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Introduction

The topology of a Euclidean space is usually defined by the concept
of a metric. Its usual metric is defined by various concepts : addition, multipli-
cation, square root and order of real numbers.

On the other hand, the Euclidean space can be considered as a lattice : the
cardinal product of real chains (linearly ordered set), which have the order in
a natural sense. It is natural to inquire whether a topology, which is homeo-
morphic to the usual metric topology, is definable in terms of the order
relation (or lattice operation) alone. More generally, we can ask whether
it is possible or not to introduce a class of topologies on a lattice L which
are compatible, in some sense, with its order.

G. Birkhoff has first discussed the topologies on lattices which are defined
by an order-convergence. Thereafter, various topologies on lattices were intro-
duced by several authors and their properties were discussed by many writers :
O. Frink [ 8 ], [ 9 ] B.C. Rennie [22] E.S. Northam [19], E.S. Wolk [24] AJ .
Ward [23] T. Naito [15], [16], [17], [18] E.E. Floyd [10].

In ([ 5 ] p. 242), G. Birkhoff has proved that the operations of groups
are continuous in the sense of order-convergence. E.E. Floyd has shown a
counter example that the group operations are not continuous with respect to
the order-topology. This example shows that there exists no compatible
topology, in his sense, such that the group operations are continuous with
respect to the topology. (See [10].)

In this paper, I will define several topologies such that the above condition
holds: group-operations are continuous. Of course, these topologies are not
compatible, in Floyd's sense, with the order of a lattice, but it seems to me
that those topologies are rather interesting and useful. It is the purpose of
this paper to give topologies satisfying the following conditions and applications
of these topologies.

1. In the Euclidean space, the topology, which is defined by the usual
metric, is homeomorphic to our topologies.

2. The lattice operations and the group operations are continuous with
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respect to our topologies.
I gave one of topologies satisfying these conditions in a lecture at the

1956 autumn meeting in Kyoto, of the Math. Soc. of Japan in this paper
this topology is called a CP-ideal topology.

In Chapter I, we shall present the definitions of P-, CP-, MP- ideal
topology and prove the continuity of lattice operations. This chapter also
contains the study of conditions of topologies in lattices. The main results of
this chapter are described in Theorems 1 — 5 . As an application of these
topologies, we shall establish here a representation space, smaller than Birk-
hoff's, for distributive lattice making essential use of Birkhoff's proof of his
representation.

In Chapter II, we concern ourselves with properties of our topologies on
conditionally complete lattices. We shall show here that join-, meet-irreducible
elements and CP-ideal topologies have very close connections. These results
are of importance to our later investigation. In a CP-ideal topology, any
bounded closed set is bicompact. As an application of this theorem, I shall
prove that the unit sphere of a Banach space is bicompact.

In Chapter III, we shall show that the group operations of any commuta-
tive /-group are continuous with respect to the CP-ideal topology.

Moreover, we shall concern ourselves with the structure of /-groups using
CP and MP-ideal topologies.

The main results of this chapter are several representations which are
described in Theorems 12, 13 : any commutative /-group is isomorphic to a
sublattice of the cardinal product of chains. [12], [13], [14].

Moreover, in Chapter IV, we shall show that under some conditions any
/-group is isomorphic to a perfect sublattice of the cardinal product of chains.

NOTATIONS. We shall use L to denote a lattice and L\ L", to
denote sublattices of L. /, Ia9 Iβ will be used to denote ideals or dual
ideals of a lattice. We shall use lower case Latin letters to denote elements
of a lattice and Latin capitals to denote subsets of a lattice. However families
of sets will usually be denoted by German capitals. We shall denote the join
and the meet of two elements x and y of a lattice by x U y and x ΓΊ y
respectively, the join and the meet of all elements of a set M by sup M and
inf M. The set of all elements such that a<,x<,b, will be denoted by
[a, b\ The expressions

A V B and V Xa

will denote the set union of two sets A and B, or of all sets of family [Xa

a € Δ}. Similarly we define
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A /\B and Λ Xa.
αeΔ

The complement of a set A will be denoted by Ac and the empty set by φ.
Any open set will be denoted by U and any closed set by F.

DEFINITIONS. We shall use the terminologies of G. Birkhoff's "Lattice
theory" [ 5 ]. A chain M of a lattice is a subset such that x € M, y € M
imply xiky. A lattice L is infinite-distributive if and only if

a Π (Π ba) = U.(a Π bΛ) and a U (Π *•) = Γ)(* U * β ) .
as # α α

A subset iW of a lattice is bounded if and only if there exist elements a and
b, such that a <J w <Ξ & for all m € M. A lattice L is complete if and only
if any subset of L has the least upper bound and the greatest lower bound.
A lattice L is said to be conditionally complete if any bounded subset of L
has the least upper bound and the greatest lower bound. A sublattice L of a
lattice L is called to be a perfect sublattice if and only if x € L', y €: L
imply \_x, y] Q L\

In this paper, topologies on a set E are defined by a subbase of closed
sets. Thus with any family % of subsets of a set E containing E and the
empty set φ, a subset F of E is said to be closed if and only if F can be
obtained as an intersection of the sets which are unions of a finite number
of elements belonging to 3*. The topology is a family of all closed sets. £5 is
called to be a sub-base of the topology. A closed set F is represented by

ncύ

F = Λ V Iaβ where Iaβ € $ and nΛ is an integer which corresponds to
a β = l

a.
It is clear that
1) the intersection of any number of closed sets is closed,
2) the union of any finite number of closed sets is closed,
3) E and φ are closed.
I have received kind advices from Professor T. Nakayama at Nagoya

University and Professor N. Funayama at Yamagata University to whom I
wish to express here my hearty thanks.

Chapter I Introduction of Topologies on Lattices

In this chapter the ideas of P-9 CP~, MP-ideal topology are introduced on
most general lattices. We begin with some notions and definitions concern-
ing ideals.

1. Definitions. Let L be a lattice. A subset / of a lattice L is called to
be an ideal if and only if the following conditions hold:
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i ) x <^ y and y € 7 imply x € 7,
ii) x € / and y € / imply c (J J> € /.

An ideal / is said to be a prime ideal if and only if
iii) 3; Π y €Ξ / implies x € / or 3/ € /.

DEFINITION 1. A prime ideal 7 is called to be a CP-ideal if and only
if the following condition holds:

iv) if \XCC\OL € A} g= 7 and there exists sup xa, then sup xa £Ξ /.
ΛeΔ α eΔ

The family of all CP-ideals is said to be a CP-family.
For studies of properties of every sub-basis of closed sets, we now intro-

duce the concept of a P-ideal.

DEFINITION 2. A sub-family 5β' of the family of all prime ideals, is
called to be a P-family if and only if the following condition holds:

iv), L € $ ' , Φ € 5β\
Each element of a P-family is said to be a P-ideal.

Dually, we shall define the concepts of a dual prime ideal, a dual P-
ideal, a dual CP-ideal, a dual P-family and a dual CP-family. We shall
denote by $ the union of the P-family and the dual P-family. Analogously,
we shall denote by C$ the union of the CP-family and the dual CP-family.

Let 5 be the family of all prime ideals containing a fixed element a of
L. And Ii rg 72, where Il972 are elements of $, means that 72 includes 71? as a
set. Suppose now that a family {7*} is a chain of 3*. Then the intersection
Λ h is an element of $• Hence, by Zorn's Lemma there exists a minimal
a

prime ideal containing a, which is written I (a). Analogously, there exists a
minimal CP-ideal containing a. Similarly for a € 7 € £? there exists a minimal
prime ideal which contains a and is contained in the prime ideal 7. In a
similar way there are a minimal dual prime ideal and a minimal dual CP-ideal
having the properties above.

