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In pseudo-Kahlerian manifolds, many interesting results concerning con-
travariant or covariant pseudo-analytic vectors are known.2) Even though
there were many papers about pseudo-Kahlerian manifolds, but were few
about almost-Kahlerian ones. Recently, M. Apte generalized Bochner's theorem
to compact almost-Kahlerian manifolds. His work seems to be very suggestive
for me. In the present paper we shall generalize several theorems in pseudo-
Kahlerian manifolds to almost-Kahlerian ones. The main results are integral
formulas on vector fields in compact almost-Kahlerian manifolds.

In §1 and §2 we shall prepare identities and lemmas and in §3 and §4 define
almost-analytic vectors which are generalizations of pseudo-analytic vectors.
As applications of integral formulas in §5, we shall obtain several theorems in
§6. In §7, we shall give a decomposition theorem of the Lie algebra of contra-

variant almost-analytic vectors in a compact almost-Kahler-Einstein manifold.
The canonical connection will be introduced in §8 and in the last section, to
contravariant almost-analytic vectors, we shall generalize Apte's theorem.

1. Identities. In an ^-dimensional real differentiable manifold M with
local coordiantes \x%\9 a tensor field φf such that

(i. i ) ψrψl = - δ/

is called an almost-complex structure. If an almost-complex structure φ/
and a positive definite Riemannian metric tensor gH on M satisfy the relation

(1. 2) 9rs<Pjr<PiS = 9n,

then the pair (φf, ffjt) is called an almost-Hermitian structure. Then, from
(1.1) and (1. 2), we get

(1. 3) ψH = — φih

where ψa^ψI^Ίi' To an almost-Hermitian structure (φ/, gH), an exterior dif-

1) This paper was prepared in a term when the present author was ordered to study at
Tohoku University. I wish to express my sincere thanks to Prof. S. Sasaki for his en-
couragements during the term.

2) For example, cf. Yano, K. [7], Lichnerowicz, A. [3], Sasaki, S. and K. Yano [5], Yano, K.
and I. Mogi [9].
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ferential form φ = φHdx3 Λ dxι can be assoicated. An almost-Hermitian

structure is called an almost-Kahlerian structure, if the associated differential

form φ is closed, and then the manifold M is called an almost-Kahlerian

manifold.

Throughout this paper, by M we shall always mean an ^-dimensional

differentiable manifold with a fixed almost-Kahlerian structure (φf, gH). In

this section, we shall deduce identities which are useful in the later sections.

In our M, the form φ being closed, so we have

(1. 4) Vkψjh + V&ik + Viψkj = 0,

whέre \7/t denotes the operator of covariant derivative with respect to the

Riemahnian connection.

On the other hand, since the identity

3
Vr<Prh = — ~ γ - V[r<Pl*]<prP<Pha

is well known4), in our case, we have

(1.5) Vrφm = 0 .

The Nijenhuis' tensor NH

h of an almost-complex structure φ}

1 is defined by

NH

h = φKVι<Pih - Vi<Pιh) ~ <PiXVi<Pih ~ Vi<Pιh),

so on taking account of (1. 1), (1. 3) and (1. 4), we find

(1. 6) NH

h = 2 <pKVι<Pih ~ Vi<Pιh)

Let Rkji
h. be Riemannian curvature tensor, that is,

RkH = Ok\Jl\ — Oj\u\ + \kr\ \ji\ — \jr\ \ki\

where 3fc = d/dxk, and put

and Rji == Rrji } Rkjih ~ Rkji 9rh

(1.7) Rtj = -γφMRp<irjφt

We notice that, in pseudo-Kahlerian manifold, Rtj = Rkj holds good.

The Ricci's identities are given by the following formulas for any vector

field Vi and v\

Applying to φf the Ricci's identity, we have

3) Indices ί,j, k, P,q,r,s, run over 1, , n. Notations are followed to Yano, K.
[7] except some trivial changes.

4) Schouten, J. A. and K. Yano [6].
5) For example Yano, K. [7], p. 229



ON ALMOST-ANALYTIC VECTORS IN ALMOST-KAHLERI AN MANIFOLDS 2

Transvecting the last equation with gkι and using (1. 5), we find

where we put φir = φjgvι. On the other hand, φir being skew symmetric

with respect to i and r, so we have

Hence, it follows that

and from which we obtain

Operating yfc = gk\r to (1. 4), we have

Hence on taking account of (1.8) we find

(1. 9) VTVr<PH = φPqRp*H + i ί i V n ~ ^ < > r j

The equations (1. 8) and (I. 9) are important identities in the later sec-

tions.

