ON THE DETERMINATION OF THE JUMP OF A FUNCTION BY ITS FOURIER COEFFICIENTS

Kailash Chandra Shrivastava

(Received September 21, 1959)

1. Let $f(x)$ be integrable in the sense of Lebesgue over the interval ($-\pi, \pi$) and be periodic out side with period 2π. Let the Fourier series of $f(x)$ be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) . \tag{1.1}
\end{equation*}
$$

Then the conjugate series of (1.1) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right)=\sum_{n=1}^{\infty} B_{n}(x) . \tag{1.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\psi(t) \equiv f(x+t)-f(x-t)-D, \quad D \equiv D^{\prime}(x) \tag{1.3}
\end{equation*}
$$

Szasz [2] gave the following theorem for the determination of the jump of a function by its Fourier coefficients:

THEOREM A. If there exists a number $D \equiv D(x)$ such that

$$
\begin{equation*}
\int_{0}^{t} \psi(t) d t=o(t) \quad \text { and } \quad \int_{0}^{t}|\psi(t)| d t=O(t) \tag{1.4}
\end{equation*}
$$

as $t \rightarrow 0$, then

$$
\lim _{n \rightarrow \infty}\left\{\overline{S_{2 n}^{\prime}}(x)-\overline{S_{n}^{\prime}}(x)\right\}=\frac{1}{\pi} \log 2 \cdot D(x)
$$

where $\overline{S_{n}}(x)$ is the sequence of arithmetic means of the partial sums of the conjugate series.

Theorem A was further generalized by Chow [1] in the following form :
Theorem B. Under the same hypothesis as in Theorem A

$$
\lim _{n \rightarrow \infty}\left\{\overline{S_{2 n}^{\alpha}}(x)-\overline{S_{n}^{\alpha}}(x)\right\}=\frac{1}{\pi} \log 2 \cdot D(x)
$$

for $\alpha>0$, where $\overline{S_{n}^{\alpha}}$ is the nth Cesàro mean of order α of the conjugate
series.
Again Shin-ichi Izumi proved the following theorem.
Theorem C. If

$$
\begin{equation*}
\int_{0}^{t} \psi(t) d t=o(t) \text { and } \int_{\pi \mid n}^{\pi} \frac{|\psi(t+\pi / n)-\psi(t)|}{t} d t=O(\log n) \tag{1.5}
\end{equation*}
$$

then

$$
\lim _{n \rightarrow \infty}\left\{\overline{S_{2 n}}(x)-\overline{S_{n}^{\prime}}(x)\right\}=\frac{1}{\pi} \log 2 \cdot D(x)
$$

The object of the present paper is to prove the following theorems.
Theorem 1. If

$$
\begin{gather*}
\Psi(t)=\int_{0}^{t} \psi(t) d t=o\left(t^{\Delta}\right) \text { and } \tag{1.61}\\
\Psi^{*}(t)=\lim _{k \rightarrow \infty} \lim _{t \rightarrow 0} \int_{(k t) / \Delta}^{\delta} \frac{|\psi(t+\varepsilon)-\psi(t)|}{t} d t=O(\log 1 / t) \tag{1.62}
\end{gather*}
$$

for some $\Delta \geqq 1$, then

$$
\lim _{n \rightarrow \infty}\left\{\overline{S_{2 n}^{\alpha}}(x)-\overline{S_{n}^{\alpha}}(x)\right\}=\frac{1}{\pi} \log 2 \cdot D(x),
$$

for every $\alpha>0$.
Theorem 1 may further be generalized to the following theorem.
THEOREM 2. Under the same hypothesis as in Theorem 1, if $\frac{m}{n} \rightarrow d$, $m>n$ and $n \rightarrow \infty$ then

$$
\lim _{n \rightarrow \infty}\left\{\bar{S}_{m}^{a}(x)-\bar{S}_{n}(x)\right\}=\frac{1}{\pi} \log 2 \cdot D(x) .
$$

2. We shall make use of the following Lemmas.

Lemma 1. (The following Lemma is due to Kogbetliantz) If $\alpha>-1$, and $\bar{T}_{n}^{\alpha}(x)$ denote the nth Cesàro mean of order α of the sequence $n B_{n}(x)$, then

$$
\begin{gathered}
\bar{T}_{n}^{\alpha}(x)=n\left\{\bar{S}_{n}^{\alpha}(x)-\overline{S_{i-1}^{\alpha}}(x)\right\}, \\
\bar{T}_{n}^{\alpha+1}(x)=(\alpha+1)\left\{\bar{S}_{n}^{\alpha}(x)-\bar{S}_{n-1}^{\alpha+1}(x)\right\}=\frac{1}{\pi} \log 2 \cdot D(x) .
\end{gathered}
$$