DEFINITION 3. For any element a of L, a minimal prime ideal containing
a is called to be an MP-ideal. The family of all MP-ideals and L9 φ is
said to be an MP-family. And dually, we define a dual MP-ideals and a dual
MP-family. The union of the MP-family and the dual MP-family is denoted
by M5β.

As an immediate consequence of the definitions above, the family M $
is a family 5β.

DEFINITION 4. The P-ideal topology of a lattice L is that which results
from taking 5β as a subbasis for the closed sets of the space L. Analogously,
we shall define CP- and MP-ideal topology.

NOTE: These topologies are not intrinsic in the sense that are introduced
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by the authors, G.Birkhoff, O. Frink, B.C. Rennie, E.S. Northam, E.E. Floyd,

E.S. Wolk etc.

A so-called intrinsic (or compatible with ^ ) topology is that which satisfies

some of the following conditions :

1) whenever {xι\ is a sequence in L with xx ^ x2 Ŝ and U %i

= x, or xγ ^ x2 2^ ... and Γ\ xt = x, then the sequence xi converges to x,

1) whenever \xa} is an up-directed subset of L andy = sup xΛ or \xa\
a

is a down-directed subset of L and y = inf xa, then xΛ converges to y,
a,

2) any interval {x | a <Ξ oc ̂  b ] is a closed set.

Our topologies, which are introduced above, do not always satisfy the conditions

above. This fact is shown by the following example.

EXAMPLE 1. Let R2 be the Cartesian plane, in which {x, y) <Ξ (x, y) if

and only if x ^ x and y SΞ y. Then it is well known that R2 is a conditio-

nally complete infinitely distributive lattice. Let Lγ be the sublattice of R2

such that \{x9 y)\0 < x < 1, 0 <y< 1}. Let us denote by L2 the sublattice

consisting of (0, 0), (1, l) and the points in 1(^,^)10 < x < 1, 0 <y < 1}.

We denote by L3 the sublattice consisting of (1,1) and the points in !0r,j0|

0 ^ S ; r < l , O ^ j / < l j . And let L4 be the sublattice of R2 which is the union

of {(x,y)\0 S_ x < 1 , 0 <y ^ 1}, (0, 0) and (1, 1). Sublattices Ll9 L2, L3 and

L4 are expressed as Fig. 1, Fig. 2, Fig. 3 and Fig. 4.

Fiαl Fig 2 Fig 3.

In Figure 1, an CP-ideal and an MP-ideal are sets of the forms {(x,y)\x

<,c)f\Lx and \(x,y)\y<zc] ΛL,

In Figure 2, every set of the form {(x,y)\x ^ c\ Λ L2 or j(J:, y)\y ^ c}

Λ L2 is an MP-ideal but not a CP-ideal. In this lattice CP-ideals are only

two sets L and φ. We can easily prove that the sequence an = ( , 1— )

\ n n J

converges to all elements of L2 with respect to the interval topology and the

CP-ideal topology on L2. In Figure 3, every set of the form {(x,y)\x :g c} Λ
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L3 or \{x,y)\y ^ c\ Λ L 3 is an MP-ideal but not a CP-ideal, but each set of
the form \{x9 y)\x > c} Λ L3 or {Cr,:y)l:y 2^ c\ Λ L3 is a dual MP- and a dual
CP-ideal.

In Figure 4, every set of the form \(x,y)\x <L c\ Λ LA or ίfejOlj' ^ 1̂
Λ L4 is a CP-, MP-ideal, or a dual CP-, MP-ideal. {(Λ:, y)\y <Ξ <:} Λ L4 is an
MP-ideal but not a CP-ideal. \(x,y)\x^>c\ Λ L4 is a dual MP-ideal but not
a dual CP-ideal.

l) of the conditions above is not satisfied in L2, L3, L4 with its MP-ideal

topology. In fact, \(x,y) \y ̂  1 Λ L* is an MP-ideal and a sequence (1 — -
2 J V n

jhas (1, 1) as its least upper bound.

2) of the conditions above is not satisfied in L2 with its CP-ideal topo-
logy, because Cίβ consists only of L2 and φ. (Also see [Λ, a] of Ex. 2.)

Sublattices Lγ — L4 of R2 are important as examples to illustrate topologies
of lattices.

2. Properties of P-Ideal Topologies. In this section we attempt to
make a contribution to the properties of P-ideal topologies. We begin with
the proDf of the continuity of lattice operations with respect to the P-ideal
topology. Since if a proposition in the P-ideal topology is true, then the
proposition in CP- or MP-ideal topology is always true, we shall not especially
infer the proposition to CP- oi MP-ideal topology.

THEOREM 1. Let L be a lattice. The lattice operations of L are conti-
nuous in its P-ideal topology.

PROOF. Let U {a (J b) be any neighborhood of a U b. Then U (a [j b)c

can be obtained as an intersection of the sets which are unions of a finite
number of elements belonging to $ :

U(a U * ) = V ί\Γaβ, Iaβ €%

Hence, there exists a such that a U b € Λ Γaβ, which is denoted by a0.

a) If Iccnβ is a prime ideal then by the definition of prime ideal either
a € Γaoβ or b € Γaoβ holds.

We now put Uβ(a) = Γaoβ , Uβ(b) =L for a€ΓΛo9 and

Uβ (a) = L, Uβ (b) = Γaoβ for a <£ Γaoβ . (then b € Γ*o9).

b) If Ioc03 is a dual prime ideal then we have a € Γaoβ and b € Γaoβ.

We put Uβ (a) = Uβ (b) = Γaaβ . In both cases of a) and b), we have Uβ (a)
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Uβ (b) = Γaoβ for all β.

Let U (a) and U (Jb) be Λ Uβ (a) and Λ Uβ (b), then both U {a) and

U (Jb) are neighborhoods of a and b, respectively. We can easily see the fact
that U (a) U U (Jb) is contained in U (a U b). Thus, the lattice operation U is
continuous with respect to its P-ideal topology. By duality, the operation Π
is continuous.

NOTE. (\)xa-*x (P-ideal topology) implies xa [] a-^x {] a (P-ideal
topology), but xa\ x does not imply χa Π a \ x Π a.

(2) xa\ x implies xa -> x (CP-ideal topology) but not always xa -> x
(MP-ideal topology).

Any lattice is a Ί\-space with respect to its interval topology, its order
topology and its ideal topology, but not always a T0-aspce in its P-ideal topo-
logy. We shall now give an example which is not a T0-space with respect to
its P-ideal topology.

EXAMPLE 2. Both Fig. 5a and 5b indicated below are not T0-spaces with
respect to its P-ideal topology. In fact, since prime ideals of Fig.5# are L, φ,
|Λ,c|_ and {a, b, Λ} and dual prime ideals L, φ, {c, V } and jα, b, V ! we
have a = b. In Fig.5b, since prime ideals are L and φ, we obtain Λ = V =
a = b = c = L.

3. Elementary Properties of Topological Spaces. To simplify the
statements of theorems, we shall always assume, otherwise specifically stated,
that each topology of lattices is a P-ideal topology.

