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Introduction

The topology of a Euclidean space is usually defined by the concept
of a metric. Its usual metric is defined by various concepts : addition, multipli-
cation, square root and order of real numbers.

On the other hand, the Euclidean space can be considered as a lattice : the
cardinal product of real chains (linearly ordered set), which have the order in
a natural sense. It is natural to inquire whether a topology, which is homeo-
morphic to the usual metric topology, is dzfinable in terms of the order
relation (or lattice operation) alone. More generally, we can ask whether
it is possible or not to introduce a class of topologies on a lattice L which
are compatible, in some sense, with its order.

'G. Birkhoff has first discussed the topologies on lattices which are defined
by an ordzr-coavergence. Thereafter, various topologies on lattices were intro-
duced by several authors and their properties were discussed by many writers :
O. Frink [8], [ 9] B.C. Rennie [22] E.S. Northam [19], E.S. Wolk [24] A.].
Ward [23] T. Naito [15], [16], [17], [18] E.E. Floyd [10].

In ([5] p. 242), G. Birkhoff has proved that the operations of groups
are continuous in the sense of order-convergence. E.E. Floyd has shown a
counter example that the group operations are not continuous with respect to
the order-topology. This example shows that there exists no compatible
topology, in his sense, such that the group operations are continuous with
respect to the topology. (See [10].)

In this paper, I will define several topologies such that the above condition
holds : group-operations are continuous. Of course, these topologies are not
compatible, in Floyd’s sense, with the order of a lattice, but it seems to me
that those topologies are rather interesting and useful. It is the purpose of
this paper to give topologies satisfying the following conditions and applications
of these topologies.

1. In the Euclidean space, the topology, which is defined by the usual
metric, is homeomorphic to our topologies.

2. The lattice operations and the group operations are coniinuous with
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respect to our topologies.

I gave one of topologies satisfying these conditions in a lecture at the
1956 autumn meeting in Kyoto, of the Math. Soc. of Japan; in this paper
this topology is called a CP-ideal topology.

In Chapter I, we shall present the definitions of P-, CP-, MP- ideal
topology and prove the continuity of lattice operations. This chapter also
contains the study of conditions of topologies in lattices. The main results of
this chapter are described in Theorems 1 ~5. As an application of these
topologies, we shall establish here a representation space, smaller than Birk-
hoff’s, for distributive lattice making essential use of Birkhoff’s proof of his
representation.

In Chapter II, we concern ourselves with properties of our topologies on
conditionally complete lattices. We shall show here that join-, meet-irreducible
elements and CP-ideal topologies have very close connections. These results
are of importance to our later investigation. In a CP-ideal topology, any
bounded closed set is bicompact. As an application of this theorem, I shall
prove that the unit sphere of a Banach space is bicompact.

In Chapter III, we shall show that the group operations of any commuta-
tive l-group are continuous with respect to the CP-ideal topology.

Moreover, we shall concern ourselves with the structure of /-groups using
CP- and MP-ideal topologies.

The main results of this chapter are several representations which are
described in Theorems 12, 13: any commutative [-group is isomorphic to a
sublattice of the cardinal product of chains. [12], [13], [14].

Moreover, in Chapter IV, we shall show that under some conditions any
l-group is isomorphic to a perfect sublattice of the cardinal product of chains.

NOTATIONS. We shall use L to denote a lattice and L', L”,...... to
denote sublattices of L. I, I, Ig...... will be used to denote ideals or dual
ideals of a lattice. We shall use lower case Latin letters to denote elements
of a lattice and Latin capitals to denote subsets of a lattice. However families
of sets will usually be denoted by German capitals. We shall denote the join
and the meet of two elements z and y of a lattice by z Uy and z Ny
respectively, the join and the meet of all elements of a set M by sup M and
inf M. The set of all elements such that @ < x < b, will be denoted by
[a, &]. The expressions

AV Band V X,

L 77:N

will denote the set union of two sets A and B, or of all sets of family {X,|
a € A}. Similarly we define
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The complement of a set A will be denoted by A° and the empty set by ¢.
Any open set will be denoted by U and any closed set by F.

DEFINITIONS. We shall use the terminologies of G. Birkhoff’s “Lattice
theory” [5]. A chain M of a lattice is a subset such that r€e M, ye M
imply x £y. A lattice L is infinite-distributive if and only if

a N ({;]b,,) =U((aNb,) and a U (Qb,) = l;](a U b,).

A subset M of a lattice is bounded if and only if there exist elements @ and
b, such that a < m < b for ali m € M. A lattice L is complete if and only
if any subset of L has the least upper bound and the greatest lower bound.
A lattice L is said to be conditionally complete if any bounded subset of L
has the least upper bound and the greatest lower bound. A sublattice L' of a
lattice L is called to be a perfect sublattice if and only if £ € L',y € L’
imply [z,y]& L'

In this paper, topologies on a set E are defined by a subbase of closed
sets. Thus with any family § of subsets of a set E containing E and the
empty set ¢, a subset F of E is said to be closed if and only if F can be
obtained as an intersection of the sets which are unions of a finite number
of elements belonging to . The topology is a family of all closed sets. & is
called to be a sub-base of the topology. A closed set F is represented by

ne
F=A ﬁ}/l Ig where I,s € & and n, is an integer which corresponds to
w B-

It is clear that

1) the intersection of any number of closed sets is closed,

2) the union of any finite number of closed sets is closed,

3) E and ¢ are closed.

I have received kind advices from Professor T. Nakayama at Nagoya
University and Professor N. Funayama at Yamagata University to whom I
wish to express here my hearty thanks.

Chapter I Introduction of Topologies on Lattices

In this chapter the ideas of P-, CP-, MP-ideal topology are introduced on
most general lattices. We begin with some notions and definitions concern-
ing ideals.

1. Definitions. Let L be a lattice. A subset I of a lattice L is called to
be an ideal if and only if the following conditions hold :
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i) =<y andy € I imply z € I,
i) r€landy <€l imply x Uy € L

An ideal I is said to be a prime ideal if and only if
iii) a Ny€ I implissx€ Tory € L

DEFINITION 1. A prime ideal I is called to be a CP-ideal if and only
if the following condition holds:
iv) if {z,|a € A} & I and there exists sup x,, then sup z, € IL

(' 774Y €A

The family of all CP-ideals is said to be a CP-family.
For studies of properties of every sub-basis of closed sets, we now intro-
duce the concept of a P-ideal.

DEFINITION 2. A sub-family B° of the family of all prime ideals, is
called to be a P-family if and only if the following condition holds :

iv), Le®,¢ecP.

Each element of a P-family is said to be a P-ideal.

Dually, we shall define the concepts of a dual prime ideal, a dual P-
ideal, a dual CP-ideal, a dual P-family and a dual CP-family. We shall
denote by 8 the union of the P-family and the dual P-family. Analogously,
we shall denote by C the union of the CP-family and the dual CP-family.

Let & be the family of all prime ideals containing a fixed element a of
L. And I, < I,, where I,, I, are elements of §, means that I, includes ,, as a
set. Suppose now that a family {I,} is a chain of & Then the intersection
A I, is an element of . Hence, by Zorn’s Lemma there exists a minimal

prime ideal containing @, which is written I(a). Analogously, there exists a
minimal CP-ideal containing a. Similarly for @ € I € § there exists a minimal
prime ideal which contains @ and is contained in the prime ideal I. In a
similar way there are a minimal dual prime ideal and a minimal dual CP-ideal
having the properties above.