Lemma 2. ([Chow, 1]) If $\dot{g}_{n}^{\alpha}(t)$ denote the nth Cesàro mean of order
α of the sequence $g_{n}(t)=\cos n t \quad(n \geqq 1), g_{0}(t)=\frac{1}{2}$,
we have for $\alpha>0,0<t<\pi$

$$
\left|\left(\frac{d}{d t}\right)^{k} g_{n}^{\tau}(t)\right| \begin{cases}\leqq A_{n}^{k} & (k \geqq 0) \\ \leqq A_{n}^{-2} t^{-k-2} & (k \leqq \alpha-2) \\ \geqq A_{n}^{k-\alpha} t^{-\alpha} & (k>\alpha-2)\end{cases}
$$

Lemma 3. ([Chow, 1]) If

$$
h_{n}^{\alpha}(t)=\sum_{\nu=n+1}^{2 n} \frac{1}{\nu} g_{\nu}^{\alpha}(t)
$$

then for $\alpha>0,0<t<\pi, k=1,2,3, \ldots \ldots$

$$
\left|\left(\frac{d}{d t}\right)^{k} h_{n}^{\alpha}(t)\right| \begin{cases}\leqq A_{n}^{k} & (k \geqq 0) \\ \leqq A_{n}^{-2} t^{-k-2} & (k \leqq \alpha-1) \\ \leqq A_{n}^{k-\alpha-1} t^{-\alpha-1} & (k>\alpha-1)\end{cases}
$$

By Lemma 1 , with $g_{n}(x)$ in place of $\overline{S_{n}}(x)$ we easily show that

$$
(\alpha+1) \frac{1}{n} g_{n}^{\alpha}(t)=(\alpha+1) \frac{1}{n} g_{n}^{\alpha+1}(t)+g_{n}^{\alpha+1}(t)-g_{n-1}^{\alpha+1}(t) .
$$

Hence

$$
\begin{aligned}
(\alpha+1)\left|\left(\frac{d}{d t}\right)^{k} h_{n}^{\alpha}(t)\right| \leqq(\alpha & +1) \sum_{\nu=n+1}^{2 n} \frac{1}{\nu}\left|\left(\frac{d}{d t}\right)^{k} g_{\nu}^{x+1}(t)\right| \\
& +\left|\left(\frac{d}{d t}\right)^{k} g_{2 n}^{x+1}(t)\right|+\left|\left(\frac{d}{d t}\right)^{k .} g_{n}^{\alpha+1}(t)\right|
\end{aligned}
$$

and the result follows from Lemma 2.
LEMMA 4. $\quad h_{n}^{\alpha}\left(t+\frac{\pi}{n}\right)=-h_{n}^{\alpha}(t)$.
Proof. We have

$$
g_{0}(t)=g_{0}\left(t+\frac{\pi}{n}\right)=\frac{1}{2}
$$

by definition and

$$
\begin{aligned}
g_{n}(t) & =+\cos n t \\
g_{n}\left(t+\frac{\pi}{n}\right) & =-\cos n t=-g_{n}(t) \\
g_{n}^{\alpha}\left(t+\frac{\pi}{n}\right) & =-g_{n}^{\alpha}(t)
\end{aligned}
$$

so
therefore

Consequently

$$
h_{n}^{\alpha}\left(t+\frac{\pi}{n}\right)=\sum_{\nu=n+1}^{v n} \frac{1}{\nu} g_{\nu}^{\alpha}\left(t+\frac{\pi}{n}\right)=\sum_{\nu=n+1}^{2 n}-\frac{1}{\nu} g_{\nu}^{\alpha}(t)=-h_{n}^{\alpha}(t)
$$

which proves the Lemma.
Lemma 5. If $\psi(t)$ satisfies (1.61) then

$$
R_{1}=\int_{\left(\frac{v_{n} n \pi}{n}\right)^{1 / \Delta}}^{\binom{k_{n} \pi}{n}^{1 / \Delta}+\frac{\pi}{n}} \psi(t) \frac{d}{d t} h_{n}^{\alpha}(t) d t=o(1)
$$