LEMMA 1. A lattice L is a Tf space if and only if for given any two
elements a < b there exists either an element of sub-basis which contains a
but not b, or an element of sub-basis which contains b but not a.
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PROOF. We shal lnow prove the sufficiency of the condition. For each
pair of distinct elements p and q, we have p [} q ^ p or p [} q^pq. We may
assume that p [} q =f= p, then put p U q = b and p = a. From the condition
there exists an element / of sub-basis which contains a but not b, not or b
but not a. If I contains b but not a, then / is a dual prime ideal. By p (J q
= b, we have / 3 g. If / contains a but not b, then / is a prime ideal. By
P U q = b, we have 1^5 q.

Therefore L is a TV space.

LEMMA 2. A lattice L is a Tγ-space if and only if given for any two
elements a < b there exist an element of the sub-basis which contains a
but not b, and an element of the sub-basis which contains b but not a.

LEMMA 3. A lattice L is a T2-space if and only if for α > b the space
L is covered by a finite number of elements of $ which contain at most
one of a and b.

PROOF. We shall only prove the sufficiency. Let p, q be arbitrary distinct
elements of L. We put p U q — a and p Π q = b, then there is a finite

n

number of elements of % such that V It = L, where It contains at most one

of a and b. Since It is an ideal or a dual ideal, It contains at most one
element of p and q. The union of all Ik which do not contain p is expressed
by Fj. And the union of all Ik which contain p is denoted by F2. Then we
have Fί B p, Fl 3 q and F\ Λ Ft = φ.

LEMMA 4. Let S be a TVspace. The space S is a T3-space if and only
if each pair of an element I € ί? and p φ /, has neighborhoods U (I) and
U (p) such that U(I)ΛU (p) = φ.

4. Representations and P-Ideal Topologies.

THEOREM 2. If a lattice L is a T0'Space with respect to its P-ideal
topology, then L is isomorphic to a sublattice of a Boolean lattice 2E where
E is the family of dual prime ideals of L. Therefore L is a distributive
lattice.

PROOF. Let E(x) be the set of all dual prime ideals which contain x.
By Lemma 1 we have xφy if and only if E(x) ή=E(y). By the definition of
a dual prime ideal we get E(x U y) = E{x) V E(y). I € E(x Π y) +> I 3 x
[}y±>lBx, I 3 y+*I € E{x) Λ E(y).

Then we have E (x Π y) = E (x) A E(y).
Thus the theorem follows.
The converse of the theorem with respect to its CP- ideal topology is not

true in general. To illustrate this fact, we shall give an example:
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EXAMPLE 3. L2 of Ex. 1 is a distributive lattice but not a T0-space
with respect to its CP- ideal topology. But this lattice is a T2-space with respect
to its MP-ideal topology.

NOTE. Let ~a be the closure of a € L with respect to a P-ideal topology.

Put L = {a I a € L \. We shall now define the lattice operations on L such that

a U b = a U b and a Γ) b = a Π b. Then a correspondence a —> <2 of L to L

is a lattice homomorphism. Since L is a T0-space ([21] Th. 6), it is distributive.

This fact makes it possible for many purposes to limit the consideration to

T0-spaces and distributive lattices.

THEOREM 2'. In a lattice L with its MP-ideal topology, the following

three conditions are equivalent',

1) L is a distributive lattice,

2) L is a T0-space,

3) L is a Trspace.

PROOF. By Theorem 2 we need only to prove that if L is distributive

then L is a TVspace in its MP-ideal topology. Suppose that L is a distri-

butive lattice and a < b. Then there exists a maximal prime ideal, which

does not contain b, of [a, b\ which is denoted by N (Zorn's Lemma).

We shall now put / = \x\x Π b <. n for some n of N\. Then / is a

prime ideal such that I^b and / 3 a. In fact, if (x Γ)y) Π b ^ n for n € N,

t h e n n= {(x Ry) f)b\ U n= {(x Π b ) l J n ] f] {(y Π * ) U n ) S i n c e N i s a

p r i m e i d e a l o f [a, b\ w e h a v e e i t h e r x (} b <: (xC]b)\Jn^NoryΠb^

(y Π b) U # £ JV: x € or 3/ € / . The other condition is clear. This proves the
fact that L is a Tλ-space with respect to its MP-ideal topology.

If in the well known Birkhoff's representation, we take the dual MP-

family instead of all dual prime ideals, then we obtain a representation smaller

than G. Birkhoff's.

COROLLARY. Any distributive lattice L is isomorphic to a sublattice of

the lattice of all sub families of a dual MP-family.

PROOF. When, in the proof of Theorem 2, we take the dual MP-family

instead of all dual prime ideals, we have by the proof of Theorem 2' that

x =f= y implies E(x) =f= E(y).

And hence the corollary is clear.

THEOREM 3. If a lattice L is a Tγ"Space with respect to its CP-ideal

topology, then L is an infinitely distributive lattice.

PROOF. We shall now prove that if sup χΛ exists, then there is sup (x*
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Π a), and a Πsup xa — sup {a Π x^. To prove this, let a f] sup xa = b. Then
a a a,

b is an upper bound of a Π xΛ for all #. According to Lemma 2, for b > c
there exists a CP-ideal 7 such that c € 7 and b ζjtz I Since 7 is a CP-ideal
there is a0 such that αταo <̂Ξ 7. In fact, if α:α € 7 for all #, then sup xa^>b
€ 7 which is a contradiction. We have χao f] a ^ 7, then .rΛo Π # ^ c. There-
fore b is the least upper bound of a Π x<* for all a. Thus we have <z Π sup

a

xa = sup {a Π -rj.
α

Dually, we can prove that a U inf xΛ = inf (a (J ^OJ).
In the theorem above, we can not take To instead of Tτ. This can be

illustrated by the following example.
EXAMPLE 4. L3 of Ex. 1 is a T0-space with respect to its CP-ideal

topology and a distributive but not an infinitely distributive lattice. In

fact, in Fig. 3 we shall put χn = (—, 1 - — \ and a =(—, — \ τ h e n

( 1 0 \
9 V

2 3 /we

THEOREM 4. If a lattice L is a Ί\-space with respect to its CP-ideal
topology, then L is a T3-space.

PROOF. Suppose that L is a T2-space. By Lemma 4, for any pair 7 € C%
and a ζj~ I, we need only to prove that there exist neighborhoods U (a) and
U(I) such that U (a) Λ U (J) = Φ We assume that 7 is a CP-ideal. Since Λ
is an upper bound of \x\x <Ξ α} Λ 7, there exists an upper bound £ of \x\
x ^ a\ Λ 7 which is smaller than a. In fact, otherwise a = sup {.r|.r ^ a] Λ
7, which contradicts the hypothesis of a. By Lemma 3, for a > b there exists
a finite system {7*}, each element of which contains at most one element of a,

n

by and L = V 1%. The union of all 7ί? each of which does not contain a, is

denoted by Fx. The union of all Ik, each of which contains a, is written F2.
Then Fl and F£ are neighborhoods of a and 7, respectively. And F\ ί\ Fl =
φ. To prove this we need only to show that Fl 2 I- Suppose that x € F2 Λ 7.
Then x 0 a £ I, hence x f] <z ̂  {.r|.2::g<z} Λ 7 : since £ is an upper bound of
\x\x <Ξ tf} Λ 7, .r Π a ^ b. From x ζ F2 there exists £ such that .r € 7Λ. By
7fc 3 a we have x fl β ^ 4 Since 7& is a dual ideal, we have b € 7fc which
is a contradiction. Therefore we have Fl^.1.

In a similar way we can prove the case that 7 is a dual CP-ideal.