DEFINITION 3. For any element @ of L, a minimal prime ideal containing
a is called to be an MP-ideal. The family of all MP-ideals and L, ¢ is
said to be an MP-family. And dually, we define a dual MP-ideals and a dual
MP-family. The union of the MP-family and the dual MP-family is denoted
by M.

As an immediate consequence of the definitions above, the family M
is a family .

DEFINITION 4. The P-ideal topology of a lattice L is that which results
from taking P as a subbasis for the closed sets of the space L. Analogously,
we shall define CP- and MP-ideal topology.

NOTE: These topologies are not intrinsic in the sense that are introduced
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by the authors, G.Birkhoff, O. Frink, B.C. Rennie, E.S. Northam, E.E. Floyd,

E.S. Wolk etc.
A so-called intrinsic (or compatible with <) topology is that which satisfies

some of the following conditions :
1) whenever {x,} is a sequence in L with x;, <z, < ...... and U z;
[3

=z,0r X, = xy = ...and () x, = x, then the sequence x; converges to z,
i
1) whenever (x4} is an up-directed subset of L and y = sup x, or {z,}
o
is a down-directed subset of L and y = inf x., then x. converges to y,
[:7

2) any interval {z|a = x = b} is a closed set.

Qur topologies, which are introduced above, do not always satisfy the conditions
above. This fact is shown by the following example.

EXAMPLE 1. Let R? be the Cartesian plane, in which (z, y) < (z, ) if
and only if £ <z  and y =<y". Then it is well known that R? is a conditio-
nally complete infinitely distributive lattice. Let L, be the sublattice of R?
such that {(x, y)|0 <z <1, 0 <y < 1}. Let us denote by L, the sublattice
consisting of (0, 0), (1, 1) and the points in {(z,»)|0<x<1, 0 <y <1}
We denote by L, the sublattice consisting of (1,1) and the points in {(x,y)|
0=<x<1,0=<y<1}.And let L, be the sublattice of R? which is the union
of {(x,y)|0<2x<1, 0<y=1}, (0, 0) and (1, 1). Sublattices L,, L,, Ly and
L, are expressed as Fig. 1, Fig. 2, Fig. 3 and Fig. 4.

Figl .Figz Fig3. Figll.

In Figure 1, an CP-ideal and an MP-ideal are sets of the forms {(z,y)|x
=ciN L, and {(z,9)|ly = ¢} A L,

In Figure 2, every set of the form {(z,y)|x =< c} A L, or {(z,y)|y < ¢}
N L, is an MP-ideal but not a CP-ideal. In this lattice CP-ideals are only

two sets L and ¢. We can easily prove that the sequence a, = (—1—, 1— —1—)
n n

converges to all elements of L, with respect to the interval topology and the
CP-ideal topology on L,. In Figure 3, every set of the form {(z,y)|z < ¢} A
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L, or {(z,y)|y =<c} A L; is an MP-ideal but not a CP-ideal, but each set of
the form {(x, y)|x = ¢} A L; or {(x,y)ly = ¢} A L; is a dual MP- and a dual
CP-ideal.

In Figure 4, every set of the form {(x,y)|x < c| A L, or {(z,y)|y = c}
A L, is a CP-, MP-ideal, or a dual CP-, MP-ideal. {(z,y)|y <c} N L,is an
MP-ideal but not a CP-ideal. {(x,y)|x =c} N L, is a dual MP-ideal but not
a dual CP-ideal.

1) of the conditions above is not satisfied in L,, L;, L, with its MP-ideal

topology. In fact, { (xy)|y < %} N L; is an MP-ideal and a sequence (I—L,
n

%) has (1, 1) as its least upper bound.

2) of the conditions above is not satisfied in L, with its CP-ideal topo-
logy, because CB consists only of L, and ¢. (Also ses [ A, a] of Ex. 2.)
Sublattices L, ~ L, of R* are important as examples to illustrate topologies

of lattices.

2. Properties of P-Ideal Topologies. In this ssction we attempt to
make a contribution to the properties of P-ideal topologies. We begin with
ths proof of the coatinuity of lattice operations with respect to the P-ideal
topology. Since if a proposition in the P-idzal topology is true, then the
proposition in CP- or MP-ideal topology is always true, we shall not especially
infer the proposition to CP- o1 MP-ideal topology.

THEOREM 1. Let L be a lattice. The lattice operations of L are conti-
nuous in its P-ideal topology.

PROOF. Let U (a U b) bs any neighborhood of @ U . Then U (a U 6)°
can be obtained as an intersection of the sets which are unions of a finite
number of elements belonging to L

Ula U b) = vﬂK Iup, Ls €%

Hence, there exists a such that @ U & € A I‘s, which is denoted by a.
B

a) If I, is a prime ideal then by the definition of prime ideal either
a€l’ys or b € I’y 5 holds.
We now put Ug(a) = Ins, Ug(b) =L for a1, and

Ug(a) =L, Uy (b) = L ,sfor a ¢t Iys. (then b € ILy).

b) If I is a dual prime ideal then we have a € I, s and b € I .
We put Up (a) = Ug(d) = I,s. In both cases of a) and b), we have Ujg (a)
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U, () = Iy for all B.
Let U (@) and U (b) be ,{f\j Us(a) and ﬂK: Ug (b), then both U (@) and

U (b) are neighborhoods of a and b, respectively. We can easily see the fact
that U (a) U U (b) is contained in U (a U b). Thus, the lattice operation U is
continuous with respect to its P-ideal topology. By duality, the operation [
is continuous.

NOTE. (1) z, = £ (P-ideal topology) implies , N a—>x N a (P-ideal
topology), but x, 1 x does not imply z, N atzx N a.

(2) x4t x implies x, — x (CP-ideal topology) but not always z,— z
(MP-ideal topology).

Any lattice is a T',-space with respect to its interval topology, its order
topology and its ideal topology, but not always a Ty-aspce in its P-ideal topo-
logy. We shall now give an example which is not a T,-space with respect to
its P-ideal topology.

EXAMPLE 2. Both Fig. 5a and 55 indicated below are not T')-spaces with
respect to its P-ideal topology. In fact, since prime ideals of Fig.5a are L, ¢,
{N\,cl and {a,b, A} and dual prime ideals L,¢, {c, V] and {a, b, V] we

have @ = 6. In Fig.5b, since prime ideals are L and ¢, we obtain N\ = \V/ =

a=b=c=L.

\Y
a
ca ¢
1
A A
Fig 5a Fig5b

3. Elementary Properties of Topological Spaces. To simplify the
staternents of theorems, we shall always assume, otherwise specifically stated,
that each topology of lattices is a P-ideal topology.

LEMMA 1. A lattice L is a Ty-space if and only if for given any two
elements a < b there exists either an element of sub-basis which contains a
but not b, or an element of sub-basis which contains b but not a.
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PROOF. We shal lnow prove the sufficiency of the condition. For each
pair of distinct elements p and g, we have p U ¢ & p or p U g#+=q. We may
assume that p U g ==p, then put p U g =54 and p = a. From the condition
there exists an element I of sub-basis which contains @ but not b, not or &
but not a. If I contains & but not a, then I is a dual prime ideal. By p U ¢
= b, we have I > q. If I contains a but not b, then I is a prime ideal. By
p U q=0>5, we have I P q.