Proof. We have

$$
\begin{aligned}
R_{1} & =\left[\psi(t) \frac{d}{d t} h_{n}^{\alpha}(t)\right]_{\left(\frac{n_{n} \pi}{n}\right)^{1 / \Delta}}^{\left(\frac{k_{n} \pi}{n}\right)^{1 / \Delta}+\frac{\pi}{n}}-\int_{\left(\frac{i_{n} \pi}{n}\right)^{1 / \Delta}}^{\left(\frac{k_{n} n}{n}\right)^{1 / \Delta}+\frac{\pi}{n}} \psi(t) \frac{d^{2}}{d t^{2}} h_{n}^{\alpha}(t) d t \\
& =R_{2,1}-R_{2,2} \text { say. }
\end{aligned}
$$

If $\beta=\min (\alpha, 2)$ then

$$
\begin{aligned}
& R_{1,1}=O(n)^{-\beta}\left[o(t)^{\Delta} t^{-\beta-1}\right]_{\left(\frac{i_{n} \pi}{n}\right)^{1 / \Delta}}^{\left(\frac{k_{n} n}{n}\right)^{1 / \Delta}+\frac{\pi}{n}} \\
& \leqq O(n)^{-\beta}\left[\left\{\left(k_{n}^{1 / \Delta} n^{1-\frac{1}{\Delta}}+\pi\right)^{-\beta-1+\Delta} \cdot n^{-\beta} \cdot n^{\beta+1-\Delta}\right\}\right. \\
& \left.+k_{n}^{(-\beta-1+\Delta) / \Delta} \cdot n^{(\beta+1-\Delta) / \Delta} \cdot n^{-\Delta}\right] \\
& =O\left[\left(\frac{1}{k_{n}}\right)^{\frac{\beta+1}{\Delta}-1} \cdot n^{1-\Delta\left(\frac{\beta+1}{\Delta}\right)}+\left(\frac{1}{k_{n}}\right)^{\frac{\beta}{\Delta}+\left(\frac{1}{\Delta}-1\right)} \cdot n^{\frac{\beta}{\Delta}(1-\Delta)} \cdot n^{\frac{1-1}{\Delta}}\right] \\
& =o(1) \\
& R_{2,2}=O\left[\left(\frac{1}{k_{n}}\right)^{\frac{\beta}{\Delta}}\left(\frac{k_{n}}{n^{\beta+1}}\right)^{1-\frac{1}{\Delta}}+\left(\frac{1}{k_{n}}\right)^{\frac{\beta}{\Delta}} n^{\frac{\beta}{\Delta}(1-\Delta)} \cdot\left(\frac{k_{n}}{n}\right)^{\frac{\Delta-1}{\Delta}}\right] \\
& =o(1) .
\end{aligned}
$$

If $\beta^{\prime}=\min (\alpha, 3)$ then

$$
\left.\begin{array}{rl}
\left|R_{1,2}\right| & \leqq O(n)^{1-\beta^{\prime}} \int_{\left(\frac{k_{n} \pi}{n}\right)^{1 / \Delta}}^{\left(\frac{k_{n} \pi}{1}\right)^{1 / \Delta}+\pi / n} t^{\Delta} t^{-\beta-1} d t \\
& =O\left[\left\{k_{n}^{\frac{1}{\Delta}} n^{1-\frac{1}{\Delta}}+\pi\right\}^{-\beta^{\prime}+\Delta} \cdot n^{\beta^{\prime}-\Delta}+k_{n}^{-\frac{\beta^{\prime}}{\Delta}+1} \cdot n^{-1+\frac{\beta^{\prime}}{\Delta}} \cdot n^{1-\beta^{\prime}}\right] \\
& =O\left[\left(k_{n}\right)^{-\frac{\beta^{\prime}}{\Delta}+1} \cdot n^{(1-\Delta) \frac{\beta^{\prime}}{\Delta}}+k_{n} \frac{-\beta^{\prime}}{\Delta}+1\right.
\end{array} n^{\frac{\beta^{\prime}}{\Delta}-\beta^{\prime}}\right] .
$$

$$
\begin{aligned}
& =O\left[\left(\frac{1}{k_{n}}\right)^{\frac{\beta^{\prime}}{\Delta}} \cdot \frac{k_{n}}{n^{(د-1) \beta^{\prime} / \Delta}}\right] \\
& =o(1)
\end{aligned}
$$