5. Topological Products and Cardinal Products. We shall first define
the concepts of topological products and cardinal products. Suppose that for
each member a of an index set A there is given a topological space Lα. The
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topological product of La, written X {LΛ\a € Δ(, is defined as the set of all
functions a on Δ such that a (a) € LΛ for all a € Δ? and having for each
closed set CΛ of a sub-basis of each LΛ, the family of all sets of all functions
a with a (a) 6 Cα, as a sub-basis of closed sets.

The cardinal product of lattices Lα, written L = H La, is defined as a

lattice of all functions a such that a (a) €L α for all a € Δ, where a <^ b
means that α (α) ^ £ (α), in Lα, for all a € Δ. Then, we can prove the
following theorem.

THEOREM 5. A subset I of U.LΛ=L is a CP-ideal if and only if I is

represented by {a\a(a0) € IΛQ\ for some <x0 of Δ, where IaQ is a CP-ideal
of Lao. And the dual statement is true.

PROOF. Let 7 be a CP-ideal of Π LΛ and 7«0 the projection of 7 into LaQ.

We first show that 7αo is a CP-ideal of Lrt0. If aao € Lao and bao ^ aΛo in Lαo

then by the definition of 7Λo there exists an element a of L such that a(aQ) = <2*0,
Let έ be the element of L such that b (a0) = έαo and έ(α) = Λ(QC) for a 4= αo

Since a > b, we have 6 € 7 therefore £*0 = 6 (α0) ^ -ζ*0 Next, let us suppose
that Mαo Q 7rt0 and sup Mao exists. Take one element a belonging to 7. For
aao C M 0 there exists an element b €: I such that b(oί0) = aao. Then we have
a \J b £ I. Let £Λo be an element of L such that cao (α0) = β«0

 a n d cΛo (α) =
a (a) for α: =τ= a0, then we have that

cao ^L a [} b €z I implies cao € 7.

Therefore if aao € Λf«0 then cΛ0 € 7. We shall put sup cao = d, then d(a0)

= sup Mao and d{ά) = Λ(Λ) for all Λ: 4= ΛO By J € 7, we have sup Ma0 € 7αo.
Now we shall prove that if aao f] bao € IaQ then either ααo € 7αo or έα o

€ 7Λo. Then there exists an element c of 7 such that c(a0) = αΛo Π £«0 Let
Λ be an element of L such that α(#0) = ^α0

 a n d β(<^) — c(ά) for α: H= #o> and
έ an element of L such that £>(#„) = bao and έ (α) = c(ct), for α =f= ̂ 0. Then
we have a Π i = c € 7, and then either α € 7 or b € 7. Thus we have αΛ0

€ 7αo or ba0 € 7αo. These show that IΛo is a CP-ideal of Lao.

Now we shall see that 7 is H 7α. To prove this we need only to show 7

2 H ί* Let us suppose that a € H 7α, and let έΛo be an element of 7 such

that bΛo (cέo) — a(aco). Since a Γ\ bao £ I and α = U (a Π 6«0) we obtain

a € 7
We shall prove that the set \<x\La =f= 7α(has at most one element. Let us
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suppose that La 4= la and Lβ 4= Iβ Then there are two elements a* € Lα —
/a and ^ 6 Lβ — Iβ. Let d be any element of 7. Let a be the element such
that a (a) = tf* and α(δ) = d(δ) for a=h S, and & the element such that b (β)
= bβ and b (δ) = d(S) foτ β + δ. By a f) b ^ d, we have a f] b e I, hence a
6 7 or b 6 7, which contradicts that <zα ̂  7α and bβ ^ Iβ. Then we have

7 = ho X Π ^« for some Λo € Δ,

where 7αo is a CP-ideal of Lαo.
From the theorem above, we can easily prove the following corollaries.

COROLLARY 1. The topological product X\L«\a € Δ | of any collection

\LΛ\a € Δ} of lattices, each with a CP-ideal topology, is homeomorphic to

the cardinal product H La, also topologized by its CP-ideal topology, of

these lattices,

PROOF. By Theorem 5 the basis of closed sets of X\La\a € Δ} and that

of 11 La are the same. Hence these spaces are homeomorphic.
αeΔ

COROLLARY 2. A Euclidean space Rn, is homeomorphic to the lattice
Rn which is topologized by its CP-ideal topology.

PROOF. The set R, topologized by metric, is homeomorphic to the lattice
with its CP-ideal topology. Hence by Corollary 1 we obtain the proof of
Corollary 2.

COROLLARY 3. The weak topology of the set of all functions of any
abstract set X to a lattice, is homeomorphic to the CP-ideal topology of
the set considered as a lattice.

PROOF. In a similar way to Corollary 2, we can prove Corollary 3.

COROLLARY 4. If lattices LΛ, each with its CP-ideal topology, satisfies

a condition φ then the cardinal product U LΛ, with its CP-ideal topology,
CC€/\

satisfies the condition φ, where φ is one of T^space, bicompact, T3-space.

PROOF. The proof of Corollary 4 follows from the well known theorems
of topological product space and the theorems above.

Chapter II Conditionally Complete Infinitely Distributive Lattices

In this chapter we shall only consider conditionally complete infinitely
distributive lattices.

The purpose of this chapter is to examine the close relationship between
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irreducible elements and T-spaces, and to prove the compactness (bicompactness)
of the lattice above. Throughout this chapter, unless otherwise stated, the word
topology is used to refer to a CP-ideal topology.

6. Irreducible Elements and Topologies. Let \_a} b~] be an interval of
a lattice L. An element c of [a, b] is said to be a join-irreducible element in
[a, b~\ if and only if c'= x U y, x € [a, b~\ and y € [a, b~\ imply x — c or y = c.
In a similar way we define a meet-irreducible element.

LEMMA I. If I is a CP-ideal, I ^ a, lΐfeb, a < b, then there exists an
element c of [a, b~] such that I Λ [a, b~\ = [a, c], and c is a meet-irreducible
element in [a, b\

PROOF. Let / be a CTMdeal. Since L is conditionally complete, there is
sup / Λ [a, b], written c. Then we have [a, c] = I Λ [a, b]. In fact, by the
definition of / we have c € / and then [a, c] £Ξ / Λ [a, b]. By the definition
of c we have [a, <:] 2 / Λ [a, b\ Thus [a, c] = I Λ [a, b~\.

Next, we shall show that c is a meet-irreducible element. Suppose that
x Π y = c, x € [a, b~\ and y € [a} b]. Then, since / is a prime ideal we have
either x 6 / or y € / : x € / Λ [a, £] or y € / Λ [a, b\ Hence we have x <̂  c
or y <2 c. Thus we have x — c or y = c.

THEOREM 6. L is a T0-space if and only if for every a<Lb there exists
a jo in-irreducible element in [a, b\ different from a, or a meet-irreducible
element in [a, b~\, different from b.

PROOF. Suppose that L is a TVspace. Then for any a < b there exists
an element / of the closed sub-basis which contains either a but not b, or b
but not a. Suppose that a € I and b ̂  /, then I is clearly a CP-ideal. By
Lemma 1 we have [a, c] = I Λ [a, b\ where c is a meet-irreducible element in
[a, b\ In exactly the same way we can show that in the case of a ζfc I and
b € / there is a join-irreducible element in [a, b].