By a vector field v we always mean a contravariant vector field v\ a

covariant vector field vt = girv
r and a differential form ϋ = Vidx1. So the

word "a vector is closed" means that the corresponding form v is closed.

Let v be any vector field, then from (1. 3) and Ricci's identity we get

(1 . 10) *> ^

And from (1. 8) and (1.10) we obtain

(1. 11) ψΐvVVrψH = ~ vrR*L + vrRrl,

(1.12) φιφirViSJτVi = - vR% ,

where i?*r is given by (1. 7).

From (1. 3) and (1. 4) we have

9»»V/(VV'V.' - * » W = - φΛvV + VV)
Interchanging r and i and the adding the equation thus obtained to the last

equation, we get

W + vV>/ = - ψnWivV + vVωV/
Consequently, for any vector field v the following equation holds good.
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(1.13) Viv£V<pn + v V W = - φ*W(WrXvhφ" + v V > Λ

2. Lemmas. For convenience sake, we shall expose several lemmas
which are well known. By Vn we shall always mean an ^-dimensional Rie-
mannian manifold.

LEMMA 2.1. 6 ) In a compact, orientable Vn, the following integral for-
mulas are valid for any vector field v.

(2.1) fv [(vΓVrf* -RnvW + S(v)~\dσ = 0,

(2. 2) JVn [(vrVrf, + RnVτW + T(v)-]dσ = 0,

where dσ means the volume element of the Vn9 and S(v) and T(v) are defined
by

(2. 3) S(V) = 4^(VV - VV) (VsVr - VrVs) + (v^r) (v'f Λ

(2. 4) T(v) = 4 - ( v V + Vrf') (V.f r + Vrv.) - (Vrvr) (Vsv.)

respectively.

In a Vn, a vector field v is called a Killing vector (or an infinitesimal
isometry) if it satisfies

V

where £ denotes the operator of Lie differentiation with respect to v\ For

Killing vectors, the following theorem is well known.

LEMMA 2. 2.7) In a compact, orientable Vn, a necessary and sufficient
condition for v to be a Killing vector is that

VrVrVi 4- Rriv
r = 0, τjrvr = 0.

In a Vn, a vector field v is called a conformal Killing vector (or an in-
finitesimal conformal transformation) if it satisfies

f) 9H = V&t + Vi^ = 2 φ&t, .

where Φ is a scalar function. Then as is well known, it holds the following

LEMMA 2.3.8) In a compact, orientable Vn, a necessary and sufficient
condition in order that v be a conformal Killing vector is that

6) For example, Yano, K. [7], p. 278.
7) For example, Yano, K. [7], p. 221.
8) Yano,K. [7], p. 278.
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(2. 5) V\rVi + RriV + ^ — ^ ViVrfr = 0.
n

In a Vn, a vector field v is called a protective Killing vector9) if it

satisfies

(2. 6) $lji} = VjViV* + ^ V = δ/ψi + δ t*ψ*

Ψi being a certain vector field. Transvecting (2. 6) with gjί, we get

(2. 7) vrVrVh + i W = 2 ψΛ

By contraction with respect to h and i in (2. 6), it follows that

(2. 8) VNrV =(n

From (2. 7) and (2. 8), we have

(2. 9) VrVr*>i + RriV = —

for a projective Killing vector v.

Since an almost-Kahlerian manifold M is an orientable Riemannian

manifold, the above lemmas and arguments are valid for our M.

For a vector field v we define v by

(2.10) Vi = ^ ϋ ί , v* = ^ ί rt; r = - ψtvu

then we have

and

V^r^ = (VVrtPi^Vt + 2 (V>Λ Vr̂ ί + ψiVVrVt-

Substituting (1. 9) in the right hand side of the last equation, we get

from which we find

(2. 11) (VrVrVt ~ i ? r i ? V = (VΓVrVi + Λ n v V

- 2 i?rVz/ + 2 (vV) (VrΨu)<PPV.

On the other hand, by virtue of (l. 2) and (1. 4), we find

so (2,11) can be written as

(2. 12) ίVVrVt ~ RnV'W = (v'Vr^i + ΛriVV

9) Yano, K. [7], p. 133.
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- [2R%vr + Vvt(uiφrt)φp

iW.