Therefore L is a Ty-space.

LEMMA 2. A lattice L is a T,-space if and only if given for any two
elements a < b there exist an element of the sub-basis which contains a
but not b, and an element of the sub-basis which contains b but not a.

LEMMA 3. A lattice L is a T,-space if and only if for a > b the space
L is covered by a finite number of elements of B which contain at most
one of a and b.

PROOF. We shall only prove the sufficiency. Let p, ¢ be arbitrary distinct
elements of L. We put p U g =a and p N g = b, then there is a finite

n
number of elements of § such that \V/ I, = L, where I, contains at most one
i=1

of @ and b. Since I, is an ideal or a dual ideal, I, contains at most one
element of p and q. The union of all I, which do not contain p is expressed
by F,. And the union of all I, which coatain p is denoted by F,. Then we
have Fi 2 p, F; > q and F; A\ F; = ¢.

LEMMA 4. Let S be a T,-space. The space S is a Ts-space if and only
if each pair of an element I € B and p & I, has neighborhoods U (I) and
U (p) such that U ) N\ U (p) = ¢.

4. Representations and P-Ideal Topologies.

THEOREM 2. If a lattice L is a Tyspace with respect to its P-ideal
topology, then L is isomorphic to a sublattice of a Boolean lattice 2° where
E is the family of dual prime ideals of L. Therefore L is a disiributive
lattice.

PROOF. Let E(x) be the set of all dual prime ideals which contain z.
By Lemma 1 we have x ==y if and only if E(x) 3= E(y). By the definition of
a dual prime ideal we get E(x Uy)=E(@)V E(). I€c E(zNy)eI>x
NyeI>x, I>yele E(x) N\ E(y).

Then we have E(xz N y) = E(z) N\ E(y).

Thus the theorem follows.

The converse of the theorem with respect 1o its CP-ideal topology is not
true in general. To illustrate this fact, we shall give an example:
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EXAMPLE 3. L, of Ex. 1 is a distributive lattice but not a T,space
with respect to its CP-ideal topology. But this lattice is a T,-space with respect
to its MP-ideal topology.

NOTE. Let a be the closure of @ € L with respsct to a P-ideal topology.
Put L = {a|la € L}. We shall now define the lattice operations on L such that
aUb=aUband aNb=a b Then a correspondence a = a of L to L
is a lattice homomorphism. Since L is a Ty-space ([21] Th. 6), it is distributive.
This fact makes it possible for many purposes to limit the consideration to
Ty-spaces and distributive lattices.

THEOREM 2. In a lattice L with its MP-ideal topology, the following
three conditions are equivalent;

1) L is a distributive lattice,

2) L is a Tyspace,

3) L is a T,-space.

PROOF. By Theorem 2 we need only to prove that if L is distributive
then L is a T,-space in its MP-ideal topology. Suppose that L is a distri-
butive lattice and @ < b. Then there exists a maximal prime ideal, which
does not contain b, of [a, b], which is denoted by N (Zorn’s Lemma).

We shall now put = {z|x N b <n for some n of N}. Then I is a
prime ideal such that 76 b and I > a. In fact, if (xNy) N b =<n for n€ N,
then n={(xNy)NblUn={{zNb&Un N {(yNbd)Un}l Since N is a
prime ideal of [a,b], we have either x N6 = (xNd)UneENoryNb=
(y Nb)Un &€ N: x € or y € I. The other condition is clear. This proves the
fact that L is a T,-space with respect to its MP-ideal topology.

If in the well known Birkhoff’s representation, we take the dual MP-
family instead of all dual prime ideals, then we obtain a representation smaller

than G. Birkhoff’s.

COROLLARY. Any distributive lattice L is isomorphic to a sublattice of
the lattice of all sub-families of a dual MP-family.

PROOF. When, in the proof of Theorem 2, we take the dual AMP-family
instead of all dual prime ideals, we have by the proof of Theorem 2  that

x ==y implies E(x) == E(y).
And hence the corollary is clear.

THEOREM 3. If a lattice L is a T,-space with respect to its CP-ideal
topology, then L is an infinitely distributive lattice.

PROOF. We shall now prove that if sup x. exists, then there is sup (zs
@ @
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N a), and a Nsup xs = sup (a N z,). To prove this, let @ N sup xs = b. Then

b is an upper bound of a N z, for all a. According to Lemma 2, for & > ¢
there exists a CP-ideal I such that ¢ € I and & & I Since I is a CP-ideal
there is a, such that z,, & I In fact, if z, € I for all a, then sup zs = b
€ I which is a contradiction. We have x4, N @ € I, then z,, Na % c. There-
fore & is the least upper bound of a N z, for all . Thus we have a N sup

x, =sup (a N z,)
Dually, we can prove that @ U inf x, = inf (@ U 24).

In the theorem above, we can not take 7T, instead of 7,. This can be

illustrated by the following example.
EXAMPLE 4. L; of Ex. 1 is a T,-space with respect to its CP-ideal
topology and a distributive but not an infinitely distributive lattice. In

fact, in Fig. 3 we shall put «, = <L, 1-— i) and a =<%, —§—>.Then

2 n
— (1 2
we have @ ) sup x, = a and sup (z, N a) = <7, »3—)

THEOREM 4. If a lattice L is a T,-space with respect to its CP-ideal
topology, then L is a Ty space.

PROOF. Suppose that L is a T,-space. By Lemma 4, for any pair I € CB
and a & I, we need only to prove that there exist neighborhoods U (a) and
U (I) such that U (@) AU () = ¢. We assume that I is a CP-ideal. Since a
is an upper bound of {z|z < a} A I, there exists an upper bound & of {x|
z =< a} N I which is smaller than a. In fact, otherwise @ = sup {z|z =< a} N\
I, which contradicts the hypothesis of a. By Lemma 3, for a > & there exists
a finite system {I;}, each element of which contains at most one element of a,

b, and L = \/ I,. The union of all I;, each of which does not contain a, is
i=1

denoted by F,. The union of all I, each of which contains a, is written F,.
Then F{ and F; are neighborhoods of a and I, respectively. And Fi N\ F; =
¢. To prove this we need only to show that F; 2 1. Suppose that x € F, N\ L
Then z N @ € I, hence z N a € {z|x = a} A I: since & is an upper bound of
zlx<a}l NI, x N a=b. From x € F, there exists k£ such that z € I,. By
I, > a we have x l a € I,. Since I, is a dual ideal, we have & € I, which
is a contradiction. Therefore we have F; 2 L
In a similar way we can prove the case that I is a dual CP-ideal.

5. Topological Products and Cardinal Products. We shall first define

the concepts of topological products and cardinal products. Suppose that for
each member a of an index set A there is given a topological space L,. The
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topological product of L., written X {L,|a € A}, is defined as the set of all
functions @ on A such that a(a) € L. for all & € A, and having for each
closed set C, of a sub-basis of each L,, the family of all sets of all functions
a with a(a) € C,, as a sub-basis of closad sets.

The cardinal product of lattices L., written L = II L., is defined as a

lattice of all functions a such that a(a) €L, for all a € A, where a <5
means that a (@) < & (a), in L,, for all « € A, Then, we can prove the
following theorem.

THEOREM 5. A subset I of I L, =L is a CP-ideal if and only if I is

a€N

represented by lal|ala,) € I.,} for some a, of A, where 1,, is a CP-ideal
of L,,. And the dual statement is true.

