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M. Obata has precisely studied (M. Obata, [1], [2], [3]) the manifolds admit-
ting so-called quaternion structures and some remarkable affine connections
in such manifolds leaving invariant the quaternion structures. The restricted
homogeneous holonomy group of such an affinely connected manifold is
the real representation of quaternion linear group CL(n, Q) or one of its
subgroups. If the affinely connected manifold is Riemannian and if the
quaternion structures are hermitian with respect to the Riemannian metric,
then the restricted homogeneous holonomy group of the Riemannian manifold
is the real representation of unitary symplectic group Sp(z) or one of its
subgroups (M. Berger, [4]; H. Wakakuwa, [5]).

The purpose of this paper is to study the 4n-dimensional affinely con-
nected manifold whose restricted homogeneous holonomy group is the real
representation of CL(7n, Q) & T, where CL(n, Q) is the quaternion linear
group operating on a 2z-dimensional complex linear space and 7" is the one
parameter torus group operating on a complex line.

1. The group CL(n, Q)& T" and its real representation. Let Q be
the quaternion algebra with bases 1,7, 7,k (P =7/ =Fk'= —1;ij= — ji =
kyjk= —kj=1i, ki = — ik = j) and let L} be the n-dimensional quaternic
linear space composed of all vectors whose z components are elements of Q.

A linear endomorphism of L} from the left is given by

q = Fq,
where q is a vector in L} and F is an (n, n)-matrix with elements in Q. If
we put
a=2z+jw,q =2z +jw, F=P, + jO,,
then we get the complex representation of the above endomorphism whose
representative matrix is of the form:

a1 G %)

where P, and Q, are complex (n, n)-matrices and the bar denotes the complex
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conjugate.

CL(n, Q) is the subgroup of GL(2n,C) composed of all non-singular linear
homogeneous transformations whose matrices are of the form (1.1).

Next, 7" is the one dimensional torus group on a complex line, its
transformations being of the form

z = oz,

where 2,2 and o are complex numbers and |o| = 1. Then the Kroneckerian
product CL(n, Q)& T" is also a subgroup of GL(2n,C) and it is easily seen
that the matrix M,, of transformation of CL(n, Q)& T" has the form

O-Pn - a.an
. n = = ) lo| =1
(1.2) Mu=(T T5), (el=D
Now, if we put
0 E, . .
(1.3) Jom = ( E 0 ) (E, : unit matrix of degree n),

then we have

1 1 7
L My dou = 27

QJ

that is
(1- 4) M2n J2n = pJZn 1\'_4211
where p = o’

Conversely, if M,, satisfies (1.4) for J,, of (1.3), then we see that M,,
must be of the form (1.2), that is, it gives a transformation of CL(#n, Q)
& T

Now, let z be a vector in a 27n-dimensional complex linear space and
consider a linear transformaton

12' = M,, z
;, = —M—Q”;
where M,, is given by (l.2), the matrix M of the above transformation
being
, M,, 0
(1.5) m= (" >
| 0 M,/ .
If we put
Z2=X “l‘ ly, Z, = x, + iy,’ M2'n = Hzn + iKZns
then we get the real representation of CL(n, Q)& T operating on the 4n-
dimensional real linear space R,,, where x, y,x and y. are real vectors and
H,, and K,, are real matrices of degree 2n. For the sake of brevity we
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denote this real group by G.

The matrix M of (1.5) gives the matrix of a transformation of G = real
representation of CL(n, Q) & T" with respect to complex bases.

A simple computation gives us

‘I’Z( . ?iEﬂ) M1 = ( ; z iEM) (E,y : unit matrix of degree 2n),

and further by (1.4) we have

25 )=s( ] )

0 0 0 0

or
0 Ju 0 Ju .

