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0. In the paper [5] the author defined the replicas in the case of algebraic
group defined over a field of characteristic 0 and characterized algebraic
subalgebras of Lie algebras of algebraic groups. Now we shall define replicas
in general case and show that these two definitions are same if the field of
definition is of characteristic 0 and that in the case of algebraic groups of
matrices the replicas defined here are same with those which were defined in
[2] by means of tensor invariants.
We shall use the terminology in [5].

1. Let G be a connected algebraic group with the Lie algebra g ; let Q(G)
be the field of rational functions of G ; for a field & of definition for G let
k(G) be the subfield of Q(G) consisting of all rational functions defined over
k. For D € g the subset Q%(G) of those f < Q(G) such that Df=0 is a
subfield of Q(G). Let g(D) be the subalgebra of g consisting of those D € g
such that D'f = 0 for any f € Q%G).

DEFINITION Any element of §(D) is called a replica of D in g.

In the section 2 we shall show that if the characteristic of the ground
field is 0, the concept of replicas is independent of the ambient algebraic Lie
algebra g. For simplicity we shall take one fixed algebraic group G and
consider replicas in the Lie algebra g of G without reference to the ambient
algebraic Lie algebra g.

For a field £ of definition for G, put 2”(G) = &(G) N Q”(G). Suppose that
D is defined over k. Clearly the compositum of 2°(G) and Q is contained in
Q°(G). Conversely any f € Q%G) is expressed as a rational function of
elements of £°(G) with coefficients in K, where K is any extension field of
k such that f is defined over K.

In fact we may suppose that K is finitely generated over k. It is suf-
ficient to show the fact in the next two cases ; (i) K is finite algebraic over
k, (i) K is simply transcendental over k. For the case (i) let a,,-....- a, be a
k-base for K, then we may express f = a,fi+...... +a,f. for some f; € kKG).
So we have Df = a,Df, +...... +a.Df, = 0, and Df;, = 0 since Df; is in k(G)
and K and k(G) are linearly disjoint over 2 For the case (ii) let ¢ be a
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transcendental element over %2 such that K = k(). Since K and k(G) are
linearly disjoint over %, ¢ is transcendental over A(G). We may express f =
F(t)/H(t) for some F(t) = X, f,t', H(t) = Z;h;¢’ € k(G) [¢] such that F(¢) and
H(¢) are relatively prime in k(G) [£]. As Df = 0, we have

1) DF(¢)-H(¢t) = F(t)-DH(¢).

If one of DF(¢) and DH(¢) is 0, (1) implies that the other is 0. So DF(¢) =
3,Dft' =0 and DH(t) = 3,;Dhyt’ =0, i. e. Df, = 0 and Dh; = 0. Thus we
may suppose that DF(¢) =0 and DH(z)==0. Since F(¢) and H(z) are relati-
vely prime, (1) implies that DF(z) is divided by F(z). But degree of DF(z) <
degree of F(z). So there exists ¢ in #(G) such that DF(¢) = cF(¢), and therefore
DH(t) = cH(f). We have Df, = cf, and Dh, = ch, So Dfih, — fDh, = 0.
Since we may suppose f; 50, we have f =3, {¢!/2,(h;/f)'}, where
D(hy/f:) = 0.

Thus we have shown

LEMMA 1. Let k be a field of definition for G. If D € § is defined over
k, Q°(G) is the compositum of k(G) and Q.

And therefore

PROPOSITION 1. Let k be a field of definition for G. Then for D and
D' € g defined over k, D' is a replica of D if and only if k°(G) is contained
in B°(G).

Let H be an algebraic subgroup of G ; let £ be a field of defintion for G
and H ; let kz(G) be the subfield of 2(G) consisting of f such that Lif = f

for any point A on H, then we have

LEMMA 2. Let H, and H, be algebraic subgroups of G ; let k be a field
of definition for G, H, and H,. Then H, contains H, if and only if ku(G)
contains kz(G).