PROOF. Let I be a CP-ideal of ]I L. and I,, the projection of I into L.,

e

We first show that I, is a CP-ideal of L.,. If a,, € La, and b,, =< @a, in Lg,
then by the definition of I, there exists an element a of L such that a(a,) = aa,.
Let & be the element of L such that & (a,) = b,, and &(a)= a(a) for a == a,.
Since a = b, we have b € I therefore b,, = b(a,) € I,,. Next, let us suppose
that M,, & I, and sup M., exists. Take one element a belonging to I. For
a,, € M, there exists an element & € I such that b (ay) = a.,. Then we have
alU b € L Let cs, be an element of L such that cs, (ay) = aa, and cq, (@) =
a (a) for a == a,, then we have that

Cow =a U b &I implies ¢4y € L

Therefore if aw, € Ma, then ¢,, € I. We shall put sup ¢,, = d, then d(a,)

aaosﬁl @0

= sup M., and d(a) = ala) for all @ == a,. By d € I, we have sup M,, € I,,.

Now we shall prove that if as, ( b4, € I,, then either a., € I, or b,
€ I,,. Then there exists an element ¢ of I such that ¢(ay) = aw, N ba,. Let
a bz an element of L such that a(ay) = @, and ala) = c(a) for a == a,, and
b an element of L such that &(a,) = b,, and b (a) = c(a), for a &= a,. Then
we have a N b = ¢ € I, and then either a € I or b € I. Thus we have a,,
€ I,, or ba, € I, These show that I,, is a CP-ideal of L.,.

Now we shall see that I is [I Z.. To prove this we need only to show 7

@eA

DI L. Let us suppose that @ € I I.. and let &,, be an element of I such
— aed

@eA
that b4, (ay) = ala,). Since a N by, € I and a= U (a N b.,) we obtain
ageEA
a €l
We shall prove that the set {a|L. 3= I,lhas at most one element. Let us
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suppose that L, == I, and Lz == Is. Then there are two elements a, € L, —
I, and by € Ly — I,. Let d be any element of I. Let a be the element such
that a(a) = a, and a(8) = d(8) for a == 3, and & the element such that &(8)
= bg and b (8) = d(8) for B+38. By a N b =d, we have a 1 & € I, hence a
€ I or b € I, which contradicts that a, ¢ I, and bg & I;. Then we have

I=1, X IT L. for some a, € A,

L ETY

where I, is a CP-ideal of L,,.

From the theorem above, we can easily prove the following corollaries.

COROLLARY 1. The topological product X{La.|a € A} of any collection
{Lsla € A} of lattices, each with a CP-ideal topology, is homeomorphic to

the cardinal product Il La, also topologized by its CP-ideal topology, of
e
these lattices.
PROOF. By Theorem 5 the basis of clqsed sets of X{L,|a € A} and that

of II L. are the same. Hence these spaces are homeomorphic.

aeA

COROLLARY 2. A Euclidean space R", is homeomorphic to the lattice
R" which is topologized by its CP-ideal topology.

PROOF. The set R, topologized by metric, is homeomorphic to the lattice
with its CP-ideal topology. Hence by Corollary 1 we obtain the proof of
Corollary 2.

COROLLARY 3. The weak topology of the set of all functions of any
abstract set X to a lattice, is homeomorphic to the CP-ideal topology of
the set considered as a lattice.

PROOF. In a similar way to Corollary 2, we can prove Corollary 3.

COROLLARY 4. If lattices La, each with its CP-ideal topology, satisfies
a condition ¢ then the cardinal product (E‘LM with its CP-ideal topology,
satisfies the condition ¢, where ¢ is one of Ty-space, bicompact, Ts-space.

PROOF. The proof of Corollary 4 follows from the well known theorems
of topological product space and the theorems above.

Chapter II Conditionally Complete Infinitely Distributive Lattices

In this chapter we shall only consider conditionally complete infinitely

distributive lattices.
The purpose of this chapter is to examine the close relationship between
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irreducible elements and 7'-spaces, and to prove the compactness (bicompactness)
of the lattice above. Throughout this chapter, unless otherwise stated, the word
topology is used to refer to a CP-ideal topology.

6. Irreducible Elements and Topologies. Let [a, 5] be an interval of
a lattice L. An element ¢ of [a,b] is said to be a join-irreducible element in
[a,b] if and only if c=2x Uy, x<€[a,b] and y € [a,b] imply 2=c or y=c.
In a similar way we define a meet-irreducible element.

LEMMA 1. If I is a CP-ideal, I> a, I5b, a < b, then there exists an
element ¢ of [a,b] such that I N\ [a,b] =[a,c], and c is a meet-irreducible
element in [a, b].

PROOF. Let I be a CP-ideal. Since L is conditionally complete, there is
sup I A [a,b], written ¢. Then we have [a,c] =1 A [a,b]. In fact, by the
definition of I we have ¢ € I and then [a,c]< 1 A [a,b]. By the definition
of ¢ we have [a,c]=21 N [a,b]. Thus [a,c] =1 N [a,b].

Next, we shall show that ¢ is a meet-irreducible element. Suppose that
xNy=c¢, x € [a,b] and y € [a,b]. Then, since I is a prime ideal we have
either x € Torye I: x € I N\[a,b] or y€ I N [a,b]. Hence we have x < ¢
or y < c¢. Thus we have x =c or y = c.

THEOREM 6. L is a Ty-space if and only if for every a < b there exists
a join-irreducible element in [a,b], different from a, or a meet-irreducible
element in [a,b), different from b.

PROOF. Suppose that L is a Ty-space. Then for any a < b there exists
an element I of the closed sub-basis which contains either @ but not b, or &
but not a. Suppose that @ € I and b & I, then I is clearly a CP-ideal. By
Lemma 1 we have [a,c] = I A [a, ], where ¢ is a meet-irreducible element in
[a,b]. In exactly the same way we can show that in the case of a<¢ I and
b € I there is a join-irreducible element in [a, b].

Conversely, suppose that for any a < b there exists a meet-irreducible
element ¢, different from &, in [a,b]. Then set {zxlx N & = c{, written I, is
a CP-ideal. In fact, if x, € I and sup x. exists, then

(sup x,) N & =sup(zs N b) = c.
Hence we have sup o € I If x N y € I then we have
c={aNyyNbdlUc={xNdUcN{(yNd)Uc}.

a<c=(xNbUc=<band a=(yN>&)Uc=b are clear. Since ¢ is a meet-
irreducible element in [a, b] then we have

c=(@NbdUcorc=(yNbd)Uc
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And hence we obtain x € I or y € I. Thus I is a CP-ideal such that a € I
and b & I

Analogously we can prove the fact that if a join-irreducible element exists,
then there exists a dual CP-ideal I such that a & I and & € I. Therefore, by
Lemma 1 of Chapter I, L is a Ty-space.

From the proof of the theorem above, we can conclude the theorem
below.

THEOREM 7. A lattice L is a T,-space with respect to its CP-ideal
topology if and only if for every a <b, [a, b] contains both a join-
irreducible element, different from a, in [a, b] and a meet-irreducible element
different from b, in [a, b].

THEOREM 8. A lattice L is a T,-space with respect to its CP-ideul
topology if and only if for a < b there exists a finite number of join-
irreducible elements ¢, different from a and meet-irreducible elements c;
different from b such that

[a,8] = (V [ 8D V (Y [a, ).