1. 6 m( )m_l = N = 1
(1.6) o o P( o o ) (lel =1)
and similarly ,

0 0 -0 0
1.7 m M- = .
.7 <iJ2n 0 ) P<iJ2,, 0 )

. . ) . - iEgn 0
These tell us that G leaves invariant the matrix of rank 4n< - )and
tligy

0 Jun 0 0
transforms the matrices of rank 2z (0 02 ) and <‘J ) into the matrices
i an
proportional to them, the proportioaal factors being p and p (|p| = 1) respe-

ctively.
Making use of a complex matrix

I — 1_( E‘Zn E2n>
" N2 \— {E,, iE,,
we have
H,, —K,,
(1.8) Msamu;=<2 ﬂ
KQn H:Zn s

where H,, and K,, are real matrices of degree 2», and M gives a trans-
formation of G with respect to real bases. By the transformation (1.8), the

Im(_ o 0 >l;n1 - ( 0 E“)
O ZE?TI, - E2n O

matrix

is left invariant and

0:]2" 1 J2n _iJ2n
e
“\o o /™" 2 <—iJ2,, —J2n>
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and
(U] iy — Jaun
(S =t (P 5
iJs, O 2 \— Jon — l']zn
are transformed into themselves up to complex factors p and p (|p| = 1)

respectively. That is to say, if we put

@D 1 J2‘n - iJ2n @ 1 iJZn - J2'n @ 0 E2n
o B 1 TR L ()
( ) o 2 _ZJ2n _J2n ‘ "‘Jzn ~iJ2n % _'Ezn 0

then we have
MIM 1 =pF, MFM=pF (pl =1)
(1.10) { ’ '

3)

)
MIM''=5F
W @

®
where & and & are of rank 27 and & are of rank 4x.
1) (2)

Conversely, a matrix M which transforms %} & and % of (1.9) by (1.10)
gives a transformation of G, which is easily seen by a conmderatmn with

respect to the complex bases.

If we put
ORI B ) 0 J
F=ig—-¢= 2") ,
111 F=§—if (ﬁn ’ 0)
(-1 (3)_ @ T <00 _é:" ’
= =(%e., ).
1) @ 3)

then we find the quaternic relations among F, F and F':
Q@ @O @ @6 OO O 3O mE @

FF= —-FF=F, FF= —-FF=F, FF= —-FF=F

1) (2) ()]

F? =F = F= — E,,.
From (1.11), we get

(1. 12)

(2) (1) () (2) @ (3) ®)

(1.13) F= 1 CFzm,%=%4m—m,%sE

0 m
and putting these &, & and ‘& into (1 10), we have

(2) 2) (3) )

)
(1.14) MF M= aF — bF, MFM‘ = bF + aF, MFM™ =F,
where p = a + ib (a® + b* = 1).
m @
That is to say, G transforms F, F' and F of (1 12) by (1. 14) and converse-

o @
ly, a transformation which transforms F, F' and F by (1.14) belongs to G.

Summing up the above considerations we have the following two Lemmas

LEMMA 1.1. With respect to a suitable complex bases the necessary
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and sufficient condition that a complex matriz WM gives a transformation
of G = real representation of CL(n,Q)Q T* is that it leaves invariant the

— {E,,
matrix( e . )(Eg,,: unit matrix of degree 2n) and transforms the
1Lugy
0 Js, 00 0 E,
matrices < o 20) and <iJ2,, 0) R <J2n = <_ E, 0)), by (1.6) and (1.7) where

1

P is the complex number giving rise the transformation of T".
If G is the real representation of CL(n,Q), then p =1 and vice versa.

LEMMA 1.2. With respect to a suitable real bases, the necessary and

sufficient condition that a matriz M gives a transformation of G = real
[RE)

representation of CL(n, Q)& T* is that it transform the matrzces &, & and
O o
8" of (1.9) by (1.10) or it transforms he matrices F, F and F of (1.11) by

(1.14). If G is the real representation of CL(n, Q), then a=1, b =0 and’

vice versa.
o @ ®
It is remarked that the above F, F and F necessarily satisfy (1.12).