PROOF. Suppose that £z(G) is a subfield of kz(G). Let @; be the
natural mapping of G into the homogeneous space G/H, which is generically
surjective rational mapping defined over ksuch that for two generic points
y, and y, over kon G, @(y,) = @i(y,) if and only if y, € H,y, (cf. [6] theorem
2). Since kx(G) is a subfield of kg, (G), there exists a rational mapping p of
G/H, into G/H, such that @, =po@,. Let H,; be any irreducible component
of H,; let 2 X = be a generic point over 2 on H,; X G, then ¢,(hzx)=p
(@o(hz)) = p(@y(x)) = @,(x) ; hence hx € Hix and h € H, ; therefore H,;
is contained in, H,;. The converse is trivial.

q. e. d.
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2. In this section we assume that the characteristic of the universal domain
is 0. For D € g, let G(D) be the algebraic subgroup of G consisting of all
y such that L}f = f for any f € Q%G). If kis a field of definition for G and
D, by the Lemma 1, G(D) consists of all y € G such that Lif = f for any
f € E°(G) and therefore G(D) is k-closed. Hence the connected component
of G(D) containing the unit element is defined over . On the other hand
k°(G) is right invariant i. e. for any rational point p over 2 on G, R; maps
E’(G) into itself and £°(G) is algebraically closed in A(G); in fact, let
f € KG) be algebraic over 2(G) ; let P(X) be the irreducible polynomial in
k°(G) [X] of f, then, the characteristic of % being 0, DP(f) = P(f):Df =0
implies Df = 0. Since by the Lemma 1 G(D) consists of all y such that
L:f = f for any f € k°(G), the theorem of [1] shows that G(D) is connected.
Thus we have

LEMMA 3. For any D € g, G(D) is connected, and if k is a field of
definition for G and D, G(D) is defined over k.

Let g(D) be the Lie algebra of G(D), then we obtain

LEMMA 4. ¢(D) is contained in (D)

PROOF. Let kbe a field of definition for G and D; let A X = be a
generic point over £ on G(D) X G ; for f € ¥’(G), from the definition of
G(D), flhz) = f(z). Hence R:f — f(z) is in k(z)(G) N m,, where m, is the
maximal ideal of the local ring 0, of A in Q(G). For any D' € g(D) defined
over k, D'(RYf — f(z)) € k(x) (G) N m, and D'(RYf— fz))(A) =0. But D’
(R f — Ax) (k) = (D'R:f) (h) = (RXDf) (R) = (D' f) (hz). Since hzx is generic
over £ on G and D'f is in A(G), we have D'f = 0. The Lie algebra g(D) over
Q having a base consisting of invariant derivations defined over %, we have
the lemma.

q. e. d.

LEMMA 5. If an algebraic subalgebra Y of ¢ contains D, § contains
(D).

PROOF. Let H be the connected algebraic subgroup of G whose Lie
algebra is § ; let £ be a field of definition for G, Hand D; let k4(G) and
k&0 (G) be the subfields of A(G) consisting of all f such that L¥f = f for
any v € H and G(D), respectively. By the definition of G(D), %%(G) is a
subfield of kzn(G). Let A X x be a generic point over 2 on H X G. If
f € kiG), the notations being as in the proof of the lemma 4, Rif — f(x)
€ k(xz) N m,. D being defined over £ and in Y, D(RLf — fx)) € kx)(G) N
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m,. As in the proof of the lemma 4 we have Df = 0. Thus we have proved
that £x(G) is conﬁainéd in £°(G) and a fortiori in kgwp)(G). The Lemma 2
shows that H contains G(D) and 9 contains g(D).

q. e. d.

LEMMA 6. g(D) is contained in (D).

PROOF. Let %k be a field of definition for G and D; let x Xy be a
generic point over 2 on G X G ; let (£) be a coordinate functions of G
relative to an affine variety V in which the unit element e¢ has a representa-
tive. For any f(€) € k(G) there exists L(X, Y) € k[X, Y] such that L(x,y)==0
and L(z, y) {f(xy) — f(y)} € Kz, y]. Then we have an expression

2 L(z, y) {fzy) — fM} = 2,P(x)-F(y),
where the summation runs over some P,(z) € k[x] and F,(y) € k[y] such
that these finite quantities F,(y) are linearly independent over k2. From the
definition we have

3) L(z, & {L:f(§) — O} = 2,P(x)-Fy(&)
Since © and k(G) are linearly disjoint over %, for 2 € G which has a repre-
sentative in V, L(z, & {L:f(E) — f(®)} = 0 if and only if all P(z) =0.