Conversely, suppose that for any a < b there exists a meet-irreducible
element c, different from b, in [a,b]. Then set \x\x Π b^c], written 7, is
a CP-ideal. In fact, if xΛ € I and sup x« exists, then

Oύ

(sup Xoo) Π b — sup (α:Λ Π b) S.c.
a, cύ

Hence we have sup r* € 7. If *r Π y € / then we have

c - {o/n j>) n b) u ^ = \{χ n *) u ^ π \(y n *) u d

fl^^^ίl^U^ί' and <2 ^ (3; Π b) (J ̂ ^έ are clear. Since c is a meet-
irreducible element in [a, b] then we have

c = ( x f) b ) U c o r c = ( y f) b ) U c .
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And hence we obtain x € / or y € /. Thus / is a CP-ideal such that a € I
and b <ηΞ_ I.

Analogously we can prove the fact that if a join-irreducible element exists,
then there exists a dual CP-ideal / such that a ζjz I and b € 7. Therefore, by
Lemma 1 of Chapter I, L is a To"space.

From the proof of the theorem above, we can conclude the theorem
below.

THEOREM 7. A lattice L is a Tλ-space with respect to its CP-ideal
topology if and only if for every a < b9 [a, b] contains both a join-
irreducible element, different from a, in [a, b] and a meet-irreducible element
different from b, in [a, b].

THEOREM 8. A lattice L is a T2-space with respect to its CP-ideal
topology if and only if for a < b there exists a finite number of join-
irreducible elements c~l different from a and meet-irreducible elements ck

different from b such that

PROOF. We first show that the condition above is necessary. To prove
this, suppose that L is a T2-space. By § 2 Lemma 3, L is covered by a finite
number of elements of C $ which contain at most one of a and b* Then by
Lemma 1 we have the necessity of the condition above.

We shall next prove the sufficiency of the condition above. Let us suppose
that for a < b,

Now we put Ik = \x \x Π b S ck\ and Tt= \x\x{] a>.7t\. Then L = (V Ik) V

(V /<). In fact, if x 6 L then a ^ (x U a) Π b ^ b. Hence there exists a

number k such that (x (J a) Π b € [a, Cj~\ or (x [j a) f] b € [ck, b]. If (x U a)
Π b € [a, c j then (x f] b) U a U ck = ck : x Π b S. ck hence x € Ik. If (Λ: U a)

Π i € [rΛ, έ] then x € 7Λ. Both Ik and 7f contain at most one of a and b.

On the other hand it is easily shown that Ik is a CP-ideal and It is a dual
CP-ideal. Hence by § 2 Lemma 3 L is a T2-space.

EXAMPLE 5. In L 4 of § 1 Ex. 1 we put # = (0, 0) and b = (1, 1). The set
of all meet-irreducible elements is \{x,y)\y — 1 | and the set of all join-
irreducible elements is \(x, y)\x — Oj. Therefore the lattice L 4 is not a T 2 -
space. In fact, no vicinity of (1,0) is covered by a finite number of C $ .
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COROLLARY. If a lattice L of finite length is distributive then it is a
Ts-space with respect to its CP-ideal topology.

PROOF. Suppose that L is distributive, then L is an infinitely distributive
lattice. It is known that every distributive lattice of finite length has at most
a finite number of irreducible elements. (See G. Birkhoff [1] p. 139 Lemma 2)
For a < b, each element, which is covered by b, is a meet-irreducible element,
and each element, which covers a, is a join-irreducible element in [a, b\ Hence
by Theorem 8 L is a T2-space. By Theorem 4 L is a T3-space.

COROLLARY. If a lattice L of finite length is distributive, then L is a
T3-space with respect to its MP-ideal topology.

PROOF. In a lattice L of finite lengih, CP-ideal and MP-ideal are
equivalent. In fact, every ideal I is expressed by I = [0, a] for some a of L,
and prime ideal [0, a] is a CP-and MP-ideal.

7. Bicompactness. O. Frink proved in his paper [3] that complete lattices
are bicompact with respect to its "Interval topology". I defined uIdeal topologies
of lattices" in a previous paper and proved that each bounded closed set of a
conditionally complete lattice is bicompact with respect to its "Ideal topology".
But this proposition is not true for the other topologies which are defined by
many writers. This proposition is important on its application.

In this section we shall prove that the proposition above is true for CP-
ideal topologies. The proof of this proposition follows by essentially the same
argument that was given for [8], [18] if we notice that I f\ [a,b] is represented
as [d, c].

THEOREM 9. Let L be a conditionally complete lattice. If a closed
subset M of L with a CP-ideal topology is bounded, then M is bicompact.
In particular, each complete lattice is bicompact in its CP-ideal topology.

PROOF. TO prove this theorem it is sufficient that if 3*' is any collection
of closed sets having the finite intersection property and £?' contains M, then
there exists a common point to all members of %'.

Since M is a bounded set, there exist two elements a and b such that a
< x <; b f or all x € M. If Fy € & then it can be expressed by Fy = Λ

a,
na

V 72β, where He € C$. We can extend $ to be maximal by Zorn's lemma

and call the extended callection $. From the property of $ we have V 7«β €

g for all a. If A V B € $, then by the property of $ we have A € 5 or B
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€ ft. Therefore, for each a there exists β such that Γaβ € ft, which is denoted
by II. Then we have

FγΞ2 All k έ J S M a n d ΛF y Ξ> Λ Λ U
y a

By M € & then [0, £] € 5 , and then Γa Λ [a, *] € ft. By § 5 Lemma 1
and its dual

72 Λ [Λ, b~] = [<Γ«γ, Λγ].

By the finite intersection properties of ft, [cΛ y, <iΛγ] Λ [tyδ, dβs] =4= Φ Then
we have

cΛy ^ ^ θ for all a, β, y and δ.

Since L is conditionally complete there exists U cΛy. Therefore we have

ΛFy ^ U CΛT

This proves the theorem.

Let S/ be the set of all real valued continuous functions defined on [0, 1]
of R9 in which x <Ξ y if and only if x(t) 5j j/(/) for all £ of [0, 1]. It is well
known that 5 is a vector lattice. Let ft be the set of linear continuous
functionals on ©-, in which f^giί and only if f(x) <J g(χ) for all x of (£.
Then it is well known that ft is a vector lattice and a closed subset of R®
with its weak topology : the topology taking sets of type \f\ \f(x0) — g(xo) I
< 8\ as a sub-basis for open set (See [15]). Then the following theorem is
established.

COROLLARY. A subset \f\ \f\ ^ 1, / € ft} of ft is bicompact. More gene-
rally, for any fx € R® and f2eR*a subset {f\fx ^f^f29 f € ft} of ft is
a bicompact set.

PROOF. By Chapter 1 § 5 Corollary 3 of Theorem 5, the weak topology
of R^ and the CP-ideal topology of R® are homeomorphic. Now we have

= Λ \ M

Hence \f\fι SfS.fτ\ is a closed set. Therefore j/l/i ^/5Ξ/ 2 j Λtf is a

bounded closed subset of i?K. Thus ί/l/j <i/ίΞ/2} Λtί is bicompact. In particular

i/| I/I ϊ£ l ! Λ 3f - ί/| - 1 ^ / ^ 1} Λ 3r is bicompact (See [l] pp. 61-63).
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Chapter III Commutative L-Groups

We shall bs concerned below with lattice ordered group (/-group), in the
following sense.

DEFINITION. An l-group G is (i) a lattice (ii) a group, in which (iii) the
inclusion relation is invariant under all group-translations x -» a f x + b.

A vector lattice is a vector space V with real scalars which an /-group
under addition, and which for any positive scalar λ, x —> \x is an automor-
phism.

To simplify the statement of theorems, we shall always assume, unless
specifically stated, operation is commutative. We shall use the additive notation
for group operation, and the notations and terminologies of G. Birkhoff's
"Lattice theory" [pp. 214-258].