PROOF. We first show that the condition above is necessary. To prove
this, suppose that L is a T,-space. By § 2 Lemma 3, L is covered by a finite
number of elements of CP which contain at most one of @ and &, Then by
Lemma 1 we have the necessity of the condition above.

We shall next prove the sufficiency of the condition above. Let us suppose
that for a < b,

[a,] = (V [ 8D V (V [,
Now we put I, = {z|x Nb < ¢} and I,= {z|xUa = ¢/}. Then L:=(\k/ L)V
(Vv 1). In fact, if x € L then a <(x U a) N & <b. Hence there exists a

number % such that (zU a) N b € [a,c,] or (x U a) N b € [c, ] If (x U a)
Nbdeclac]then(xNd)UalUc=cr: xNb=c, hence z€ I. If (x U a)
N b € [c, b] then z € I,. Both I, and I, contain at most one of @ and b.
On the other hand it is easily shown that I, is a CP-ideal and 7, is a dual
CP-ideal. Hence by § 2 Lemma 3 L is a T,-space.

EXAMPLE 5. In L, of §1 Ex. 1 we put @ =(0,0) and & =(1,1). The set
of all meet-irreducible elements is {(x,y)|y = 1} and the set of all join-
irreducible elements is {(x,y)|x = 0}. Therefore the lattice L, is not a T,-
space. In fact, no vicinity of (1,0) is covered by a finite number of C.
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COROLLARY. If a lattice L of finite length is distributive then it is a
Ts-space with respect to its CP-ideal topology.

PROOF. Suppose that L is distributive, then L is an infinitely distributive
lattice. It is known that every distributive lattice of finite length has at most
a finite number of irreducible elements. (See G. Birkhoff [1] p. 139 Lemma 2)
For a < b, each element, which is covered by &, is a meet-irreducible element,
and each element, which covers a, is a join-irreducible element in [a, b]. Hence
by Theorem 8 L is a T,-space. By Theorem 4 L is a T’;-space.

COROLLARY. If a lattice L of finite length is distributive, then L is a
Ts-space with respect to its MP-ideal topology.

PROOF. In a lattice L of finite length, CP-ideal and MP-ideal are
equivalent. In fact, every ideal I is expressed by I = [0, a] for some a of L,
and prime ideal [0, a] is a CP-and MP-ideal.

7. Bicompactness. O. Frink proved in his paper [3] that complete lattices
are bicompact with respect to its “Interval topology”. I defined “Ideal topologies
of lattices” in a previous paper and proved that each bounded closed set of a
conditionally complete lattice is bicompact with respect to its “Ideal topology”.
But this proposition is not true for the other topologies which are defined by
many writers. This proposition is important on its application.

In this section we shall prove that the proposition above is true for CP-
ideal topologies. The proof of this proposition follows by essentially the same
argument that was given for [8],[18] if we notice that I A [a, &] is reprzsented

as [d, c].

THEOREM 9. Let L be a conditionally complete lattice. If a closed
subset M of L with a CP-ideal topology is bounded, then M is bicompact.
In particular, each complete lattice is bicompact in its CP-ideal topology.

PROOF. To prove this theorem it is sufficient that if & is any collection
of closed sets having the finite intersection property and § contains M, then

there exists a common point to all members of &'
Since M is a bounded set, there exist two elements @ and & such that a

<z=<bforallz € M. If Fy € & then it can be expressed by F,= A
\n/a I)s, where I)s € CR. We can extend §§ to be maximal by Zorn’s lemma
B=1

and call the extended callection . From the property of & we have B\Z Il €
¥ for all a. If AV B € &, then by the property of & we have A € & or B
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€ &. Therefore, for each a there exists 8 such that I's € &, which is denoted
by I). Then we have

2N [a,b]2Mand AFy2 A A L
@ Y Y &

By M € §, then [a,b] € &, and then I} A [a,b] € & By §5 Lemma 1
and its dual :

IZ /\ [d, b] = [CttY: dGY]'

By the finite intersection properties of &, [cay, day] /N [cos, dps] F=¢. Then
we have

Cay = dpgs for all a, B,y and 8.

Since L is conditionally complete there exists U c,,. Therefore we have
@Y
AN F'y > U Cay-
Y @Y

This proves the theorem.

Let € be the set of all real valued continuous functions defined on [0, 1]
of R, in which x <y if and only if z(¢) = y(¢) for all ¢ of [0,1]. It is well
known that € is a vector lattice. Let & be the set of linear continuous
functionals on €, in which £ < ¢ if and only if fiz) < g(x) for all = of .
Then it is well known that & is a vector lattice and a closed subset of R®
with its weak topology : the topology taking sets of type {f||fxy) — 9(x0)l
< &} as a sub-basis for open set (See [15]). Then the following theorem is
established.

COROLLARY. A subset {f||f| =<1, f€F} of & is bicompact. More gene-
rally, for any f, € R® and f, € R® a subset {fli=f=<fu fE€EF} of T is
a bicompact set.

PROOF. By Chapter 1 §5 Corollary 3 of Theorem 5, the weak topology
of R® and the CP-ideal topology of R® are homeomorphic. Now we have

flisrf=hl= N iflA@ = Ax) = fH@)-

Hence {f|fi <f=f.} is a closed set. Therefore {flA=F=f} AT is a
bounded closed subset of R°. Thus {f|f; <f=/f.} A& is bicompact. In particular
Il EUATG={fl —1=<f=<1} NT is bicompact (See [1] pp. 61-63).
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Chagter III Commutative L-Groups

We shall be concerned below with lattice ordered group (Z-group), in the
following sense.

DEFINITION. An [-group G is (i) a lattice (ii) a group, in which (iii) the
inclusion relation is invariant under all group-translations x —a + z + &.

A vector lattice is a vector space V with real scalars which an I-group
under addition, and which for any positive scalar N, £ — Ax is an automor-
phism.

To simplify ths statement of theorems, we shall always assume, unless
specifically stated, operation is commutative. We shall use the additive notation
for group operation, and the notations and terminologies of G. Birkhoff’s
“Lattice theory” [pp. 214-258].

8. Formulae. We shall extract following formulae from G. Birkhoff’s
“Lattice theory” and omit the proofs (See [ 5] pp. 219 and 231).

In any l-group (not necessary commutative) we have the following basic
algebraic rules.

©0) a—(@@Ny)+b=(@—zx+b)U(a—y+ b)

a—(anNbd)+b=5bUa

0) a—(@Uy+b=(@—x+b)N(a—y+bd);

a—(@aUb)+b=5b0Na

(1) Any [l-group is distributive (See [ 5] p. 219 Th. 5).

(2) If one of SUp Zo and il‘;lf (— x,) exists, then the other one exists and

— sup x4 = inf (— x,).
(3) Ifoneof U x, and U (a + zx,) exists then the other one exists and
a + sup x, = sup (@ + x,). Analogously, @ + inf z, = inf (@ + za).
@& @ @ @

(4) If weput a*t=a U0, a=aNO0 then a =a* + a".
In any commutative /-group we have the following formulae.
(5) If sup x, exists then sup (zs N a) exists and

(sup z4) N @ =sup (2« N a). (See [22] Th.7 or [5] p. 231).
(6) x;y=ny+;ﬂy (See [5] p. 219).
LEMMA 1. In a commutive l-group G, we have the following formulae,
zUy+taxUy=2zU2y, 2@Ny)=2xN2y.
More generally, we have

sup x. = & implies sup 2xs = 2 x,
7 @
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inf x4 =y implies inf 2z, = 2y.
o o

PROOF. We need only prove that sup x, = x implies sup 24 = 2. 2%
o o

< 2z is clear. For any ¢ such that 2 z, < ¢ for all a, we shall show 2z =< c.