Hence, if the equation

(2. 13) vVCVr^n + Vt<Pn)<PpVp = 0

holds, by virtue of (2. 12) and lemma 2.1, we get the following

LEMMA 2. 4. In a compact, almost-Kάhlerian manifold M, if the equa-
tion (2.13) holds, the integral formula

vrVrVt + Rriv
r)vι - [2RW + XfWiViψMW + S(v)ldσ=0

is valid, where S(v) is given by

(2. 4) SG)= i ^ ^

Vi = φΐvt.

3. Contravariant almost-analytic vectors. In this section, we shall
generalize a notion of contravariant pseudo-analytic vectors10) in pseudo-
Kahlerian manifold to an almost-Kahlerian manifold M.

In our manifold M, we shall say that a vector field v is contravariant
almost-analytic (or analytic) if it satisfies

(3.1) £ φ} = vVrψΐ ~ ΨΪVTV* + φSViV = 0.

In the next section, we shall define a covariant almost-analytic vector,
but by analytic vectors we shall always mean contravariant almost - analytic
vectors.

Let v be an analytic vector, then from (3.1), we have

(3. 2) v\ΎψH = φfVrVt + φ
from which, by virtue of (1. 4), we find

(3. 3) V ̂  ~ ViVj = - φ/iVrVt

These three equations are equivalent to each other.
From (3. 3) we obtain

THEOREM 3.1. In an almost-Kahlerian manifold, a necessary and suffi-

cient condition in order that an analytic vector v be a Killing vector is that

the vector tΓ is closed, where vt = φfvt.

From (3. 2), for an analytic vector v it holds that

Transvecting the last equation with φf we get

10) Yano,K. [7], p. 236.
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On taking account of (1.11) and (1.12), the above equation can be written

in the following form,

(3. 4) VVW + Rriv + VJvr(Vi<Prt + Vr<Pn)<Pil = 0.

On the other hand, from (3. 2) we have

(3. 5) X7jVr - ψjh<PrVhVs = — vXτjsφH)φr.

Hence for an analytic vector v we obtain, from (1.13) and (3. 5),

(3. 6) VjvfaW + V W = 0,
because the right hand side of (3. 5) is skew symmetric with respect to j and

r. Consequently we find

(3. 7) vrVrfι + Rnv = 0

for any analytic vector field v. The equation (3. 7) can be obtained in the

following way, also. For an analytic vector, we have £ φf = 0. Hence from
V

(1. 6) it holds that

On the other hand, the following formula holds good,

£ V ^ = Vltφt

h + <PiT Wr) - ψrh h\\λ
V V V V

between Lie differentiation and covariant derivative.12) Hence, it follows that

Transvecting the last equation with gJl and taking account of skew symmetry

of NH

h, we get

from which we get again the equation (3. 7).

4. Covariant almost-analytic vectors. In a pseudo-Kahlerian manifold,

a vector field v is called a covariant pseudo-analytic vector13) if it satisfies

If the manifold is compact, any covariant pseudo-analytic vector coincides

with a harmonic vector.14) And the following theorem is well known.15)

12) Yano,K. [7], p. 16.
13) Yano,K. [7], p. 235.
14) Yano,K. [7], p. 236.

15) Sasaki, S. and K. Yano [5].
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In a compact pseud o-Kάhlertan manifold, the inner product of a contrava-

riant pseudo-analytic vector and a covariant pseudo-analytic vector is cons-

tant over the manifold.

In this section we shall define a covariant almost-analytic vector in

almost-Kahlerian manifolds so that an analogous theorem holds good if the

manifold is compact.

In the first place, we shall prove the following Lemma which is a gene-

ralization of Liouvilles theorem in the theory of functions of a complex

variable.

LEMMA 4.1. In a compact almost-Kahlerian manifold M, if scalar

functions f and g satisfy the equation

(4.1) Vif = <PirVτ9,

then the functions are both constant over the M.

PROOF. From (4.1) we have v V i / ^ φirViVr9 = 0, from which it follows

that

Hence, by Green's theorem we get y t / = 0. q. e. d.