Let € be the set of all P(X) € k[X] such that P(x) appears as one of
P,(z) in some expression (3) for some f € k%(G) ; put A =P + E-£[X]| where
P is the ideal in A[X] determined by V. Then for a point 2 of G which has
a representative in V, z is in G(D) if and only if z is a zero of U ; in fact,
if zis in G(D), P() =0 for P(X) € B; if A(X)is in € P(X) is one of
P,(X) in some expression (3) for some f(§) € k%(G) ; since z € G(D), L&)
= f(€) and Py(z) = 0, hence P(z) = 0; conversely suppose that  is a zero
of A ; let x X y be a generic point over k(z) on G X G ; for f(&) € k*(G),
flxy) — f(y) is in the specialization ring of 2z X 3y in &(x, y), hence there
exists L(X, Y) € kX, Y] such that L(z, y)#=0 and L(z, y) {f(zy) — Ay)}
€ Kz, yl; let Lz, y) { lzy) — f(y)} = Z,P(x) Fi(y) be an expression of the
type (2), then L(x, &) {L*f(§) — f(E)} = Z,Pi(x) Fi(§) is of the type (3) ; thus
L(z, &) {L:f(&) —f1E)} = 0 and L) = f(§) since L(z, &) *+ 0.

Let D' be in g(D) ; let 2 be a field of definition for G, D and D', then
by the Lemma 3, G(D) is defined over & ; let A X x X y be a generic point
over k on G(D) X G x G. We shall denote by the same letter D' the k(y)-
derivation of k(y)(x) induced naturally by the Q-derivation D' of Q(G). Let
P(X) € €, then there exists an expression of the type (2)

Lz, y) {(Azy) — f(»)} = Z,P(x)-F(y)
for some f(&) € ¥’(G) such that P(z) is one of Py(z). Applying D on
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this equation we have

D' L(z, y)| flzy) — fiy)} + Lz, y)-Dif(xy) = 2,0 P(z)-Fi(y).
But Dif(xzy) = (D'R;f(®) (z) = (RIDfE)) (z) = (D)) (xy) and since D' is
in g(D) and xy is generic over £ on G, we have (Df(€))(xy) =0, and we
have

D'L(z, y)| flay)—fy)} = 2,D Px)Fy).
On the other hand, L(x, y) being in k[x, y], we have
L(z, y) = 2,8(x):T(y),  for some S(X), T(X) € k[ X],
and D'L(z, y) = %,D'Sy(x)*T(y). Since D’ is everywhere finite, there exists
Q(X) € K[ X] such that Q(h)==0 and Q(x)D'S/(z), Q(x)D'P,(x) € Hx]. Thus
the expression

Q(x)D’L(x, y)' {f(a:y) - f(y)i = EtQ(-Z‘)D/Pt(JC)'Fz(y)

is of the type (2). Hence, let VI_’;(X) € HX] such that Pfz) = Q(z)D'P(z),
then P(X) € € and D' P,(z) = Pi(x)/Q(z) where Q(h) == 0. Clearly if P(X)
€ B, then D'P(z) = 0. Thus, since D’ is everywhere finite, we have shown
that for any P(X) € U there exist A(X) € A and B(X) € HX] such that
B(h)#=0 and D'P(z) = A(z)/B(x).

Let O be the set of those F(X) € [ X] for which there exists L(X) €
kK[ X] snch that L(h)==0 and L(X)F(X) € U. Then by the lemma 5 of [8] III,
9 is P-primary, where P is the prime ideal in A X] determined by G(D). So
the argument which has run in the proof of the Proposition 2 of [5] shows
that D’ is in the Lie algebra g(D) of G(D).

q. e d.

From the Lemmas 4 and 6 it follows that g(D) = ¢(D) and g(D) is alge-
braic. Let Gp be the minimal connected algebraic subgroup of G whose Lie
algebra contains D (cf. the Corollary 1 of the Proposition 2 of [5]); let g»
be the Lie algebra of Gp. Then from the definition of g and the Lemma 5
it follows that g» = g(D). And the Corollary 2 of the Proposition 2 of [5]
shows that Gpb=G(D). So by the Lemma 3 we have that Gp is defined over
k if k is a field of definition for G and D. Thus we have the main theorem ;

THEOREM 1. Let G be a connected algebraic group with the Lie algebra
8. If the characteristic of the universal domain is 0, for any D € § there
exists the minimal connected algebraic subgroup Gp of G whose Lie algebra
contains D. If kis a field of definition for G and D, Gp is defined over k.
G»p is the algebraic subgroup of G consisting of all p for which L%f = f for
any f € KG) such that Df = 0. The Lie algebra §p of Gp is the subalgebra
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of @ consisting of all D' such that if Df =0 for f € KG) then Df =0, i. e.
all replicas of D.