Thus $R_{1}=o(1)$.
Lemma 6. If $\psi(t)$ satisfies (1.62) then

$$
R_{2}=\int_{\left(\frac{k_{n} \pi}{n}\right)^{1 / \Delta}}^{\delta}\left|\psi\left(t+\frac{\pi}{n}\right)-\psi(t)\right| \frac{d}{d t} h_{n}^{\alpha}(t) d t=o(1) .
$$

PROOF.

$$
\begin{aligned}
R_{2} & =\int_{\left(\frac{i_{n} n}{n}\right)^{1 / \Delta}}^{\delta} \frac{\left|\psi\left(t+\frac{\pi}{n}\right)-\psi(t)\right|}{t} t \frac{d}{d t} h_{n}^{\alpha}(t) d t \\
\left|R_{2}\right| & \leqq O(n)^{-\beta} \int_{\left(\frac{n_{n} \pi}{n}\right)^{1 / \Delta}}^{\delta} \frac{\left|\psi\left(t+\frac{\pi}{n}\right)-\psi(t)\right|}{t} t^{-\beta} d t \\
& =O(n)^{-\beta}\left[O\left(\log \frac{1}{t}\right) \cdot t^{-\beta}\right]_{\left(\frac{c_{n} \pi}{n}\right)^{1 / \Delta}}^{\delta}+O(n)^{-\beta} \int_{\left(\frac{k_{n} \pi}{n}\right)^{1 / \Lambda}}^{\delta} \log \frac{1}{t} t^{-\beta-1} d t \\
& =R_{2,1}+R_{2,2} \text { say. }
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|R_{2,1}\right| & =\left[\left(\frac{1}{k_{n}}\right)^{\frac{\beta}{\Delta}} n^{\left(\frac{1}{\Delta}-1\right)} O\left(\log \frac{n}{k_{n} \pi}\right)^{1 / \Delta}\right] \\
& =\left[n^{i}\left(\frac{1}{\Delta}-1\right)\left\{\left(\frac{1}{k_{n}}\right)^{\frac{\beta}{\Delta}} O(\log n)^{\frac{1}{\Delta}}\right\}\right] \\
& =o(1)\left\{\left(\frac{1}{k_{n}}\right)^{\beta} O(\log n)\right\}^{\frac{1}{\Delta}} .
\end{aligned}
$$

Now we can make $k_{n} \rightarrow \infty$, in a such a way, that the right hand side above tends to zero, i. e.

$$
R_{2,1}=o(1)
$$

And

$$
\begin{aligned}
\left|R_{2,2}\right| & \leqq O(n)^{-\beta} \cdot O\left(\log \frac{n}{k_{n} \pi}\right)^{\frac{1}{\Delta}} \int_{\left(\frac{k_{n} \pi}{n}\right)^{1 / \Delta}}^{\delta} t^{-\beta-1} d t \\
& \left.=\left[\left(\frac{1}{k_{n}}\right)^{\beta / \Delta} \cdot n^{6\left(\Lambda^{1}-1\right.}\right) \cdot O\left(\log \frac{n}{k_{n} \pi}\right)^{1 / \Delta}\right]
\end{aligned}
$$

$$
=o(1)
$$

as in $R_{2,1}$. Therefore $R_{2}=o(1)$.
3. Proof of the Theorem.

We have
(3.1) $n B_{n}(x)=\frac{n}{\pi} \int_{0}^{\pi}\{f(x+t)-f(x-t)\} \sin n t d t$

$$
=-\frac{1}{\pi} \int_{0}^{\pi}\{f(x+t)-f(x-t)\} \frac{d}{d t} \cos n t d t
$$

If follows that

$$
\bar{T}_{n}^{\alpha}(x)=-\frac{1}{\pi} \int_{0}^{\pi}\{f(x+t)-f(x-t)\} \frac{d}{d t} g_{n}^{\alpha}(t) d t
$$

and hence that

$$
\begin{aligned}
\bar{S}_{2 n}^{\alpha}(x)-\overline{S_{n}^{\alpha}}(x) & =\sum_{\nu=n+1}^{2 n} \frac{1}{\nu} \bar{T}_{\nu}^{\alpha}(x) \\
& =-\frac{1}{\pi} \int_{0}^{\pi}\{f(x+t)-f(x-t)\} \frac{d}{d t} h_{n}^{\alpha}(x) d t
\end{aligned}
$$