Let u be a vector field and v be an analytic vector and put g=-uLvι. Then

(4 2) ψiVrg = φtXVrUdΌ1 + ψiXVrV'W

Since v is an analytic vector, by virtue of (2. 1), we have

Substituting this into, (4. 2), we get

(4. 3) <PΪVτ9 = <PrlhViVr +

Next we put / = φr

ιuιv
r

9 then it follows that

Comparing (4. 3) with (4. 4), if the vector u satisfies the equation

i. e.

(4. 5) Vi(φ/Ur) = U^jψi +

we find that the functions / and g defined above satisfy (4.1).

We call u satisfying (4. 5) a covariant almost-analytic vector (or a covariant

analytic vector).

This vector is a generalization of a covariant pseudo-analytic vector in a

pseudo-Kahlerian manifold.

By the above definition and Lemma 4.1 we have the following
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THEOREM 4.2. In a compact, almost-Kάhlerian manifold, the inner

product of an analytic vector and a covariant analytic vector is constant

over M.

We shall deform the equation (4.5) which gives the definition of a

covariant analytic vector. From (4. 5), we have

On taking account of (1. 4) we find

(4. 6) UτjrφH = ψi^JrUj — φ^iUr.

As the left hand side is skew symmetric with respect to j and i, we get

(4. 7) UTJrψH = - ψίVrUi + φ\^iUτ.

We call our attention to the similarity of (3. 2) and (4. 7).

On the otherhand, from (4. 5) we have

from which we find

(4. 8) Vi«J — VsUt = ψiiVrUj — V^r)

The equations (4. 5), (4. 6), (4. 7) and (4. 8) are equivalent to each other.

Transvecting (4. 5) with g3%, the equation

(4. 9) vrur = 0

holds good for a covariant analytic vector u. From (4. 8) and (4. 9), we have

THEOREM 4.3. In an almost-Kάhlerian manifold M, if a covariant

analytic vector u is closed, then *u is harmonic.

In general, v> is not necessarily a harmonic resp. analytic vector even

though v is a harmonic resp. analytic vector, Lut about covariant analytic

vectors we have the following

THEOREM 4. 4. In an almost-Kάhlerian manifold M, if a vector field

u is a covariant analytic vector, then u is covariant analytic.

PROOF. We put vt = tii = ψιUt> then vΊ = — ut. From (4. 8) we have

Transvecting the last equation with φt\ we find

ΦtKVίVj — ViVi) = VtVj — Jjsvt. q. e. d.

From (4. 8), we have evidently the following

THEOREM 4. 5. In an almost-Kάhlerian manifold M9 if vector fields

u and u are both closed, then u is a covariant analytic vector.
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Transvecting (4. 7) with φ/ it follows that

The left hand side is skew symmetric with respect to j and Z, so find

THEOREM 4.6. In an almost-Kdhlerian manifold M, if a covariant
analytic vector is closed, then we have

In §6, we shall prove that a covariant analytic vector is always closed
if the manifold M is compact.

If a vector field v is at the same time analytic and covariant analytic,
then we have \7/r;t

 = 0, by virtue of (3. 2) and (4. 7). Hence

THEOREM 4. 7.16) In an almost-Kάhlerian manifold M, if an analytic
vector is at the same time covariant analytic, then it is a parallel vector
field.

Let u be a covariant analytic vector, then from (4. 7) we have

On taking account of (1.11) and (1.12), we find

(4. 10) VVM + RrlU - RΐjU + V'wXV^ri + Vrψjdψl = 0.

5. Integral formulas. In the present section, we shall prove some
formulas on vector fields in a compact almost-Kahlerian manifold.

Consider a vector field v in an almost-Kahlerian manifold M and define
tensors a(v)jk and b(v)jk by

(5-1) a{v)ik = (fj ψjl)ψιk
V

and

(5. 2) i(v) j A =

=
respectively.

We notice that α(v)Jjfc = 0 resp. δ(t;)jA. = 0 is equivalent to the fact that
the vector field t; is analytic resp. covariant analytic.

In the following we denote ajk resp. bjk instead of a(v)jk resp. b(v)jk for
simplicity. We shall put

a\v) = ajka
j\ b\v) = b5hV

k

and compute these. By definition (4.1) we have

a\v) = [vr(vr<pjl)φιk - φj\VrVι)φιk - V ^ J X

16) For pseudo-Kahlerian case, see Yano, K. [7], p. 238.
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whose right hand member is the sum of the following nine terms Al9

A29 , C3.

A2 = - vr(vrφjι)
jvk = Ai9

= A2,

c3 = ( V A W = s2.