By this theorem, in the case of characteristic 0 replicas defined in this
paper are same with those in [5] and the concept of replicas is independent
of the ambient algebra g.

3. Any algebraic group of matrices is an algebraic subgroup of GL(n, Q) for
some positive integer #. We shall take the Lie algebra of GL(n, Q) as the ambient
algebraic Lie algebra as far as algebraic groups of matrices are concerned. Let
(us;) be the coordinate functions of GL(n, Q). For any matrix A = (a;;) € gl
(n, Q), which is the Lie algebra of GL(n, Q) defined by Chevalley [3], we denote
by d(A) an Q-derivation of Q(z) such that d(A)u;; = Zj_ia&;quq;. Then A —
— d(A) is an Q-isomorphism of gl(n, Q) onto the Lie algebra of GL(n, Q)
(cf. [5]). For A € gl(n, k) Chevalley [2] defined the replicas of A as follows ;
let M be a vector space over k£ on which A operates such as Au; = 2} a;u;

where u,,...... , U, is a base of M over &k ;let M, , = m*@m*@ ...... & M*

r-times

®&ni®sm®m & M, where M* is the dual space of M and & means the

—- s-timeS
on M,,; A € gl(n, k) is called to be a (r, s)replica of A if A, ,u=0
for u € M, , such that A, ,u =0, and A is called to be a replica of A if
A’ is a (r, s)-replica for any non-zero pair » and s. We call a matrix A" to
be a c-replica of A if A" is a replica of A in the sense of Chevalley. If the
characteristic of the ground field is 0, the theorem 1 shows that the two
definitions of replica are same if we identify a matrix A € gl(nz, Q) and the
element —d(A) of the Lie algebra of GL(n, Q). In the following we shall show
directly this fact for the non-zero characteristic. case at the same time with
the characteristic zero case.

In the following sections we assume the algebraic closedness of £ without
loss of generality by the Proposition 1.

For a set of non-negative integers e;(1 < i, j < n) let «° = u;,""u,;,"". .

- U™ ; for a non-negative integer g let M, = 2, et ren-ckou’ and M,

= 2, M, then M, and M, are d(A)-invariant for any A € gl(n, £); let A,
and A, be the matrix representations of the restrictions of d(A) to M, and
IM,, respectively. Then we obtain

LEMMA 7. If A is semisimple or nilpotent, then A, is semisimple or
nilpotent, respectively.
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PROOF. If A is semisimple, we may suppose that A is a diagonal matrix
(€ , sn). Then d(A)u;; = siu;;, hence d(A)u’ = s(e)u’, where s(e) = =} ;.
sie;;. Therefore A, is diagonal, hence A is semisimple. Now in the set of
elements of the base («°) for M, we introduce an order as follows ; for M,,
u;; < ug, if and only if i <sor i=s and j <t For ¢ > 1, «* <« if and
only if there exist integers s and ¢ such that 1 <5, # < n and e;; = e;; for u;;
< u,, and e, > ey. If A is nilpotent, we may suppose that a;; =0 if j5=7
— 1. Then d(A)’ = 2 ay_,e;u,,""...... w_ S w7 U™ = 2 Ay,
e,;u™®. Since ™ < u°, A, is nilpotent.

q. e. d.

Clearly A4, = A, P ...... DA, where P means the direct sum. Hence
we have

LEMMA 8. If A is semisimple or nilpotent, A, is semisimple or nilpo-
tent, respectively.

LEMMA 9. Let A and B € gl(n, k). If [A, B]=0, then [A,, B,]=0
and [A, B, =0.

PROOF. Let f(u) € k(u). Then d(A)u) = 2 ;.19f/u;;Au;; and d(B)d(A)
Sf(w) = 2} 5,010/ Ous Oui;Bug Aui; + 23 5,9f/ou;;BAu;s; = d(A)d(B)f(u). Hence
[d(A), d(B)] = 0 and restricting d(A) and d(B) to M, and M, we have the
lemma. q. e. d.

For any matrix A € gl(n, k) there exist uniquely the semisimple matrix
S and the nilpotent matrix N such that A =S+ N and [S, N]=0. We
shall call this decomposition of A the canonical decomposition of A. Since
for any A and B € gl(n, k), d(A + B) = d(A) + d(B), from the Lemmas 7,

8 and 9 follows the next lemma ;

LEMMA 10. If A =S+ N is the canonical decomposition of A, then
A, =S, + N, and A, =S, + N, are the canonical decompositions of A,
and A, respectively.

