ 0 ui20 0 uis) = uiιxuι.^ uisS. From the definition it follows

that ΨSAOS = d(A)Ψs for any A € Ql(n, k). Thus we have

LEMMA 12. Z,*tf A αwJ A' € 8l(/z, £). For A' to be a (0, s)-replica of
A it is necessary and sufficient that ifd(A]f= 0 for feWω then d(A)f = 0,

where s is a positive integer ̂  #.

Let AT be a nilpotent matrix in Ql(n, k), then by the theorem of Cheval-

ley and Tuan (cf. [7]) N' € $l(n, k) is a c-replica of N if and only if N' =
cίN for some a € & for the characteristic 0 case and N' = ΛoN + ^jiVp

+ + arN
pT for some a% € & for the modular case. In the later case

d(Npi) = J(iV)pt, hence if ΛT is a c-replica of N, d(N') is a replica of rf(JV).
Conversely if d(N') is a replica of d(N), by the Lemma 12 JV' is a
(0, s)-replica of Λ̂  for positive integer s ^ n. So if n ^ 4, by the lemma l '
of [4] N' is nilpotent and by the Theorem l ' of [4] iV' is a c-replica. In the
case of n ^ 3, N' is a c-replica oί N in fact, if w = 1, the assertion is
trivial if n = 2, then iV2 = 0 and by the Lemma 12 and the Lemma l ' of
[4] N' = <xN for some a € £ in the case of ?z = 3, if N2 = 0, the argument
in the case of n = 2 gives the assertion otherwise, we may suppose that
ΛΓ= Γ0 0 01 since N3 = 0, by the Lemma 12 and by the Lemma l ' of [4],

1 0 0

Lo l oj
N' = ccN + βN2 for some a, β € k if the characteristic of k is 2, the
theorem of Chevalley and Tuan gives the assertion otherwise, applying d(N)
and d(N) on 2 «u«3i — uli, we have β = 0. Thus we have

PROPOSITION 3. Let N be a nilpotent matrix in &ί(n, k). Then for any

matrix N' € gl(#, k), ΛΓ is a c-replica of N if and only if d(N') is a

replica of d(N).

Thus, identifying a matrix A € gl(/z, ίl) with the element—d(A) of the

Lie algebra of GL{n^ 12), we have shown that the two definitions of replicas

of nilpotent matrices are same.

6. Let No = (ntj) € Qt(n, k) such that n a-x = 1 and other nu = 0 let A

= λ £ + No for some λ € k, where E is the unit matrix of Qί(n, k). Then

d(A)uι5 = λwu and d{A)ui3 = Xu^ + Ui-ι3 for / > 1. Let U =

then we have

(4) d(A)U = ήk U.



296 τ KANNO

In fact, we shall show (4) by the induction on the degree n. If n = 1, it is

trivial let Uij be the cofactor of the (z, i)-component ui5 of (u^). Then

d(A)U = d(A) Z%.unjUnj = ZWkUnjUn, + Zj-iUn-uUn, + ̂ lUnjd(A)Unj. By the

induction assumption d(A)Un) = (w — l)λ!7Wj and we have (4).

In particular we have

(5) d(N0)U = 0.

As d(A)Πjmluu = Λλ ΠJ.iiίu, we have

(6) J(A) (U/ΠUuu) = 0 for A = λ £ + No.

LEMMA 13. Let A and A' € Ql(n, k). If A = \E + JV0 αwJ rf(A') M a

replica of d(A), then A' = μE + iV', where μ € k and N' is nilpotent and

triangular}"*

1 PROOF. If n — 1, this lemma is trivial. Suppose that n > 1. From J(Λ)

(un/u12) = 0, it follows that d(A') (un/uι2) = 0 and Λ^ = 0 for j> 1, where

A' = (cc'i3). Put an = μ. For a positive integer r <ί w let Ur = άet{ui3)ι^u^r

and let Urj be the cofactor of urj of C7r. From (6) d(A') (Ur/Wj=1ul3) = 0.

So

hence

(7)

But

= (d(A)Ur - rμUr)

d(A')Ur = rμUr
lSr^n.

where the first term = άrrUr + 2n

=r+1α:^ Σ]=1utjUrj and the second term = (r

— l)μUr. Since ί/rj € i[Mn, #12, , WrJ> f̂ r and utjUrj (t = r + 1, r + 2,...
... w) are linearly independent over ^. So by (7) a^ = /* and άn = 0 if ί > r.

q. e. d.

LEMMA 14. Let At = XjEj + JVi? ze A r̂̂  X4 € &, £» iί w»iί matrix of

some degree and Nt is nilpotent and triangular matrix of the same degree

let A = Λ φ A 2 φ φ A r {direct sum). If d(A') is a replica of d(A),

then A' = A[ © A.2® φ A ό ze /im? Aί z'.s of the same type with At.