We shall prove furthermore the following Lemma of normalization.

I ) @ ®a ®
LEMMA 1.3. Let F = (F), F = (FY), F = (F';)) be three matrices

satisfying (1.12), that is
M) OO @ @ @@ O mE) LTS

(A) FF=—FF=F FF=—FF=F, FF= — FF = F,
e @ ®
(B) FP=F=IrN=—FL,.
Then we can choose their components in normal forms (1.11), that is
(@) 0 Jo\ @ Jow 0O ®) 0 E,
©  F=( ) E= () F= (),
Jzn 0 0 _JZn - E?n 0

by performing a suitable change of bases.

PROOF. Let L,, be a 4n-dimensional real linear space with coordinate:
system (z', ...... ,u'") and introduce in L,, an FEuclidean metric G = (Gy;)

defined by
O @ @ G @
Gy, = &,; + F*\,F*; + F*,F*, + F*,F*,
Then, it is easily verified that G is positive definite and satisfy
® o @ @ ) @ W
(D) ‘FGF = G, 'FGF = G, '"FGF = G (‘F = transpose of F, etc.)
@ @ @)
that is, G is hermitian with respect to F, F and F
oo
It is already known that three matrices F, F' and F satisfying (A), (B)

and (D) for a positive definite metric G can be turned into their normal
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forms (C) by a suitable change of bases (H. Wakakuwa, [5], Theorem 1) but
we will sketch the outline of the proof.

At first if we put

O NG @
G F*; = Fij, Gl = th, Gl i = th,

© @ e . o . )

then Fy;, F,;, F,; are anti-symmetric in i and j by virtue of (B) and (D).
o @ ®

Let u = («') be an arbitrary non-zero vector in L,,, then u, Fu, Fu and Fu

o @
are mutually orthogonal by virtue of (A) and the anti-symmetricity of Fj;, Fy;

and F” And furthermore, let v = (v') be an arbitrary non-zero vector
PG
orthogonal to the above four vectors u, Fu, Fu and Fu then the 8 vectors

o) @
u, Fu,.. ... , Fv are all mutually orthogonal, and so on.
Now, we choose the bases e, ...... . €., as follows. Choose an arbitrary

vector as e, and since the three vectors obtained from e, by performing the

@ @ ®
collineations given by F, F and F are mutually orthogonal, we choose the
three vectors as — €3,4;, — €,.; and — €,,.,. Then, with respect to such
system of bases, we see that

o @ ®

Fo™1 = Frrl = FRl = ]

a @ @)

and the other F',, F*, and F', are all zero. In the next place, choose an
arbitrary vector orthogonal to e, €,.;, €.+, and e,,., as e,. Since the three

o o ®
vectors obtained from e, by performing the collineations given by F, F and F

are mutually orthogonal and orthogonal to e, e,.,, €:,,.; and e;,.,, we choose

the three vectors as — €j;.5. — €42 and — €,,... Then with respect to such

system of bases we see that

M @

F17l+12 — "+1 F2"+1 —_ 1,

@
and the other F 2 F's and F 'y are all zero. Repeating the similar processes
we get a system of orthogonal bases and with respect to such system of
o @

bases, F, F' and F take the following form :

. 0 00E, 0 E, 00 \ 0 0E, O
0 (2) _ 3)

F= 0 % F OE" % % > F = —OEn ***
—E, 0 0

We can find the elements of the parts of *,%x and " by means of (A4) and
P @)
(B) and the verification shows that the forms of F F and F are no other

than the required normal forms. g.e.d.