8. Formulae. We shall extract following formulae from G. Birkhoff's
"Lattice theory" and omit the proofs (See [ 5 ] pp. 219 and 231 ).

In any /-group (not necessary commutative) we have the following basic
algebraic rules.

(0) a - (x Π y) + b = (a - x + b) U {a - y + b);
a - {a Π b) + b = b U a.

(0') a - (x U y) + b = {a - x -r b) Π (α - y + b);
a - (a U b) + b = b Π a.

(1) Any /-group is distributive (See [ 5 ] p. 219 Th. 5).
(2) If one of sup xΛ and inf (— xa) exists, then the other one exists and

a a

— sup xΛ = inf (— xa).
a a

(3) If one of U oca and (J (# + Xa) exists then the other one exists and

a + sup Xa, = sup (a + xΛ). Analogously, a + inf xa = inf (a + Xa)-
a a a a

(4) If we put a+ = a (J 0, a~ = a Π 0 then a = a+ + a'.
In any commutative /-group we have the following formulae.

(5) If sup Xcc exists then sup (x* Π a) exists and
a cύ

(sup xa) Π a = sup Or. f] β). (See [22] Th.7 or [5] p. 231).

(6) x+y = xl)y ± x ()y (See [ 5 ] p. 219).

LEMMA 1. In a commutive l-group G, we have the following formulae,

x U y + x U y = 2 x U 2;y, 2 (.z Π j>) = 2 x Π 2;y.

More generally, we have

sup .r* = x implies sup 2 .rα = 2 .r,
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inf Xoc = y implies inf 2 xa = 2 y.

PROOF. We need only prove that sup xa = x implies sup 2xΛ — 2x, 2xΛ

a a

^ 2 x is clear. For any c such that 2 xa Ŝ c for all a, we shall show 2 x ^ c.
By (3) we have

2x= SUp Xa + SUp Tβ = SUp (xa + SUp Xβ) = SUp SUp (.Tβ 4- .Tβ).
α j3 α β a a

By (6), (3) we have
x + y = (x Όy) + (x f) y) = { x + (x f) y)} U b> + (x Π y)}

Hence we get xa + xβ ^ 2^a U 2 ̂  ^ c. Therefore we obtain 2 a : ^ c . Thus,
sup 2 xa = 2x.

Ob

9. Continuity of Group Operations. In this section we shall prove that
operations are continuous in the CP- ideal topology. To prove this, in an l-
group it is sufficient to show that for any neighborhood U {a ± b) of a±b
there exist a neighborhood U (α) of a and a neighborhood U (b) of b such
that U {a ± b) 2 U {a) ± U (b).

In a vector lattice, we shall show that for U (λ>a) there are U (λ), £/(#)
such that U (\a)^U (λ) {7 (α). Any neighborhood [/ is represented by

f/ = ( Λ V 7c*)c= V Λ 72/,, where Iaβ € Sβ.
α β = ι ob β=i

By 0) and 3) we can easily show the following lemma.

LEMMA 2. a) In any l-group, if I is an element of C5β or M*$ then
each of I' -f a and — I is an element of C*$ or M$9 respectively.

b) In a vector lattice, if I is an element of Cίβ, M% or 5β then for a
real number λ, λ/ is an element of C$, M $ or 5)3, respectively.

DEFINITION. A P-ideal topology is said to be a PG-ideal topology if and
only if

(G) i) I € $ implies I + a € 5J5 and -I € %
ii) If {/«} is a chain in 5β and each of {/«} is an ideal, then

Λ 7* € %
Ob

Similarly, we define the concepts of ZVideal, ZVfamily.
By this definition and Lemma 2, each of CP- and MP- ideal topology is a

PG- ideal topology.

LEMMA 3. In an I-group G with its PG'ideal topology,
a) any neighborhood of an element a of G can be written in the

form U + a where U is a neighborhood of zero element 0 of G,
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b) — U is a neighborhood of 0.

THEOREM lO. In any commutative l-group, the group operations are
continuous with respect to its CP-ideal topology.

PROOF. By Lemma 3, it is sufficient to show that for U + x — y there
exist Uι + x, U2 + y such that

U + (x - y) 2 (CΛ + x) ~ (U2 + y): U 3 Uτ - U2,

where U, Ux and U2 are neighborhoods of 0. Since — U2 is a neighborhood
of 0, we shall show that for any neighborhood U of 0 there exists a neighbor-
hood CΛ of 0 such that U32Uι.

Case 1) U° is a dual CP-ideal /. Let Iλ be the set of all x such that
2x € Uc: 7X = \x\2x € Uc\. lί x € Iτ and * ^ y, then 2x € ί7c and 2x
^ 23;. Hence we have 2y € ί7 c : y € /^ If Λ:Λ € 7X and inf α:α = x, then 2xΛ

OS

€ £/c. By Lemma 1 inf 2 .r* = 2 x. Since C7C is a dual CP-ideal, we have
a

2 x € Uc: x € Λ. If Λ: U y € 715 then 2 Or U 3̂ ) € Uc. By Lemma 1, 2 x U
23; € C7C. Hence, we have 2x € Uc or 23; € C7C: x € ^ or 3/ € Λ Thus we
conclude that Ix is a dual CP-ideal.
Now put Γi = Uu then Ui is a neighborhood of 0. If x € Ϊ7i, y € C7i, then,
from the fact that 2 X R 2 3 ; ^ X + 3 ; ^ 2 J : U 2 3 / (See Lemma 1) 2 .r € Ϊ7 and
23; € £7, we have :r + y € ?7. Therefore we obtain 2U1

(Ξ=U.
Case 2) £7° is a CP-ideal. This case is dual of case 1).
Case 3) U is any neighborhood of 0. Uc can be written in the form Uc

= Λ V Lβ U = V Λ JV
α )3-l α β = l

ncc

Since ί7 is a neighborhood of 0, then there exists a0 such that Λ Γaoβ 3 0.
β = l

By case 1) and 2) for each Iloβ there exists a neighborhood Ulβ of 0 such
no,

that 2 i7lj3 a Γccφ. We put C/i = Λ Ulβ then ^ is a neighborhood of 0 and

2Ut^U.
This proves the theorem.

THEOREM l l . In any vector lattice with its CP-ideal topology,
a) for fixed λ0, λ o r is continuous,
b) if a> 0, Sn I 0, imply aSn \ 0, then λx is continuous, where 6n9 λ

are real numbers.

PROOF. Suppose that U is a neighborhood of 0 and λ0 a real number.
We can easily prove that λ0C/ is a neighborhood of 0. Let us denote Uλ =
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1

λo
U, then λ0 (JJi Λ x)ξ=U + Xox, completing the proof of a).

Next we shall prove b). Let U + Xoa be a neighborhood of λ0 a. Suppose

that Uc is a dual CP-ideal 7. By case 1) of Theorem 10 there exists a dual

CP-ideal 72 such that 3 T{ S= Γ. From the hypothesis of b), there exists a

positive real number 8 such that

8a+ e n and 8 ( - a)+ € 7f.

Now put Uι = —II Λ — 7 ? Λ — 7 ? Λ — 7 ? and y = ( - 6, 8).
8 8 \Q XQ

Then ί/Ί is a neighborhood of 0, and if x € UΊ then — .r € ί/i Moreover,

we have x+ € UΊ and .r" € CΛ

If 0 ^ λ < £, then we have

λx <^-\x+ < 8x+ € SUi : 6 x+ € 7?: Xx € 7f.