Hence α2(t>) = -Ai 4- 4A2 + 2S2 + 2Z?3, so we obtain the following formula :

(5. 3) -γa\v) = - t;st;r(vs^
P)Vi<?>,, ~ 2t;r( W p

For έ2(t;), on taking account of the similarity of (5.1) and (5.2), we

have

b\v) = Λ + 2£ 2 - 2S3,

from which we see that

(5. 4) \b\v) = - vsvr(vs<PJP)VjφPr

In the next place we shall compute ^Jajk which is the sum of the fol-

lowing six terms al9 , <z6-

= — φ/(V3VrV<p/)φιk = —

Consequently, by virtue of
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aί + a5 = (v3vr)<pjlVk<Pru

a2 + α4 = — vRrk,

we have

(5. 5) χrjajk = - (vrVrf* + vrRrk) + vr(Vr9>/)vVι*

For \7̂ Ίfc> using the above notation, we have

VJbjk = aί -^ a2 -h a3 — aA — a5 + aβ.

As the relations

a2 — <z4 = 2 tΛR?* — τΛRrΛ,

hold good, it follows that

(5. 6) ^bjk = - (vrVrV* + f r#r*) + 2 t;ri?r*fc + vr(

We next substitute (5.1) and (5. 5) in the equation

v W f *) = v*V^iA: + ajkχ?jvk,

then we get

(5. 7) v W f * ) = - (vrVrVk + vRrk)vk + vrv\Vr<Pjl)Vi<Pιic

From (5. 3) and (5. 7), we get

(5. 8) ~γa%v) + v W f ) = ~ (VrVrVi + v 'ΛnV.

Hence, by Green's theorem, we obtain the following

THEOREM 5.1.1 7 ) In a compact almost-K'άhlerian manifold M9 the integ-
ral formula

(5. 9) /̂ [(VVrVi + vRnW + \a*(v)\dσ = 0

iί valid for any vector field v, where

a2(v) = ajka
jk, ajk = (ίj^/)^ ί f c.

We next substitute (5. 2) and (5. 6) in

and obtain the formula

(5.10) V!(bjkv
k) = - (v\rvk + vτRrk)vk + Rΐ* vτvk

17) For pseudo-Kahlerian case, see Yano, K. [7], p. 278, Lichnerowicz, A. Γ3].
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Hence from (5. 4) and (5.10), it follows that

(5. 11) vKbstif) + \b\v) = - (vrVrVt + Λ i V

+ 2?*iVV - 2vV(Vr^zV*V.

On the other hand, (2. 11) holds good for any vector field v. Hence sub-

tructing (5. 11) from (2.11) and dividing by 2, we have

(5.12) -

= (VVrVt + vRri)vl - 2 R*t vvι

If we apply Lemma 2. 1 to v, we have in compact M

ί (vrVrVt - RrtfWdσ = - f SG) dσ,
J M J M

so integrating (5. 12) we obtain the following

THEOREM 5. 2. In a compact almost-Kάhlerian manifold M, the integ-

ral formula

is valid for any vector field v, where

b\v) = bjkb
ό\ vt = ψh

bjk --= (vTVr<p/ + ψ

6. Theorems. In this section we shall consider a compact almost-Kahler-

ian manifold M and obtain several theorems. In §3, we have proved that an

analytic vector v satisfies the equation (3. 7) i. e.

(6. 1) VVrVi + Rriv = 0.

In a compact manifold, we know from Theorem 5. 1 that (6.1) is also

sufficient for the analyticity of v.
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THEOREM 6.1.1 8 ) In a compact almost-Kdhlerian manifold, a necessary
and sufficient condition in order that a vector v be an analytic vector is
that

+ RriV = 0.

By virtue of Lemma 2. 2, it follows the following

COROLLARY.19) In a compact almost-Kάhlerian manifold, any Killing
vector is an analytic vector.

COROLLARY.20) In a compact almost-Kάhlerian manifold, a necessary and
sufficient condition in order that an analytic vector v be a Killing vector is
VTV = 0.

Consider an analytic vector v, then from (3. 6), (6. 1) and Theorem 5. 2,
we get

n Jifl_4 2 J

Hence we have, on taking account of Theorem 4. 7,

THEOREM 6. 2. /w <z compact almost-Kdhlerian manifold M, the integ-
ral

J(v) = ί (RWv1) dσ
J M

is positive or zero for any analytic vector v. If J(y) = 0 for an analytic
vector v, then the vector v is a parallel vector field.