Let $\quad \Omega_{n}=-\frac{1}{\pi} \int_{0}^{\pi} \frac{d}{d t} h_{n}^{\alpha}(t) d t$.
Then

$$
\begin{align*}
& \pi\left[\overline{S_{2 n}^{\alpha}}(x)-\overline{S_{n}^{\alpha}}(x)-\Omega_{n} D(x)\right] \\
& \quad=-\left[\int_{0}^{\left(\frac{i_{n} \pi}{n}\right)^{1 / \Delta}}+\int_{\left(\frac{k_{n} \pi}{n}\right)^{1 / \Delta}}^{\delta}+\int_{\delta}^{\pi}\right] \psi(t) \frac{d}{d t} h_{n}^{\alpha}(t) d t \tag{3.2}\\
& \quad=I_{1}+I_{2}+I_{3} \text { say. }
\end{align*}
$$

Now

$$
\left.I_{1}=-\left[\psi(t) \frac{d}{d t} h_{n}^{\alpha}(t)\right]_{0}^{\left(r_{n} \pi\right.}\right)^{1 / \Delta}+\int_{0}^{\left(\frac{c_{n} \pi}{n}\right)^{1 / \Delta}} \psi(t) \frac{d^{2}}{d t^{2}} h_{n}^{\alpha}(t) d t
$$

Suppose $\beta=\min (\alpha, 2)$ and $\beta^{\prime}=\min (\alpha, 3)$.
Then

$$
I_{1}=O(n)^{-\beta}\left(\frac{k_{n}+1}{n}\right)^{\frac{-\beta-1}{\Delta}+1}+O(n)^{1-\beta^{\prime}} \int_{0}^{\left(\frac{v_{n} \pi}{n}\right)^{1 / \Delta}} o(t)^{\Delta} t^{-\beta^{\prime}-1} d t
$$

$$
\begin{align*}
& =O\left\{\left(\frac{1}{k_{n}}\right)^{\frac{\beta}{\Delta}} n^{\frac{\beta}{\Delta}(1-\Delta)}\left(\frac{k_{n}}{n}\right)^{\frac{\Delta-1}{\Delta}}+O(n)^{1-\beta^{\prime}} \sup _{t \leqq\left(\frac{n_{n} n^{1}}{n}\right)^{1 / \Delta}}\left(\frac{k_{n} \pi}{n}\right)^{-\frac{\beta^{\prime}}{\Delta}+1}\right. \tag{3.3}\\
& =o(1)+\sup _{t \leqq\left(\frac{k_{n} n^{n}}{n}\right)^{1 / \Delta}} O\left[n^{\beta^{\prime}\left(\frac{1}{\Delta}-1\right.}\left(\frac{1}{k_{n}}\right)^{\frac{\beta}{\Delta}}\right] \cdot k_{n} \\
& =o(1) .
\end{align*}
$$

Also
(3.4) $\quad I_{2}=-\int_{\left(\frac{x_{n} n}{n}\right)^{1 / \Delta}}^{\delta} \psi(t) \frac{d}{d t} h_{n}^{\alpha}(t) d t$.

Changing the variable to $\left(t+\frac{\pi}{n}\right)$ we get
(3.5) $\quad I_{2}=-\int_{\left(\frac{k_{n} n}{n}\right)^{1 / \Delta}}^{\delta} \psi\left(t+\frac{\pi}{n}\right) \frac{d}{d t} h_{n}^{\alpha}\left(t+\frac{\pi}{n}\right) d t$

$$
=+\int_{\left(\frac{i_{n} \pi}{n}\right)^{1 / \Delta}}^{\delta} \psi\left(t+\frac{\pi}{n}\right) \frac{d}{d t} h_{n}^{\alpha}(t) d t
$$

From (3.4) and (3.5) we get

$$
I_{2}=\frac{1}{2} \int_{\left(\frac{k_{n} \pi}{n}\right)^{1 / \Delta}}^{\delta}\left\{\psi\left(t+\frac{\pi}{n}\right)-\psi(t)\right\} \frac{d}{d t} h_{n}^{\alpha}(t) d t .
$$