If — £ < λ < 0, then we have

λ^ = ( - X) (_ x) ^ e ( - ^:)+ € 7?: λ r € 7?.

Thus we have that if x € U, and λ € F then λ r € 7f. Similarly, by O+) <S €
7Γ and ( - Λ)+ 8 € 7ί we have aλ € 7? for all λ € 7 . By α: € ίΛ, we have λ0

x € It. Therefore if x € Uλ and λ € V, then we have (x + α) (λ + λ0) = xX

+ ;rλ0 + αλ + aX0 € iϊ + 7f + 7? + βλ0 ^ 7C + aX0.

Thus we have {Uι + Λ) (V + λ0) Q i7 + αλ0.

Dually, the case such that Uc is a CP-ideal, can be proved. In the same way

as the proof of Theorem 10, we can prove the case such that U is any neigh-

borhood of 0.

10. Structure of L-Groups; Representation. In this section we shall

be concerned with the representation of a commutative /-group and the study of

its properties.

LEMMA 1. The family of all minimal PG-ideals containing a fixed

element a is represented by \IΛ + a\a € D), where \IΛ\cL € D\ is the family

of all minimal PG-ideals containing 0.

PROOF. IΛ + a is a TVideal containing a. Let I (a) be a minimal TVideal

containing a and contained in IΛ + a. Then we have 0 € I (a) — a ^ 7*. Since
Ia is a minimal TVideal containing 0, then we have I {a) — a = Ia : I (a) = 7*
+ a. Conversely, let 7 be any minimal F^-ideal containing a. There exists
a such that IΛ gΞ= 7 — a, then we have IΛ + a £ 7. By the hypothesis of 7α

we have 7α + a — I.

LEMMA 2. In any I-group with its PG-ideal topology we have
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a) a<^b implies IΛ 4- a Q Ia + b, where Ia is a PG-ideal,
b) a family {/« + a\a €ϊ G\ is a chain in set inclusion.

PROOF. We shall only prove b). Let a and b be two elements of G. We
put c = a Π b. By a) we get h + c S= h. + a and 7Λ + c g= 7« + έ. Since 7α

-fc is a prime-ideal and includes c, hence we have <z € 7* + c or b € 7Λ + c.
If a € 7α + £ then we have 7α + c = I* + a, because IΛ + a is a. minimal PG-
ideal containing α. ΐn a similar way, if b € Iα + c then we have 7α + c = 7α

+ έ. Thus we obtain h + α Q 7Λ 4- έ or h + b ξ= Iα + α. We can easily
show the following lemma.

LEMMA 3. 7/ ?w define ® and > , m ίA^ following sense, (7« + α ) φ
(7Λ + b) = 7α(α + i), 7α + α > IΛ + έ if ΛWJ OWZJ; if Ia + a^IΛ + b, then
a family [IΛ + a\a € G} w α chain I-group with respect to® and ^ .

In this chain /-group, it is clear that

(/. + a) U (/• + b) = h + a U ί, (/• + α) Π (/• + b) = 7Λ + α Π έ.

By Lemma 3 the cardinal product (direct product) U \Ia + a\a€G] is a com-
aeD

mutative /-group. Now if we put

f(a) = (7. + a\a£ D)eU \L + α | α € G},

then we have
f(a U A) = / (« ) Uf(b), f(a f] b) = f(a) f] f(b)

and f(a + b)=f

From this fact we can conclude the following theorem.

THEOREM 12. Every commutative l-group G is homomorphic with a

sub-group of cardinal product {direct product) H 17Λ + a \ a € G ( of all
aeD

chain I-groups \Ia + a\a € G\, where 7Λ is a minimal PG-ideal containing 0.

We can easily prove the following lemma with respect to the kernel of f.

LEMMA 4. a) \x\I* + x = h\ is a sub-group of G, which is denoted
by Gt

b) x € G* and y € Gl imply [x Π y, x Όyl ̂  Gt
c) Gl = h/\-Ic,
d) Λ GZ is a sub-group of G, which is written G*, andG* =/~ 1 (0).

a

THEOREM 12'. Every commutative l-group is isomorphic with a sub-

group of the cardinal product {direct products) \\ {I* f a\a € G) of chain
aD
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I-groups. (See [12], [13], [14]).

PROOF. Since an /-group G is a distributive lattice, by Theorem 2' G is
a 7\-space with respect to its MP-ideal topology. Therefore by Lemma 4c)
kernel G* has only one element 0.

THEOREM 13. a) The kernel G* is a minimal closed set in the PG-
ideal topology.

b) M is a minimal closed set if and only if there exists x such that
M = G* + x.

c) {G* 4- a\a € G) is a partition of G.

PROOF. Since a) and c) is clear, we shall only show b). It is clear that

the minimal closed set containing a is set Λ ( ± Ia + a). Hence we have
CύeD

Λ ( ± h + a) = (Λ ± 7.) + a = G* + x.

Chapter IV Conditionally Complete L-Groups

In this chapter we shall confine ourselves to the case such that /-groups
are conditionally complete and topologies are CP-ideal topologies. A conditio-
nally complete /-group is infinitely distributive and commutative (See [11],
[14], [22]). To study this /-groups we shall introduce the concept of coordinate
axes. In Chapter III we have defined the notion of \IΛ\a^D) of CP-(MP-)
ideal topologies. In this chapter we shall be concerned with the connection
between the coordinate system and the family j Ia \ a € D]. Using those properties
we shall give a representation of a Tί-space with respect to its CP-ideal
topology.

11. Introduction of Coordinate Systems.
DEFINITION. An interval [α, b~\ of a lattice is called a chain-interval if

and only if [α, b~\ is a chain. More generally, a chain M of a lattice is called
a chain-interval if and only if for any pair of x € M, y € M and x <2 y, [x.y]
is a chain and [x, y\ <[ M.

In any /-group G, we shall denote by 0 the family of all chain-intervals
Ca containing 0 which are contained in G+ = \x\x 2=: 0) , and Cι rg C2 means
that C2 includes C b as a set. Then O is a non-empty family (For | 0 | € D).
Suppose now that a sub-family \Ca\ of D is a chain. Then, the set union

V Ca is an element of D. Hence, by Zorn's lemma there exists a maximal
Oύ

chain-interval in G+. Similarly, there exists a maximal chain-interval contain-
ing given chain-interval.
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DEFINITION. We shall denote by A+ any maximal chain-interval containing
0 which contains at least two elements. Let us denote by A" the set of a such
that — a € A+. The set union of A4' and A~ is called a coordinate axis, and
denoted by A,

The family of all coordinate axes AΛ is called a coordinate system, and
written Si = \AΛ\a € D) (SI may be φ).

It is clear that A# is a chain-interval. Now we shall prove the following
lemma.

LEMMA I. Every coordinate axis A is a chain-interval-

PROOF. TO prove this, it is sufficient to show that for any a > 0, [—a, a]
S= A. Let x be an element of [— a, a]. Then we have x = x+ + x", a 2^ x+

^ 0 and a > - (ΛΓ) > 0.
Since [0, a] is a chain-interval, we have χ+ <̂  — x~ or *r+ > — x~. Hence

we get — a ^_ x ^ 0 or a >. x > 0. Thus we have x €Ξ A, which proves a).

LEMMA 2. //* £o£/z Ax and A2 are coordinate axes such that Aγ 4= A29

then the set intersection Aι/\A2 contains only 0.