Now suppose that the manifold M i s a space of constant curvature,

that is

R
Rkjίh = KgklB) — Λiδfc), where k = — — i ^~,

n\n — i)
holds good. Then we have R% = — 2kga, from which it follows the following

CθROLLARY.21) In a compact almost-Kdhlerian manifold of constant
curvature, there does not exist a non-trivial analytic vector field if R < 0.

Let v be a conformal Killing vector, then from Lemma 2. 3 we have

I (VrVr̂ « + vrRri)vί dσ = — I t/ViVr^r dσ.
J M n J M

18) For pseudo-Kahlerian case, Yano, K. [7], p. 280.
19) Apte, M. [11
20) For pseudo-Kahlerian case, Yano, K. [7], p. 281.
21) We remark that there does not exist a compact almost-Kahlerian manifold of constant

curvature with R > 0. cf. Yano, K. and S. Bochner, [8], p. 80.



ON ALM3ST-ANALYTIC VECTORS IN ALMOST-KAHLERIAN MANIFOLDS 261

On the other hand, integrating

over M, we get

(6. 2) - jyViVrV* dσ = fM(VrVr)2 dσ.

Hence, the equation

VVrVi + RriVr)vι dσ = ^ - ^

holds good. Therefore by virtue of Theorem 5.1, we obtain

L [^τ^" ( v^ r>2 + \ α 2 ( ϋ ) ] d σ = ° »
from which, taking account of Lemma 2. 2, we find the following

THEOREM 6.3. 2 2 ) In a compact almost-Kάhlerian manifold M9 any
conformal Killing vector is a Killing vector if n > 2 and an analytic vector
for n = 2.

Let v be a projective Killing vector, then the equation (2. 9) i. e.

holds. Hence by virture of Theorem 5.1 and (6. 2), we have the following
integral formula

Thereby we get

THEOREM 6. 4. In a compact almost-Kάhlerian manifold, if an analytic
vector is at the same time a projective Killing vector, then it is a Killing
vector.

In a compact pseudo-Kahlerian manifold, if v is harmonic, then tΓ is also
harmonic. In our case, the same argument does not hold.

A covariant analytic vector v satisfies

(6. 3) WrVi + RriV - R% V" + VJVr(Vj<Prt + Vrψjdψi = 0,

by virtue of (4.10). Conversely, in compact M", if a vector field v satisfies (6. 3),

Theorem (5. 2) asserts that b\v) = 0 and 5(tΓ) = 0. b\v) means that the vector

v is covariant analytic and S(v) = 0 means that the vector v is harmonic.

Then from Theorem 4. 4, since v is also a covariant analytic vector, the

22) For Kahlerian case, Lichnerowicz, A. [3],
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same argument is applicable to v, so v is also harmonic. Consequently

we find

THEOREM 6.5. In a compact almost-Kάhlerian manifold, a necessary

and sufficient condition in order that a vector field v be covariant analytic

is that v satisfies (6. 3).

THEOREM 6.6. In a compact almost-Kάhlerian manifold, a necessary

and sufficient condition in order that a vector v be covariant analytic

is that v and zί are both harmonic.

7. Lie algebra of analytic vectors in a compact almost-Kahler-

Einstein manifold. In this section we shall consider a compact almost-

Kahler-Einstein manifold M and give a theorem on the Lie algebra of

analytic vectors on M. This theorem corresponds to Matsushima's theorem23)

in a compact Kahler-Einstein manifold and similar to Lichnerowicz' theorem24)

on the Lie alge ra of conformal Killing vectors in a compact Einstein

manifold.

As M is an Einstein manifold, it holds that

Rji = cgjh c = —^-.

We shall assume that c =f= 0. In this case, (6. 1) reduces to

(7. 1) VΓVr^i + CVi = 0,

from which we have

VVrV^i + 2cη%v% = 0,

or if we put f = ^ιvt9 we have

(7.2) vW-f 2cf=0.

If a scalar function / is a solution of (7. 2), the equation

(7.3) VrVrVι/+*Vi/=0

is valid. Hence the gradient γtf of f = Vi^1 f°Γ a r * analytic vector v is also

an analytic vector.