Now, we consider the infinitesimal transformations of the group G = real
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representation of CL(7n, Q) @ T, which are the real representations of infini-

tesimal transformations of CL(%n, Q)& T
Let o (‘! = 1) be a complex number which gives an infinitesimal trans-

formation of 77: 2’ = a2, then
=1+ do,

where do is a complex number infinitely near to 0 and since jo| =1, it
must be necessarily purely imaginary: do = ia. That is,
(1.15) oc=1+ ia (a : infinitesimal real number).
Since the p in (1.10) is given by p = o? from (1.4), we have

p=oc’=1+ 2ia (a: inf. real).
If we therefore denote an infinitesimal transformation of G by I + dI (I:
identity), then we get

) ) @ @ @)
(1.16) dIF) = i€, dIF) = — i€, dEF) = 0
(& = 2a: inf. real number),
by virtue of (1.10), or
) @ @ m @
(1.17) dI(F) = — &F, dI(F) = &F, dI(F) =0,
by virtue of (1.14).

Conversely, an infinitesimal transformation satisfying (1.16) or (1.17) is
an infinitesimal transformation of G.

LEMMA 1.4. The necessary and sufficint condition that an infinitesimal

transformation I + dI (I: identity) belongs to the group G which is the real
@ @)
rep. of CL(n Q)R T* is that dI transforms &, & and & by (1.16); or what
@ @ ®

is the same, dI transforms F,F and F given by (1.11) by (1.17) with
respect to a suitable system of bases. Especially, the infinitesimal transforma-
tion in consideration belongs to the group which is the real representation

of CL(n, Q) if and only if & = 0.
From (1.2), (1.5) and (1.8), we get easily the following Lemma.

LEMMA 1.5. With respect to a suitable system of bases, the necessary
and sufficient condition that an infinitesimal transformation belongs to G =
CL(n, Q)X T is that it is given by a matrix of the form:

A —B { —C—aE —-D

B A —D C—aE

(1.18) B S
C+aE D A _B
D —C+aE B A

where A — E, B,C and D are real matrices of degree n whose elements are
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infinitesimal real numbers and & is an infinitesimal real number.

2. Fundamental characterizations. In the following, the indices run
over 1,2,3. ...... 4n, if othewise stated.

THEOREM 2. 1. Let Ay, be a 4n-dimensional affinely connected manifold
(with torsion or without torsion). If the restricted homogeneous holonomy
group H of A,, be the real representation of G = CL(n, Q)& T or one of

o ® @
its subgroups, then A, admits three almost complex structures F';, F'; and F*,

satisfying quaternic relations :
a @ @ @ @ @ @ m
(2.1) Fi.F*, = — F' F*, = F';,, F', F*; = — F' F*, = F,,
k J k J J
and
m @ @ @
(2.2) th/k = - ¢kFij, Fy = ¢kFij’ Fi]'/k =0,
where / denotes covariant differentiation with respect to the affine connection
of Ay and @, is a covariant vector field.

Conversely, if Ai, admits three almost complex structures satisfying
(2.1) and (2. 2), then the restricted homogeneous holonomy group of A is
the real representation of CL(n, Q)@ T or one of its subgroups.

PROOF. At first assume that A,, be simply connected. If we attach a
suitable frame R, at a point O of A,,, then the restricted homogeneous
holonomy group H(O) which is a real representation of CL(7, Q)& T* or

® @ ®

one of its subgroups transforms the three matrices F, F and F satisfying
oo ®

(2.1) and F? = F? = F? = — E,, according to (1.14), taking account of

Lemma 1.2. And we attach to each point of P of A,, a frame obtained

from R, by parallel translation along an arbitrary but fixed curve joining O
1 (2)

to P. Then at each P there are uniquely determined three tensors F, F and

(3)

F which are transformed according to (1.14) by the restricted homogeneous.