Hence
(3.6) $\quad I_{2} \leqq \frac{1}{2} \int_{\left(\frac{n_{n} \pi}{n}\right)^{1 / \Delta}}^{\delta}\left|\psi\left(t+\frac{\pi}{n}\right)-\psi(t)\right| \frac{d}{d t} h_{n}^{\alpha}(t) d t$

$$
=o(1)
$$

And

$$
I_{3}=\int_{\delta}^{\pi} \psi(t) \frac{d}{d t} h_{n}^{\alpha}(t) d t
$$

(3. 7) $\left|I_{3}\right| \leqq \int_{\delta}^{\pi}|\psi(t)|\left|\frac{d}{d t} h_{n}^{\alpha}(t)\right| d t$

$$
\begin{aligned}
& \leqq O(n)^{-\beta} \int_{\delta}^{\pi} \frac{|\psi(t)|}{t^{1+\beta}} d t \leqq O(n)^{-3} \cdot M \\
& =o(1)
\end{aligned}
$$

From (3.2), (3.5), (3.6) and (3.7) we get $I=o(1)$ i. e.

$$
\lim _{n \rightarrow \infty}\left[\bar{S}_{\star n}^{\alpha}(x)-\bar{S}_{n}^{\alpha}(x)-\Omega_{n} D(x)\right]=o(1)
$$

Now
where

$$
\begin{aligned}
\Omega_{n} & =-\frac{1}{\pi}\left[h_{n}^{\alpha}(\pi)-h_{n}^{\alpha}(0)\right] \\
& =-\frac{1}{\pi} \sum_{\nu=n+1}^{2 n} \frac{1}{\nu A_{\nu}^{\alpha}} \sum_{\mu=1}^{\nu} A_{\nu-\mu}^{\alpha-1}\left\{(-1)^{\mu}-1\right\},
\end{aligned}
$$

$$
A_{n}^{\alpha}=\frac{\Gamma(n+1) \Gamma(\alpha+1)}{\Gamma(n+\alpha+1)}
$$

Since the sequence $(-1)^{n}-1$ converges (C, α) to -1 as $n \rightarrow \infty$ for every $\alpha>0$, it follows that

$$
\frac{1}{A_{\nu}^{\alpha}} \sum_{\mu=1}^{\nu} A_{\nu-\mu}^{\alpha-1}\left\{(-1)^{\mu}-1\right\}=-1+\eta_{\nu}
$$

Where $\eta_{\nu} \rightarrow 0$ as $\nu \rightarrow \infty$ and hence that

$$
\Omega_{n}=-\frac{1}{\pi} \sum_{\nu=n+1}^{2 n} \frac{-1+\eta_{\nu}}{2}=-\frac{1}{\pi} \log 2 \quad \text { as } n \rightarrow \infty .
$$

Therefore

$$
\lim _{n \rightarrow \infty}\left[\bar{S}_{2 n}^{\alpha}(x)-\bar{S}_{n}^{\alpha}(x)\right]=\frac{1}{\pi} \log 2 \cdot D(x)
$$

which completes the proof.
4. Theorem 1 may further be generalized to Theorem 2, for which we require the following Lemma.

Lemma 7. If

$$
h_{m, n}^{\alpha}(t)=\sum_{\nu=n+1}^{2 m} \frac{1}{\nu} g_{\nu}^{\alpha}(t),
$$

then for $\alpha>0,0<t<\pi$, and $k=1,2,3, \ldots \ldots$. we have

$$
\left|\left(\frac{d}{d t}\right)^{k} h_{n, n}^{\alpha}(t)\right| \begin{cases}\leqq A_{n}^{k} & (k \geqq 0) \\ \leqq A_{n}^{-2} t^{-k-2} & (0<k<\alpha-1) \\ \leqq A_{n}^{k-\alpha-1} t^{-\alpha-1} & (k>\alpha-1) .\end{cases}
$$

PROOF. From Lemma 3, we have

$$
(\alpha+1) \frac{1}{n} g_{n}^{\alpha}(t)=(\alpha+1) \frac{1}{n} g_{n}^{\alpha+1}(t)+g_{n}^{\alpha+1}(t)-g_{n-1}^{\alpha}(t) .
$$

Hence

$$
\begin{aligned}
\left.(\alpha+1)\left|\left(\frac{d}{d t}\right)^{k} h_{m, n}^{\alpha}(t)\right| \leqq(\alpha+1) \right\rvert\, & \left.\sum_{\nu=n+1}^{m} \frac{1}{\nu}\left(\frac{d}{d t}\right)^{k} g_{v}^{\alpha+1}(t) \right\rvert\, \\
& +\left|\left(\frac{d}{d t}\right)^{k} g_{m, n}^{\alpha}(t)\right|+\left|\left(\frac{d}{d t}\right)^{k} g_{n}^{\alpha}(t)\right|
\end{aligned}
$$

and the result follows from Lemma 2.
The analogues of Lemmas 4,5 and 6 can be proved similarly.