Now we put

(7. 4) A = *i + " 2 7 - Vif, f =

then from (7.2) we have \7ιA — 0. Hence by virtue of the Corollary of

Theorem 6. 1, p% is a Killing vector. From (7. 4), we have

23) Matsushima, Y. [4]. Yano, K. [7]. p. 285.
24) Lichnerowicz, A. [2]. Yano,K. [7], p. 276.
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(7.5) vi=pi--7^~Vif-

Conversely, if pi is a Killing vector and f is a solution of (7. 2). then
the vector v defined by (7. 5) is an analytic vector. We shall denote by L
resp. Lj the Lie algebra of analytic resp. Killing vectors and by L2 the
vector space of the gradient of solutions of (7. 2). Then the above argument
asserts that L = L1 + L2, where 4- means a direct sum. After some simple
calculation, we have the relation

[_Lι, L2\ ^ L2, \_L2, L2] a Lx.

Hence we get the following

THEOREM 7. 1. In a compact almost-Kάhler-Einstein (R =+= 0) manifold
M, the direct sum

L = Lι + L2

is valid, where L resp. Li is the Lie algebra of analytic resp. Killing vectors
on M and L2 is the vector space consisting of the gradient of solutions of

VrV,/+ 2cf=0, c= — .

In this decomposition, the relations

[Z,,, Li] c L2, [L2, L2] e Lγ

hold.

Now let v be an analytic vector in a compact almost-Kahlerian manifold
M. Then v satisfies the equation

WrVt + RriV
r = 0.

Hence we get easily

Vfo 1 ) (
Integrating the last eqation over M, we have

THEOREM 7.2. In a compact almost-Kάhlerian manifold M, the integral

L dσ

is positive or zero for an analytic vector v.

COROLLARY. In a compact almost-Kάhler-Einstein manifold with scalar
curvature R < 0, there does not exist a non-trivial analytic vector.

From this corollary we have again the corollary of Theorem 6. 2.
We remark here the following facts. In theorems in this section the one
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which plays the essential role is not the almost-complex structure but the

equation (7.1).

8. Canonical connection. In an almost-Hermitian manifold, if we put

(8.1) T%= {>} - ~ φ r \ i Ψ i \

then tensors gJt and φ/ are both covariantly constant with respect to the

affine connection Γ% There are many affine connections with this property,

but we shall call T% defined by (8. 1) the canonical connection. In this section

we shall calculate the curvature tensor of the canonical connection and

obtain certain identities which are useful in the next section. Consider the

canonical connection (8.1) in our almost-Kahlerian manifold and denote by

Kkjt

h the curvature tensor. If we put

tkΐ = ~

and substitute in the identity
τr h D Λ » _ _ # Λ __ + h . . h. r
J^kji — ^kjί "Γ \kΐji Vjtki "Γ Γfcr tji

then we find, after some calculation,

(8. 2) Kkji

h = ~γ~ (Rkji

h - RkjP

r

φi

pφr

h) -

Transvecting (8. 2) with <ph\ we get

(8. 3) Kkji

hφh

ι = Rm

hφh

ι 2~(\

from which it follows that

(Q Λ\ τr* — r>* _ '

where

Now we put

V«VΛ

Tkj= ~
and shall calculate Tjkv

k for any vector field v. On taking account of (1. 4)

we have

Hence it holds that

Tjkv
k = (VΛ - VΛ) (VjφP

r)φhP + 2(VV
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Let ϋ be an analytic vector, then by virtue of (3. 3), we have

£ ^ <phP = - Vi<phXVhVr + VrVh) = 0.

Therefore, for an analytic vector v we have the following formulas

(8. 5) . vkK% = vkR% + y v V ( W

9. A generalization of Apte's theorem. Let v Le an analytic vector in
a compact almost-Kahlerian manifold M. Then, from (3.6) and lemma 2. 4
we have

^ j dσ =

On taking account of (8. 5), we find

If S(v) = 0 holds, then v is harmonic, because of (2. 14). And in this case,
v is a Killing vector by virtue of (3.3). Hence we obtain the following
theorem which is a generalization of Apte's theorem.

THEOREM 9. 1.25) In a compact almost-Kahlerian manifold, the integral

I(v) = ί ) dσ

is positive or zero for an analytic vector. If I(v) = 0 for an analytic vector,

then the vector v is a Killing vector and tΓ is harmonic.

From the above theorem and (8. 4), we have Theorem 6. 2, again.
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