By (3) we have
'2x=sup x, + sup xg = sup (xs + sup xz) = sup sup (xp + Zp).
@ 8 o B @ «

By (6), (3) we have
z+ty=@@Un+@nNy=1{z+t@nmtUiy+ Nyl
=2x U 2y.

Hence we get x, + g é?xa U 2 xg =< c. Therefore we obtain 2z = c. Thus,
sgp 2 xy = 2.

9. Continuity of Group Operations. In this section we shall prove that
operations are continuous in the CP-ideal topology. To prove this, in an [-
group it is sufficient to show that for any neighborhood U (a =+ b) of a = b
there exist a neighborhood U (@) of @ and a neighborhood U (b) of & such
that U (@ = b) 2 U (a) = U (b).

In a vector lattice, we shall show that for U (Aa) there are U (\), U (@)
such that U (A@) 2 U (A)*U (a). Any neighborhood U is represented by

U = (/\ ﬂ\{lluﬁ)cz \VJ ﬂ/—\l Igp, Where I“B < %.

By 0) and 3) we can easily show the following lemma.

LEMMA 2. a) In any l-group, if I is an element of C¥ or MY then
each of I + a and — I is an element of CR or MY, respectively.

b) In a vector lattice, if I is an element of CPB, MP or B then for a
real number N, Nl is an element of CB, M or B, respectively.

DEFINITION. A P-ideal topology is said to be a Ps-ideal topology if and
only if
(G) i) I€ P implies [+ a€ P and —T€ P.
i) f {I.} is a chain in P and each of {I,} is an ideal, then

NI, € 3.

Similarly, we define the concepts of Pg-ideal, Ps-family.
By this definition and Lemma 2, each of CP- and MP- ideal topology is a

Pes-ideal topology.
LEMMA 3. In an l-group G with its Pe-ideal topology,

a) any neighborhood of an element a of G can be written in the
Jorm U + a where U is a neighborhood of zero element 0 of G,
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b) — U is a neighborhood of 0.

THEOREM 10. In any commutative l-group, the group operations are
continuous with respect to its CP-ideal topology.

PROOF. By Lemma 3, it is sufficient to show that for U + x — y there
exist U, + z, U, + y such that

U+@—-—92U01+2)— U, +3):U2U, — U,

where U, U, and U, are neighborhoods of 0. Since — U, is a neighborhood
of 0, we shall show that for any neighborhood U of 0 there exists a neighbor-
hood U, of 0 such that U=22U,.

Case 1) U° is a dual CP-ideal I. Let I, be the set of all x such that
2z€U: I,={z|2zc€ U’}. fx€l,and <y, then 2x € U’ and 2z
< 2y.Hence we have 2y € U’: y € I,. If z, € I, and i;lf Zo = x,then 2z,

€ U°. By Lemma 1 inf 22, = 2x. Since U® is a dual CP-ideal, we have

2z€ Uz, fxUy€l, then2(xUy)€ U’ By Lemma l, 2z U
2y € U°. Hence, we have 2z € U’ or 2y € U°: x € I, or y € I,. Thus we
conclude that I, is a dual CP-ideal.
Now put I} = U,, then U, is a neighborhood of 0. If x € U,, y € U,, then,
from the fact that 2z N2y <z +y=<2zx U 2y (See Lemma 1)2x € U and
2y € U, we have = + y € U. Therefore we obtain 2 U, & U.

Case 2) U° is a CP-ideal. This case is dual of case 1).

Case 3) U is any neighborhood of 0. U’ can be written in the form U°
= A \7[wﬂ; U=V /(Iig.

g=1 p=1 .

Since U is a neighborhood of 0, then there exists a, such that ‘Z\1 Ig > 0.
By case 1) and 2) for each I, there exists a neighborhood U,z of 0 such
that 2 U,p & Iop. We put U, = ,51 U,s then U, is a neighborhood of 0 and
2U, 2 U. ‘

This proves the theorem.

THEOREM 11. In any vector lattice with its CP-ideal topology,

a) for fired Ny, Moz is continuous,

b) if a>0, & |0, imply a€, |0, then Ax is continuous, where &, A
are real numbers.

PROOF. Suppose that U is a neighborhood of 0 and A, a real number.

We can easily prove that A U is a neighborhood of 0. Let us denote U, =
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~)1»—U, then Ay (U, + ) & U + A, x, completing the proof of a).
0
Next we shall prove b). Let U + A2 be a neighborhood of Ay a. Suppose

that U° is a dual CP-ideal I. By case 1) of Theorem 10 there exists a dual
CP-ideal I, such that 3+ ;< I°. From the hypothesis of b), there exists a
positive real number € such that

&a* € I} and E( — a)t € IT.

Now put U, = —é—lf A _8115 /\%I{ /\:xllf and V = (— & &).

0 0
Then U, is a neighborhood of 0, and if x € U, then — x € U,. Moreover,
we have z* € U, and =~ € U,.
If 0=\ <¢g, then we have

AMSArt < Ext e U, Ext € Kiaxr € I
If — &< A<O0, then we have
rM=(—N(—2)Z&(—x) € I}: vx € L.

Thus we have that if x € U, and A € V then Az € I. Similarly, by (a*) & €
Il and (— a)* &€ € [ we have g\ € I§ for all A € V. By o € U,, we have ),
x € L. Therefore if x € U, and M € V, then we have (x + @) (A + Ny) = A
+avtavtan e L+ K+ L+ any < I° + an,.

Thus we have (U, + a) (V + X)) S U + ah,.
Dually, the case such that U° is a CP-ideal, can be proved. In the same way
as the proof of Theorem 10, we can prove the case such that U is any neigh-
borhood of 0.

10. Structure of L-Groups; Representation. In this section we shall
be concerned with the representation of a commutative /-group and the study of

its properties.

LEMMA 1. The family of all minimal Psideals containing a fired
element a is represented by (I, + a|la € D}, where {I.|a € D} is the family
of all minimal Pe-ideals containing 0.

PROOF. I, + ais a Pg-ideal containing a. Let I(a) be a minimal Pg-ideal
containing @ and contained in I, + a. Then we have 0 € I(a) — a < IL.. Since
I, is a minimal Pg-ideal containing 0, then we have I(a) —a=I,:1(a) =],
+ a. Conversely, let I be any minimal Ps-ideal containing a. There exists
a such that I, & I — a, then we have I, + a & I. By the hypothesis of I,
we have I, + a = I .

LEMMA 2. In any l-group with its Peideal topology we have
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a) a="b implies I, + a= I, + b, where I, is a Pes-ideal,
b) a family |I, + ala € G} is a chain in set inclusion.

PROOF. We shall only prove b). Let @ and b be two elements of G. We
put c=a b Bya) weget b +c=1I,+aand I, + c= I, + b. Since I,
+ ¢ is a prime-ideal and includes ¢, hence we have a € I, + ¢c or b € I, + ¢.
If acl, + ¢ then we have I, + ¢ = I, + a, because I, + a is a minimal Ps-
ideal containing a. In a similar way, if 46 € I, + ¢ then we have I, + ¢ = I,
+ b. Thus we obtain In+aS In+bor I, +b6% I, + a We can easily
show the following lemma.