holonomy group H(P) at P. The connection of the tangent spaccs at infinitely
near two points P and P is given by an infinitesimal transformatioa of H(P),

which is easily verified by considering the above fixed curve E)\P and 6—1\9
and a closed curve POP'P. Hence (2.2) holds true. When A,, is not simply

connected, we consider the universal covering manifold A,, of A,, admit-
ting the affine connection introduced naturally from that of A,,, then the

conclusion for the E,,,, induces naturally the same conclusion for A,,.
The sufficiency follows from Lemma 1.3 and 1.4. q.e.d.
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COROLLARY 2.1. The affinely connected manifold A, in the Theorem

o @ @)
admits three complex tensor fields &', &', and &', satisfying
o, Lo @ @
i = i@i8's i = ‘14’::%;, & J =0,
where
) e} o) <3> @

%i ——“(Fj"‘ZFlJ), gij——(lFi _Fij), j——Fijo

The proof is almost evident from (1.13), (1.16) and (1.17).

COROLLARY 2. 2. If a 4n-dimensional affinely connected manifold Ai,
@ @)
admits two almost complex structures F*; and F'; satisfying
@, @ @ O @ @ W,
FkaJ=_FFj>Fj/k——‘PkF;,FJ = @ k",

‘then the restricted homogeneous holonomy group is the real representation of

CL(n, Q)@ T"* or one of its subgroups.

PROOF. Put
@ @ W @)

FikaJ = — FWWF*; = Fi;,

@)

then F'; is also an almost complex structure and there are relations (2.1)
a (@

among F';, F'; and Fi Further, we see that

@) @ (¢ ¢

®3)
Fijlk =(F hth)/k = Fh/kF + FnF e = ¢k81 ¢k8§ =0,
. @ @

by virtue of the assumptions for Fij and Fi, and FL.F*; = F Lka = — §'. The
Theorem completes the proof.

THEOREM 2.2. In Theorem 2.1, the necessary and sufficient condilion
that the restricted homogeneous holonomy group H be contained in the real
representation of CL(n, Q) is that the vector @, be a gradient vector.

PROOF. If H does not contain the real representation of 77, then from

Lemma 1. 1 we see that p% 1, which shows that H leaves invariant all
%l }j‘) and F In this case, @, = 0 and of course gradient. We will prove the
sufficiency. Assume that A,, admit three almost complex structures (11*4)‘,(1?‘ and
%Z satisfying (2. 1) and (2. 2) and assume furthermore that the @, in (2.2)is

gradient, i.e. there exist a scalar function ¢ such that

Then we can find three almost complex structures satisfying the same rela-
tions as (2.1) and all invariant by H, that is, covariant constant. In fact, put
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ay, w . @

G'y=cospF'; +sinp-F,

81 _ ) @, @ @, @
;= —sin@+F + cosp+ F, Gy = F%,

o ® 3
by using the scalar function @ of (2.3). Then G%, G* and (G)i, are all
almost complex structures i.e.

woa @e @ e t
Gij':Gij:Gij: _Bj,
and satisfy the quaternic relations
e w0 e an _ go o
By T T BT 5 s BTy — (2SS M s
@, W, W @@
G}chz _Gij=Gj,
® @ @
which are easily verified by (2.1) and by the fact that F;,, F', and F*, are
almost complex structures. And lastly, we see that
@ @ @)
G'ye =0, G’y =0, Gy =0,
which completes the proof.

3. Some identities. In this section we introduce some identities obtained
®» @ @)
from the Ricci’s identities for F;,, F'; and F*;

We have already known that
1) 1) (2) (2) 3) 3

Fthkj = Fi)chj = Fikaj = — 8;,
@ 2 ) (1) 3) ) 3) 3) (2) (63}
i — F i — —
3.1 F.F*, = — F4F* ;= F',, F4F*, = — F4"F*, = F%,
@)y @O (1)1 @) <2)i
\ FLkI’-‘k,-:—Fkaj:Fj,
and
(O (‘Z)t (Z)i (1)1: (3)i
12 — —_—
(3. 2) Fi/lc = - ¢’cF s F!fk - ¢kF s I'?i/’c = 0.