Proof of Theorem 2. As in Theorem 1

$$
\bar{T}_{n}^{\alpha}(x)=-\frac{1}{\pi} \int_{0}^{\pi}\{f(x+t)-f(x-t)\} \frac{d}{d t} g_{n}^{\alpha}(t) d t .
$$

Therefore

$$
\begin{aligned}
\bar{S}_{m}^{\alpha}(x)-\bar{S}_{n}^{\alpha}(x) & =\sum_{\nu=n+}^{m} \frac{\bar{T}_{\nu}^{\alpha+1}(x)}{\nu} \\
& =-\frac{1}{\pi} \int_{0}^{\pi}\{f(x+t)-f(x-t)\} \frac{d}{d t} h_{m, n}^{\alpha}(t) d t .
\end{aligned}
$$

Let

$$
\Omega_{m, n}=-\frac{1}{\pi} \int_{0}^{\pi} \frac{d}{d t} h_{m, n}^{\alpha}(t) d t .
$$

Then

$$
\begin{aligned}
& \pi\left[\overline{S_{m}^{\alpha}}(x)-\bar{S}_{n}(x)-\Omega_{m, n} D(x)\right] \\
& \quad=\int_{0}^{\pi} \psi(t) \frac{d}{d t} h_{m, n}^{\alpha}(t) d t \\
& \quad=I^{\prime} \text { say. }
\end{aligned}
$$

I^{\prime} can be shown to be $o(1)$ on similar lines as in Theorem 1, i. e.

$$
\lim _{n \rightarrow \infty}\left[\overline{S_{m}^{\alpha}}(x)-\bar{S}_{n}^{\alpha}(z)-\Omega_{m, n} D(x)\right]=0 .
$$

Now

$$
\begin{aligned}
\Omega_{m, n} & =-\frac{1}{\pi}\left[h_{m, n}^{\alpha}(\pi)-h_{m, n}^{\alpha}(0)\right] \\
& =-\frac{1}{\pi} \sum_{\nu=n+1}^{m}\left[\frac{1}{\nu A_{\nu}^{\alpha}} \sum_{\mu=1}^{\nu} A_{\nu-\mu}^{\alpha}\left\{(-1)^{\mu}-1\right\}\right] .
\end{aligned}
$$

And the expression within the squared bracket has been shown to be $\frac{-1+\eta_{\nu}}{2}$

in Theorem 1.

So $\quad \boldsymbol{\Omega}_{m, n}=-\frac{1}{\pi} \sum_{\nu=n+1}^{m} \frac{-1+\eta_{\nu}}{n}$

$$
=-\frac{1}{\pi} \log \left(\frac{m}{n}\right)+o(1) \quad \text { as } n \rightarrow \infty .
$$

Consequently $\quad \lim _{u \rightarrow \infty}\left[\overline{S_{n}^{\alpha}}(x)-\bar{S}_{n}^{\alpha}(x)\right]=\frac{1}{\pi} \log d \cdot D(x)$
which proves the theorem.
I am much indebted to Prof. M. L. Misra for his kind advice and encouragement in the preparation of this paper.

REFERENCES

[1] H C. Chow, On a theorem of O. Szasz. Journ. of London Math. Soc. 16(1941), 23-27.
[2] O.Szasz, The jump of a function determined by its Fourier coefficients. Duke Math. Journ. 4 (1938), 401-407.
[3] S. Pollard, On the criteria for the convergence of Fourier Series. Journ. of London Math. Soc 2, (1927), 255-267.
[4] S. Izumi, Determination of the jump of a function by its Fourier coefficients. Journ. of Math. Soc. of Japan, 1(1950), 226-231.
[5] G.Sunouchi, Convergence criteria for Fourier Series. Tôhoku Math. Journ. 4(1952), 187-193.

University of SAUGAR, SAUGOR, M.P. (INDIA)