LEMMA 3. If we define @@ and =, in the following sense, (I, + a) P
I +b)=L@+b), I.+a=1,+b if and only if I, + a=21I, + b, then
a family {I, + ala € G} is a chain l-group with respect to @ and =>.

In this chain /-group, it is clear that
(Iw'l"a)U(Iw‘l'b):Iw'l'an, (Iw+a)ﬂ(la+b)=1¢+aﬂb.

By Lemma 3 the cardinal product (direct product) II) {I,+ala€ G} is a com-
mutative /-group. Now if we put
fl@)=a + ala € D) € lljuw +ala € G},

then we have
fla U &) = fla) U £(b), fla N b)=fla) N f(b)
and fa + b) = f(a) D AB).

From this fact we can conclude the following theorem.
THEOREM 12. Ewvery commautative l-group G is homomorphic with a
sub-group of cardinal product (direct product) [!) I + ala € G} of all

chain l-groups {I, + ala € G|, where I, is a minimal Pg-ideal containing 0.

We can easily prove the following lemma with respect to the kernel of f.

LEMMA 4. ) lx|I. + x = L} is a sub-group of G, which is denoted
by Gi.

b) z € Gt and y € G imply [x Ny,  Uy] = Ga.

C) G: = Iw N\ — Ia.

d) N Gi is a sub-group of G, which is written G*, andG* = f*(0).

THEOREM 12'. Ewvery commutative l-group is isomorphic with a sub-
group of the cardinal product (direct products) | {I. + ala € G} of chain
aeD
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l-groups. (See [12], [13], [14)).

PROOF. Since an /-group G is a distributive lattice, by Theorem 2" G is
a T-space with respect to its MP-ideal topology. Therefore by Lemma 4c)
kernel G* has only one element 0.

THEOREM 13. a) The kernel G* is a minimal closed set in the Pg
ideal topology.

b) M is a minimal closed set if and only if there exists x such that
M= G* + z.
¢) {G* + ala € G} is a partition of G.

PROOF. Since a) and c) is clear, we shall only show b). It is clear that

the minimal closed set containing @ is set A (% I, + a). Hence we have
aeD

/}(i[w+a)=(ApiI¢)+a=G*+x.

Chapter IV Conditionally Complete L-Groups

In this chapter we shall confine ourselves to the case such that /-groups
are conditionally complete and topologies are CP-ideal topologies. A conditio-
nally complete J-group is infinitely distributive and commutative (See [11],
[14],[22]). To study this l-groups we shall introduce the concept of coordinate
axes. In Chapter IIl we have defined the notion of {I,|a€ D} of CP-(MP-)
ideal topologies. In this chapter we shall be concerned with the connection
between the coordinate system and the family {I,|a € D}. Using those properties
we shall give a representation of a 7',-space with respect to its CP-ideal
topology.

11. Introduction of Coordinate Systems.

DEFINITION. An interval [a, ] of a lattice is called a chain-interval if
and only if [a, d] is a chain. More generally, a chain M of a lattice is called
a chain-interval if and only if for any pair of x € M,y € M and x <y, [z.y]
is a chain and [z,y] < M.

In any l-group G, we shall denote by O the family of all chain-intervals
C, containing 0 which are contained in G* = {z|z = 0}, and C, < C, means
that C, includes C,, as a set. Then O is a non-empty family (For {0} € D).
Suppose now that a sub-family {C,} of © is a chain. Then, the set union

V C, is an element of . Hence, by Zorn’s lemma there exists a maximal
@

chain-interval in G*. Similarly, there exists a maximal chain-interval contain-
ing given chain-interval.
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DEFINITION. We shall denote by A* any maximal chain-interval containing
0 which contains at least two elements. Let us denote by A~ the set of @ such
that — a € A*. The set union of A* and A~ is called a coordinate axis, and
denoted by A.

The family of all coordinate axes A, is called a coordinate system, and
written A = {A,|a € D'} (¥ may be ¢).

It is clear that A, is a chain-interval. Now we shall prove the following
lemma.

LEMMA 1. Every coordinate axis A is a chain-interval.

PROOF. To prove this, it is sufficient to show that for any @ > 0, [—a, a]
C A. Let x be an element of [— a,a]. Then we have x = =" + 27, a =z
=0and a=—(z~)=0.

Since [0, a] is a chain-interval, we have x* < — £~ or £* = —z~. Hence
we get —a=<x=0 or a=x =0. Thus we have £ € A, which proves a).

LEMMA 2. If both A, and A, are coordinate axes such that A, == A,,
then the set intersection A, N\A, contains only 0.

PROOF. If A, == A, then since both A; and A} are maximal elements
of O, there are two elements @, and a, such that a, € A}, a, & AF, a, & At
and g, € AF. We put b =a, N a,, then b € At NA¥, and 0 q, — b = qa,,
0=<b=<a, Since A, is a chain-interval we have ¢, —b<b or a, —b=b:
a,=2b or a, == 2b. Similarly, we have a, <254 or a, = 2b. From the four

possible cases we have b = 0.
Thus we have A; A A, = 0.

LEMMA 3. A coordinate axis A is a subgroup of G.

PROOF. By Lemma 2 we can prove that if a is an element of A then 2a
is contained in A. Now, since a € A implies — a € A, we shall show that
the sum & + ¢ of elements & and ¢, both of which are contained in A, is also
an element of A. To show this we put max [b,¢c, — b, — ¢c] = a. Thena € A,
hence & + c € [~ 2a,2a] & A. Thus A is a subgroup of G.

12. Properties of {I,|a € D}. In Lemmas 2 and 3 Chapter III we have
discussed the properties of {I.|a € D}. We can easily prove the following
lemmas.

LEMMA 4. If [b,c] is a chain and b <c, then I = {x|x N ¢ < b} is
a minimal CP-ideal containing b and a minimal MP-ideal containing b.

LEMMA 5. a) Let I be a CP-ideal. If a € I, b & I, a < b and sup {[a,
b1 NI} = ¢, then [c,b] is a chain-interval.
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b) If c is the cross element of a CP-ideal I and a chain-interval [c,b],
then we have I = {z|x N b < c}.

LEMMA 6. If [a,c] is a chain-interval and a < b < c, then there exists
y such that I, = I, + y, where I, = {z|x N ¢ < al and I, = {z|x N ¢ < b}.

LEMMA 7. If I, + a2 I then a = B, where both I, and I are elem-
ents of {I,|a € D} (See §10 Lemma 2).

13. Axes and {I,|a € D}. In this section we shall be concerned with
connection between the coordinate system 9 and the family {I,|a € D} of
all minimal CP-ideals containing 0.

THEOREM 14. Let G be a conditionally complete l-group. Then we
have

a) if A is a coordinate axis, then for any a there exists only one a
such that A and I, + a intersect,

b) if I, + a==G then there exists only one B such that I, + a and
Ag intersect,where Ag € .

PROOF. We shall first prove a). Let b be an elemeat of A such that
b > 0.

We put I, = {x|x N b < 0}. Then

I ta={z+albt+aN@x+a)sal ={z|(d+a)Nx=Zal.