4. Let S = diag.(s;,----. » S») in gl(n, k) ; put s(e) = 2} .:5.e;; for (e;). Ano-

ther diagonal matrix S = (si,...... , S») is said to be a linear specialization
of S if Ast + ...... +Ansn = 0 for any set of integers A; such that A;s; + ...
cee + N5, = 0.

Let f= 2,a.4° and ¢ = 2,8,4° be elements of E[«] such that d(S) f==0
and d(S)g #=0. Then we have

d(S)f'g - f'd(S)g = EP 20§c§p(aeﬁp—e - ap—cIBe) S(e)up,

where for (e,;), (e;), e = ¢ means e;; < e;; for any pair 7 and j. Now if there
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exists non-zero s(e) in the above equation, we express
E'\)éeép(aeﬁp-c - ap—e/ge) s(e) = z,‘,'=17i,xh

where x; is one of non-zero s(e) and z; F=x; if i3=j.
Suppose that d(S)(f/g) = 0, then a simple calculation shows that

d(S)'feg — fd(S)'g=0 for g=1, 2,......

and

20§e§p(ae/39—e - ap—eBe) s(e)q = 2?=l'yixiq =0
for ¢ =1, 2,....... But det (zhsi j=r = x4+ z, of(x; — ;) =F0. So we
have v, = 0.

Now suppose that S is a linear specialization of S. Then if s(e)
=0,5() =0 and if s(e) = s(e’), then s(e) = s'(¢). And it is easily seen
that

zoéeép(aeﬁp-e - ap—eBe) sl(e) = 0'
Thus we have d(S)(f/9) =0, i. e.

LEMMA 11. Let S and S be diagonal matrices in ol(n, k) ; let f and ¢
be in Ku] such that d(S)f=£0 and d(S)g==0. If S’ is a linear specialization
of S and d(S)(f/9) = 0, then d(S") (f/9) = 0.

Now we have

PROPOSITION 2. Let S be a semisimple matriz in §l(n, k). Then for any
matriz S in §U(n k), S" is a c-replica of S if and only if d(S’) is a replica
of d(S).

PROOF. We may suppose that S is diag. (s,--.... , S»). Suppose that S’
is a c-replica of S, then from the Theorems 1 and 3 of [2] it follows that
S’ is diag. (si,--.-.- , s») and it is a linear specialization of S. If f= Z.a.u’
is in Alu] such that d(S)f = 0, then s(¢) =0 for a,=<0, so s(e) =0 for
a, =0 and therefore d(S')f = 0. If d(S)(1/f) =0, it is easily seen that d(S")
(1/f) = 0. Thus from the Lemmall it follows that d(S’) is a replica of d(S).

Conversely suppose that d(S’) is a replica of d(S). If n=1, S = (si)
is diagonal. If # > 1, d(S)us1/uis =0 for i =1, 2,...... , n. So we have d(S")
(us1/uz) = 0 and d(S )i ouss — wy,2d(S)u;, = 0. Thus we have s; =0 for
iZ=7, i. e. S is diag. (si,-..... AN | 2 VR , A, are integers such that A;s
o + Aps, = 0, then d(S) I\l = (faNisy) o = 0 and therefore d(S")

P =0, and N5 + ... + Aysn = 0. From the Theorem 3 of [2] it follows
that S is a c-replica of S.
q. e. d.

Thus, identifying a matrix A € gl(n#, Q) with the element —d(A) of the

Lie algebra of GL(n, ©), we have shown that the two definitions of replicas
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of semisimple matrices are same.

5. For a positive integer s < 7 let MY be the vector sukspace of &[] span-
ned by wuuy ... ... us,s for 1 <4, < n, then MY is d(A)-invariant for any A
€ gl (n, k). Moreover there exists a k-isomorphism ¥, of M, , onto M such
that W,(2;; @ 2;, & ... Qui) = tipttyyy - u;,.. From the definition it follows
that ¥,A, , = d(A)¥, for any A € gl(n, k). Thus we have

LEMMA 12. Let A and A’ € gl(n, k). For A" to be a (0, s)-replica of
A it is necessary and sufficient that if d(A)f = 0 for fFEMD then d(A')f = 0,
where s is a positive integer = n.