Differentiating covariantly the first relation of (3.2) and making use of the
second, we have

a @, W,
Fipn = — @unF"; — @il

Consequently we see that

2 1 1 2
(3.3) — (@i — ¢n/k)(f;' = (I}ljRilkh - (FZiLRlﬂch + Z(FZtﬂpzSzcé,
by virtue of the Ricci’s identity
@ W <1> ) o)
Fijlk/h - Fijlhlk = Fl}Rilkh — F'R';, —ZFij/szln,
where R'j;, is the curvature tensor obtained from the connection parameter
'), of A,, and Si is the torsion tensor, i. e.
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T, T}
Rijkh — a o __ @ - Jn

1 i
oz e + FJZICP(';E - Fj’hr‘ltk, Sia = '—Q—(Fm — ).

) .
Multiplying F’,, to the both sides of (3.3) and contracting with respect to #
and making use of (3.1), we have

o

®
(pen — Pr)F'y = — Ry — F' F R oy — 2F P 1Skis
or renewing some indices
oy , ORI
(3.4) (@un — @up) + 20,Sa] F'; + Ry + FLF™ Ry = 0.

And similarly from

M @ o @, .
(3.5) (@ — Pu)F; = FljRilkh — F'R'sn — 2F @, Sin.
we have
. (3)i . (‘3)1: (?)m .
(3 6) [(?’Ic/n - ¢n/k> + 2¢[Skh,] F j + R skn + F lF ,-R mkh — 0.
3)
For the covariant constant F'j, it is known that
3) (3)
3.7 F'R'yy — F'\R'yy, = 0,
or
@ @
(3.8) Rl + F'F™ Ry, = 0,

which is proved by (%)‘i,,k = 0 and the Ricci’s identity.
Multiplying (Fz)‘ij to (3.4) and contracting in 7 and j, we get
— 4n(@em — Pai + 29,Se) + ;leu + F R =0
or
(3.9) %m_¢m+2%kwh—~pumm

by virtue of (3.1).
If especially A,, is without torsion, then (3.3), (3.4), (3.5), (3.6)
become the following forms :

(3.10) (Pem — Pu)Fy + PR o — F' Rl = 0,
3.11) (@en — <Pn,k)F + Riyy, + 1]72L (117 R min = 0,
(3.12) (@en — PudF; — FYR' + FYR i = 0,
(3.13) (un — PudF'y + Ry + FYF™ Rl = 0,

®
(3.14) Pien — Prp = —Zln— F" R'n
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A covariant vector @, is gradient if and only if
Prin — P + 2¢lSklh, = 0.
Therefore, from (3.9) and the results in §2, we see that, the necessary and
sufficient condition that the restricted homogeneons holonomy group H of
Ay, (with torsion or without torsion) in consideration be contained in the
real representation of CL(n, Q) is that

3)
lelekh = 0.

REMARK. It is known that, if A,, is a metric connection without torsion,
then H can not be the real representation of Sp(n) X T, for » > 1, which is
the unitary restriction of CL(n, Q)X T'(M. Berger, [9]). This is also proved
from metric conditions and the above identities (the proof is omitted). For
n =1, however, there exist actually 4-dimensional Riemannian manifolds
whose restricted homogeneous holonomy groups are real representations of
Sp(n) @ T* or_one of its subgroups, whose examples have been already
shown by T. Otsuki, [10]. The fundamental form ds? of such a Riemannian
manifold is given by

ds® = a*ldui + duz + (b] + b3 + b3) (du; + dui)
+ 2b.(du,du, + du,duy) — 2b,(du,du, — du.du;)},
where a = a(u), b, = b,(u), by = b,(u) and b, = b,(u) are arbitrary functions
of u’s.
We shall study in the following paper, the converse problem, that is, in

a manifold with quaternion structure to introduce affine connections whose
restricted homogeneous holonomy groups are real representations of CL(zn,

Q) KT
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