Case 1) a=0. Let ¢ be the least uppsr bound of [0,a] A A, which
exists. By Lemma 3, we have b + c€ A. If b+c<€ I, + athen (b+c)U
a€l,+a ByaZb+c)Ua<b+a wehave 0 +c)Ua=a: b+c=La
which contradicts the definition of ¢. Hence & + ¢ & I, + a.

Case 2) a <0. Let d be the greatest lower bound of [a,0] A A. By
Lemma 3, we have —b+d € A. By —b+d<al (—b+d)=<d, we
get aU(—b+d)=d, hence (@a—d)U(—b)=0:d—a)Nb=0:dN
+a)=a Thusd € I, + a.

Case 3) a is any element of G. By § 10 Lemma 2, we have

IL+a &L +a&1, + at.

By Case 1) and 2) I, + a and A intersect.

We shall next prove b). Since I, + a==G, I, + a* == G. Hence there
exists b such that 4 > 0 and I, + a* ® b. We put sup {[a~, b] N\ (Iu + a")}
=c and sup {[a",b] A (Iu + a”)} =d. By Lemma 5, [d, 6] is a chain-interval
and

L+a={zlzNb=Zc}, I, + a = {z|lxz Nb=d}.

Let B be a maximal chain-interval containing [d,b]. We put e = sup{(B — ¢)



LATTICES WITH P-IDEAL TOPOLOGIES 259

A [0,c]}. Also it is clear that B — ¢ is an axis. Let m be any element of
B — ¢ such that 2 > 0. Then m + e«c I, + a and m + e € B — ¢.

By L +a &I +a& I, +a*, we have (Iu + a) A(B—¢)>(d — ¢)
and (I, + a)’ A (B — c¢) > (m + e). Therefore I, + a and B — ¢ intersect.

Suppose that both coordinate axes A, and A, intersect with I, + a whose
cross elements are denoted by m, and m,, respectively. Let (I. + a)° N 4, >
mi, (I + a) N A; > ms. If 0€ 1, + a then by Lemma 2 m; N m; = 0 which
is a contradiction to I, + a ®mi, m, & I + a. If 0 I, + a then m, U m,
= 0 which is a contradiction to I, + @ > m, and I, + a > m,. This proves b).

COROLLARY. a) If A, and I. + a intersect, then for anmy b, A. and
I, + b intersect.

b) If A. and I, + a intersect, then for any b, As + b and I, + a
intersect.

PROOF. Suppose that A, and I, + a intersect and the cross element is c.
By Theorem 14 there exists @ such that As and I3 + & intersect. Let ¢’ be
the cross element of A, and Iz + & By Lemma 6 if ¢ 2¢ then I, + a 2 I,
+ 5. By Lemma 7 we have @ = B, hence A, and I, + & intersect.

Next we shall show that b) is true. By a) A, and I, + a — & intersect,
therefore it is clear that A, + & and I, + a intersect. .

NOTE . From theorems above, a CP-ideal I, corresponds to only one coor-
dinate axis A, which is written A,. Then the family {I,|I, == L} of all
CP-ideals coataining 0 and the family {A.} of all coordinate axes have a
one-to-one correspondence. Therefore we may denote {I,|a€ D} and {A,|ac D}.
From this coavension, I, and A, having the same index necessarily intersect.

14. Conditions of Topologies.
THEOREM 15. In a conditionally complete I-group G with its CP-ideal

topology, Ty, T,-, 1,- and Tsspace are equivalent.

PROOF. By Theorem 4 it is sufficient to show that any 7T,-space is a
T,-space. Let a < b. We may suppose that there exists a join-irreducible
element ¢ in [a,b] (See Th.6). We can easily show that [a,c] is a chain.

Case 1) there exists e such that a < e <. Let us denote sets {z|xz N
c=<el and {zx|xz U a=e} by I, and I,, respzctively.

Case 2) there exists no e such that a < e <c. Let us denote sets {x|x
Nc<a} and {x|xz Ua=c} by I, and I,, respactively. Then, I, is a CP-
ideal containing no & and I, a dual CP-ideal containing no a. And we have
IL\vI,=L.

Dually, we can prove the case such that there exists a meet-irreducible
element ¢ in [a,b]. By §2 Lemma 3, G is a T,-space, completing the proof.
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From the proof of the theorem above we obtain the following corollary.

COROLLARY. In any conditionally complete l-group G with its CP-ideal
topology, G is a Ty-(Ts-) space if and only if for a <b there exist
elements ¢ and d such that [c,d] is a chain-interval and a < c < d = b.

15. Representation. Let II A, be the cardinal (direct) product of all

aep
coordinate axes. By Theorem 14, a coordinate axis A, and the CP-ideal I, +
a intersect. Let a, be the cross element of A, and I, + a. Define a mapping
f as follows; for any element of G such that ¢ =0, f(a)= (a.|a € D).

THEOREM 16. If a conditionally complete l-group G is a T,-space with
respect to its CP-ideal topology then G is isomorphic with a perfect sublattice

of the cardinal (direct) product ]:]];Am of conditionally complete chain I-

groups.

PROOF. By § 10 Lemma 2 we have either I, + a 21, + b or I, + a& I,
+ b. We may suppose that I, + a =21, + b. Then we have I, + a > a U b.
Hence by §10 Lemma 2, I, + a = I, + (a U b). Thus we obtain a, = (a U
b),; (@ U b)s =as U b, Then we have

faUbd)=((aUbdulac D)= (a, Ubsla<c D)
= (a,|a € D) N (bu|a € D) = f(a) U £(b).

In a similar way we have fla N ) = fa) N f(b) and f(a + b) = fla) +
£ ().

We shall now show that the mapping f is one-to-one. From the hypo-
thesis that G is a T',-space, for any pair of elements a and & of G there is a
minimal CP-ideal I such that I > @ and I=> b. There exists sup {[a  5,5]
A I}, which is denoted by c¢. Then [c,b] is a chain-interval. By Lemma 6 and
§10 Lemma 1 there is a such that I = I, + ¢, where I, is a minimal CP-
ideal containing 0. Therefore a, N\ ba:

a==b < fla) F+=f(b); sup a. = a.

We shall show that the set {(a,|a € D)|a € G} is a perfect sublattice
of ]lAw. To prove this it is sufficient to show that if a, < ¢(a) < b, for all

a € D then there exists an element ¢ of G such that ¢, = g(a) for all a €
D. By the hypothesis there exists sup g(a), which is written ¢. Then by Lemma

8 we have a <c < b. Also gla) =< c. for all @ € D. By Lemma 2 aq, N az =
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0 for all @ &=, hence we have
9(a0) N (U g(@) = U igla) N gla)} =0=cu N (U N gla)),

g(ao) U 509wg(B)) =c=c U (U g9(@) = sup ca.
Since G is distributive, we have ¢(a,) = cs,- Thus G* is lattice-isomorphic

with a perfect sublattice of al;]};A; . By [5] p. 214 Th. 1, our theorem is true.

THEOREM 17. A conditionally complete l-group is a T,-space if and
only if G is isomorphic with a perfect sublattice of || Aa.
acp

PROOF. By the above note, the condition is necessary. Conversely, suppose
that the condition is fulfilled. By Theorem 5 Cor. 4, [| A, is a T',-space. By
@eD

Theorem 15 Cor., for any (a.|a € D) < (bs|a € D) there is a chain-interval.
By the Theorem 15 Cor., f(G) is a T,-space with respect to its CP-ideal top-
ology. ‘

NOTE. This theorem can be proved from Th. 12"
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