PROOF. We may suppose that d{A)ui5 = X^u^ for 1 <^ i ^ s19 1 ̂  j ^ n

and d{A)uij =λj uiS + Ui-n for 5X < i < t2, 1 ̂  i ^ n. Then the argument

in the proof of the Lemma 13 gives the Lemma 14 for A x and A[. Similarly

we obtain the Lemma 14.
q. e. d.

1) A matrix (aίj) is called to be triangular if aij = 0 for i<j.
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LEMMA 15. Let A = S + N be the canonical decomposition of A. Sup-
pose that d(A') is a replica of d(A). Then if A' is semisimple or nilpotent,
d(A) is a replica of d(S) or d(N), respectively.

PROOF. We may suppose that A and A are of the type in the Lemma 14 and
that if A' is semisimple A'q = μqEq for q = 1, 2, , r and therefore A' is
diagonal. For any q there exists u^i such that d(A)uί(q)\ = \QUi(Ί)i=d(S)uι{q)i. Let
yl9 , γ r be a family of integers such that 2q=]γGλα = 0, then
ut&n = d(A) Π .jw&i = 0. Since d(A') is a replica of d(A), d(A')
— 0 and therefore Έl

r

Ί^Ύyqμq = 0. It is easily seen that A' is a linear speciali-
zation of S. By the Theorem 3 of [2] and the Proposition 2 d(A') is a replica
of d(S).

If A' is nilpotent, then Aq = N'q. We may suppose that \=j=Xj for z =+=./.
Let (&Q be the set of all ui3 which belongs to the eigenspace of λg let Uq =
2WlJ€@7 k Uij. For a set e = (ex , , er) of non-negative integers, put 9Jίe = Uf1

ll*r. Then the vector space 3Ke is invariant under d(A\ d(A'), d(S) and
d(N). For 1 ^ s ^ Λ, 9Jί(s) = Σ β ι + . . . . + e r Λ Π 9K(S) (direct sum). For / = Σ/ β

€ 2R(*} where /β € 9Ke we have that d(N)f=0 if and only if d(N)fe = 0 for
all e. But rf(A)fβ = d(S)f%+ d(N)fe = \(e)fe + d(N)fe where λ(e) = Σ . Λ ^ .
For any ^ put we = ΠQ'=î (q)], then we have d(S)ue — \(e)ue, d(N)ue = 0 and
d(A')uβ = 0. Thus d(N)fe = 0 if and only if d(A) (fe/ue) = 0. and d(A')
(fe/ue) = 0 if and only if d{A')fe = 0. Since <ί(A') is a replica of d(A), it
is easily seen that if d(N)f = 0 for / € 3Jί(s) then i/(A') / = 0. By the Lemma
12 A' is a (0, s)-replica of N for s ^ n, and therefore if z =f= 3 or if n — 3
and the characteristic of k is 2, the argument in the proof of the Proposition
3 gives the lemma. If n = 3 and the characteristic of k is not 2, we may

suppose that N = ΓO 0 0 and A = \E 4- N, where E is the unit matrix
1 0 0

Lθ 1 0_
in βί(3, k). As in the proof of the Proposition 3 we have that A' = aN +
βN2 for some a, β € k. Applying d(A) and d(A') on (2« n « s l — ulι)/uli we
have the lemma.

q. e. d.

LEMMA 16. For a canonical decomposition A = S + N,

k^\G) = kd's\G) Π W

G = GLO*, β).

PROOF. For any f/g € kdiΛ)(G) we have d(A)f-g - f d{A)g = 0 and
further d(A)rf g — f d(A)rg = 0 for any positive integer r. We may suppose
that / and g are in 93̂  for some integer i. So A[/ # — / AΪ# = 0. By the
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Lemma 10, At = Si + Nt is the canonical decomposition of At and there

exists a polynomial F(X) € k\_X] such that St = F(Ai)Ai. Thus we have
FXAtJAJ g -f FζAdAti = 0 and therefore d(S)(f/g) = 0. Similarly d(N)

if/9) = 0.
Since d{A) = J(5) -f d(N), the converse is trivial.

q. e. d.

Let A = ιS + iV and A' = S' + TV' be canonical decompositions, then
from the Lemmas 15 and 16 it follows that d(A ') is a replica of d(A) if and
only if d(S) is a replica of ^(5) and d(N) is a replica of d(N). By the
Theorem 5 of [2] and the Propositions 2 and 3 we obtain

THEOREM 2. For A and A € gίO, £), A' is a c-replica of A if and
only if d(A) is a replica of d(A).

Thus identifying a matrix A € gί(«, ίl) with the element— d(A) of the
Lie algebra of GL(n, Ω), we have shown that the two definitions of replicas
are same.
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