Let N be a nilpotent matrix in gl(», k), then by the theorem of Cheval-
ley and Tuan (cf. [7]) N’ € gl(n, k) is a c-replica of N if and only if N =
aN for some @ € k for the characteristic 0 case and N = a,N + a,N”
4o + a,N?" for some a; € k for the modular case. In the later case
d(N?) = d(N)”, hence if N’ is a c-replica of N, d(N') is a replica of d(N).
Conversely if d(N') is a replica of d(N), by the Lemma 12 N’ is a
(0, s)-replica of N for positive integer s < #. So if » =>4, by the lemma 1’
of [4] N’ is nilpotent and by the Theorem 1" of [4] N’ is a c-replica. In the
case of n <3, N’ is a c-replica of N; in fact, if » = 1, the assertion is
trivial ; if z = 2, then N?= 0 and by the Lemma 12 and the Lemma 1’ of
[4] N' = aN for some a € %k ; in the case of =3, if N?=0, the argument
in the case of # = 2 gives the assertion ; otherwise, we may suppose that

N=[00 0} ; since N® =0, by the Lemma 12 and by the Lemma 1" of [4],
100
010

N = aN + BN? for some a, 8 € k; if the characteristic of £ is 2, the
theorem of Chevalley and Tuan gives the assertion ; otherwise, applying d(IV)
and d(N') on 2w, ,u;, — us, we have 8 = 0. Thus we have

PROPOSITION 3. Let N be a nilpotent matrix in §U(n, k). Then for any
matriz N € gl(n, k), N is a c-replica of N if and only if d(N') is a
replica of d(N).

Thus, identifying a matrix A € gl(n, Q) with the element—d(A) of the
Lie algebra of GL(%, ), we have shown that the two definitions of replicas
of nilpotent matrices are same.

6. Let N, = (ny;) € gl(n, k) such that n;;-, = 1 and other n;; =0; let A
= AE + N, for some A € k, where E is the unit matrix of gl(z, k). Then
d(A)u,; = €uy; and d(A)uy; = gy + wi—y; for @ > 1. Let U = det(uy;) € kul,
then we have

“) d(A)U = naU.
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In fact, we shall show (4) by the induction on the degree n. If n =1, it is
trivial ; let U,; be the cofactor of the (i, j)-component u,; of (u;;). Then
d(A)U = d(A) 2;t=lunj(jnj = 25‘=17\'unjUnj + 2;‘=1un-1)Um' + E?ﬂunjd(A)Unj' By the
induction assumption d(A)U,; = (n — 1)AU,; and we have (4).

In particular we have

(5) d(N,)U = 0.
As d(A) II}u,; = nnII} 1u,;, we have
6) d(A) (U/U}ruy;) =0 for A = AE + N,.

LEMMA 13. Let A and A’ € gl(n, k). If A=AE + N, and d(A’) is a
replica of d(A), then A" = uE + N', where p € k and N’ is nilpotent and
triangular.V

‘PROOF. If # = 1, this lemma is trivial. Suppose that # > 1. From d(A)
(u11/u12) = 0, it follows that d(A") (u,,/u,;) = 0 and ai; = 0 for j> 1, where
A’ = (ai). Put a; = p. For a positive integer » < n let U, = det(u;;)i=i j=r
and let U,; be the cofactor of #,; of U,. From (6) d(A")(U,/Ij.1u,;) = 0.
So

d(AVU, Mjau,; — U,ed(A N ouy
= (d(AYU, — ruU,) Wjoauy; = 0,
hence
) d(ANU, = ruU, 1
But

lIA
SN
IA
S

d(A,)U,. = d(A,) 2§=1urjUrj = 2;=1d(A’)urjUrj + 2;=1urjd(Al)Urh
where the first term = a,,U, + 2", &y Zj.u,;U,; and the second term = (r
— DuU,. Since U,; € kluy1, t13,------ , Upls Uy, and w,;U,; G =7r +1, r+2,...
... n) are linearly independent over k. So by (7) a@»=px and a,=0 if >
q. e. d.

LEMMA 14. Let A, = ME, + N, where N, € k, E; is unit matrix of
some degree and N is nilpotent and triangular matrix of the same degree ;
let A=A PA,PD..... P A, (direct sum). If d(A') is a replica of d(A),
then A= AP A D ...... P A,, where A; is of the same type with A,

PROOF. We may suppose that d(A)u; = Muy; for 1< i<s, 1<j<n
and d(A)uy; =N wu; + wi—y; for s, <1 <#,, 1 =< j7j=<n. Then the argument
in the proof of the Lemma 13 gives the Lemma 14 for A, and A;. Similarly

we obtain the Lemma 14.
q. e. d.

1) A matrix (af) is called to be triangular if ais= 0 for i <.
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LEMMA 15. Let A =S + N be the canonical decomposition of A. Sup-
pose that d(A’) is a replica of d(A). Then if A’ is semisimple or nilpotent,
d(A)) is a replica of d(S) or d(N), respectively.

PROOF. We may suppose that A and A" are of the type in the Lemma 14 and
that if A" is semisimple A, = p.E, for ¢ =1, 2,...... , 7 and therefore A’ is
diagonal. For any g there exists #;(,: such that d(A)w;gn=Ng#iyn =d(S)uiqn- Let
YViseeenns , ¥» be a family of integers such that Zj.,y,A; =0, then 4(S)II,.,
uZ(Zn = d(A) ;.uid: = 0. Since d(A’) is a replica of d(A), d(A") I_.udy
= 0 and therefore Zj.,y,#q = 0. It is easily seen that A" is a linear speciali-
zation of S. By the Theorem 3 of [2] and the Proposition 2 d(A") is a replica
of d(S).

If A’ is nilpotent, then A, = N, We may suppose that A;==; for i==J.
Let €, be the set of all #,;; which belongs to the eigenspace of A;; let U, =
3u,EC, kewyy. Foraset e = (e, ,---... , e,) of non-negative integers, put M, = Us
...... 1. Then the vector space M, is invariant under d(A), d(A"), d(S) and
d(N). For 1=<s=<n, MY =2, .0-M N MO (direct sum). For f=2=f,
€ M where f, € M, we have that d(N)f=0 if and only if d(IN)f, =0 for
all e. But d(A)f, = d(S)f. + AIN)f, = Me)f, + d(N)f, where Ae) = 2.1 \eeq.
For any e put u, = II;.1uik%y, then we have d(S)u. = Me)u., d(N)u, =0 and
d(A)u, = 0. Thus d(N)f, = 0 if and only if d(A)(f./u.) =0. and d(A")
(f./u.) =0 if and only if d(A")f, = 0. Since d(A") is a replica of d(A), it
is easily seen that if d(N)f = 0 for f € M® then d(A") £ = 0. By the Lemma
12 A’ is a (0, s)-replica of N for s < #n, and thecefore if n==3 or if =3
and the characteristic of 2 is 2, the argument in the proof of the Proposition
3 gives the lemma. If » = 3 and the characteristic of 2 is not 2, we may

suppose that N=[0 0 O]and A = AE + N, where E is the unit matrix
100
010

in gl(3, k). As in the proof of the Proposition 3 we have that A" = aN +
BN* for some a, B € k. Applying d(A) and d(A") on (2 uus — uh)/uty we
have the lemma.

q. e. d.

LEMMA 16. For a canonical decomposition A = S + N,
E(G) = B*9(G) N N (G),
where G = GL(n, Q).
PROOF. For any f/g € k*“(G) we have d(A)f+g — f+d(A)g =0 and

further d(A)' g — f*d(A)'g = 0 for any positive integer 7. We may suppose
that £ and ¢ are in M, for some integer i. So Alf-g — f+Aig = 0. By the
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Lemma 10, A, = S; + N, is the canonical decomposition of A; and there
exists a polynomial F(X) € A[X] such that S, = F(A,)A,. Thus we have
F(A)Af-9 — f*F(A)A,g = 0 and therefore d(S)(f/¢9) =0. Similarly d(NN)
(f79) = 0.
Since d(A) = d(S) + d(N), the converse is trivial.
q. e. d.

Let A=S+ N and A'=S + N’ be canonical decompositions, then
from the Lemmas 15 and 16 it follows that d(A4") is a replica of d(A) if and
only if d(S") is a replica of d(S) and d(IN') is a replica of d(IN). By the
Theorem 5 of [2] and the Propositions 2 and 3 we obtain

THEOREM 2. For A and A’ € gl(n, k), A" is a c-replica of A if and
only if d(A’) is a replica of d(A).

Thus identifying a matrix A € gl(n, Q) with the element—d(A) of the
Lie algebra of GL(n, 2), we have shown that the two definitions of replicas
are same.
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