PROOF. If A! =j= A2 then since both Af and At are maximal elements
of D, there are two elements a1 and a2 such that aL € At, aλ ^ At, a2 ^ At
and α2 € A2

+. We put έ = ax Π Λ2, then b € At Λ At, and 0 ^ aγ — b ^ al9

0 ^b ^ ax. Since Ax is a chain-interval we have ax — b ^b or aγ — b^b\
«! > 2 έ or ^! > 2 i . Similarly, we have a2 ^2b or a2^>2b. From the four
possible cases we have £ = 0.

Thus we have Ax Λ A2 = 0.

LEMMA 3. A coordinate axis A is a subgroup of G.

PROOF. By Lemma 2 we can prove that if a is an element of A then 2 α
is contained in A. Now, since a € A implies — a € A, we shall show that
the sum b + c of elements έ and £, both of which are contained in A, is also
an element of A. To show this we put max [b, c, — b, — c] = a. Then a € A,
hence H c € [ - 2 α , 2 α ] ^ i . Thus A is a subgroup of G.

12. Properties of \IΛ\a € Z)}. In Lemmas 2 and 3 Chapter III we have
discussed the properties of \Ia\a € D\. We can easily prove the following
lemmas.

LEMMA 4. If [b,c] is a chain and b < c, then I = \x\x Π c ^ b\ is
a minimal CP-ideal containing b and a minimal MP-ideal containing b.

LEMMA 5. a) Let I be a CP-ideal If a € I, b ^ I, a < b and sup |[α,
b~\ Λ /} = c, then [c, έ] is a chain-interval.
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b) If c is the cross element of a CP-ίdeal I and a chain-interval \_c,b\
then we have 1 = \x\x Π b^c}.

LEMMA β. If [a, c] is a chain-interval and a < b < c, then there exists
y such that I2 = I{ + y, where Iλ = \x\x Π c Ŝ a\ and I2 = \x\x Π c ^ b\.

LEMMA 7. If !# -f fl3 Iβ then a = β, where both Ia and 1$ are elem-
ents of \Ia\a € D) (See § 10 Lemma 2).

13. Axes and \Ia \a € D\. In this section we shall be concerned with
connection between the coordinate system SI and the family [IΛ\cc €: D\ of
all minimal CP-ideals containing 0.

THEOREM 14. Let G be a conditionally complete l-group. Then we
have

a) if A is a coordinate axis, then for any a there exists only one a
such that A and Ia + a intersect,

b) if Ia + aφG then there exists only one β such that IΛ + a and
Aβ intersect,where Aβ € SI.

PROOF. We shall first prove a). Let b be an element of A such that
b > 0.
We put Ia = \x\x Π * ^ 0 } . Then

I a + a = \χ + a \ ( b + a ) Π ( x + a ) S . a] = \ x \ ( b + a ) Π x ^ a } .

Case 1) a > 0. Let c be the least uppsr bound of [0, a] Λ A, which
exists. By Lemma 3, we have b + c € A. If b + c € Ia 4- a then (b + c) U
a € I* + a. By a <? {b + c) U a <: b + a, we have (3 + c) U <z = <z: b + c ^ a
which contradicts the definition of c. Hence b + c ^ IΛ + a.

Case 2) a ^ 0. Let J be the greatest lower bound of [a, 0] Λ A. By
Lemma 3, we have — b + d € A. By — b + d ^ a [} (— b + d) ^ d, we
get a U (~ £ + d) = d, hence (a - d) U ( ~ *) = 0 : (d - a) Π b = 0 : d Π (b
Λ- a) = a. Thus d € Ia + a.

Case 3) # is any element of G. By § 10 Lemma 2, we have

By Case 1) and 2) Ia Λ- a and A intersect.
We shall next prove b). Since IΛ + a =4= G, /« + <z+ =f= G. Hence there

exists b such that b > 0 and /Λ + α+ ^ &. We put sup \[a~, £] Λ (/* + a*)\
= c and sup |[^~,δ] Λ (la + <z~)| = d. By Lemma 5, [<i, b] is a chain-interval
and

h + a+ = |J: |Λ: Π έ ^ c } , 7β + Λ" = {Λ:|Λ: Π b^d\.

Let B be a maximal chain-interval containing [d, b~\. We put e = sup|(jB — c)
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Λ [0, c] 1. Also it is clear that B — c is an axis. Let m be any element of
B — c such that m > 0. Then m + e Ξ̂ Ia + a and m + £ € B — c.

By Ia + a' k^ Ia + a^Ia + a+, we have (7« + Λ) Λ (.B — c) 3 (<f — c)
and (7« + a)c Λ (JB — c) 3 (m + e). Therefore Ia + a and J5 — c intersect.

Suppose that both coordinate axes ^ and A2 intersect with Ia -\- a whose
cross elements are denoted by rnx and m2, respectively. Let (7* -f- <z)c Λ Ax 3
mί, (7α + df Λ ^42 3 mi. If 0€7α + α then by Lemma 2 nι[ Π w! = 0 which
is a contradiction to Ia + α ^ m[, m* ̂  IΛ + a. If 0 ^ IΛ + a then mj U w2

= 0 which is a contradiction to 7α + <z 3 mι and 7α + a 3 m2. This proves b).

COROLLARY, a) If Aa and Ia + a intersect, then for any b, Aa and
la, Λ- b intersect.

b) If A* and Ia + a intersect, then for any b, Aa + b and Ia + a
intersect.

PROOF. Suppose that A* and 7Λ + a intersect and the cross element is c.
By Theorem 14 there exists β such that AΛ and Iβ + b intersect. Let c be
the cross element of Aa and Iβ + b. By Lemma 6 if c §§ c' then IΛ Λ~ aWIβ

+ £. By Lemma 7 we have a = β, hence Aa and IΛ Λ b intersect.
Next we shall show that b) is true. By a) At and IΛ + a — b intersect,

therefore it is clear that A* + b and Ia + a intersect.
NOTE . From theorems above, a CP-ideal IΛ corresponds to only one coor-

dinate axis A, which is written Aa. Then the family J7Λ |7α!4=Li of all
CP-ideals containing 0 and the family \Aa\ of all coordinate axes have a
one-to-one correspondence. Therefore we may denote \Ia\a^D\ and {Aa\a€D\.
From this coαvension, IΛ and AΛ having the same index necessarily intersect.

14. Conditions of Topologies.
THEOREM 15. In a conditionally complete l-group G with its CP-ideal

topology, To-, Tr, T2- and T3-space are equivalent.

PROOF. By Theorem 4 it is sufficient to show that any T0-space is a
T2-space. Let a <b. We may suppose that there exists a join-irreducible
element c in [a%b] (See Th.6). We can easily show that \_a,c] is a chain.

Case 1) there exists e such that a < e < c. Let us denote sets \x\x Π
c ^ e\ and \x\x (J a^>e\ by 7I and 72, respectively.

Case 2) there exists no e such that a < e <£. Let us denote sets {^|x
Π c ^ α j and \x\x {] a~>c] by 7X and 72, respectively. Then, 7j is a CP-

ideal containing no b and 72 a dual CP-ideal containing no a. And we have
I\ V 72 = L.

Dually, we can prove the case such that there exists a meet-irreducible
element c in [a, b]. By §2 Lemma 3, G is a T2-space, completing the proof.
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From the proof of the theorem above we obtain the following corollary.

COROLLARY. In any conditionally complete l-group G with Us CP-ideal
topology, G is a To- (T3-) space if and only if for a <b there exist
elements c and d such that [c, d] is a chain-interval and a ^ c < d ^b.

15. Representation, Let HA* be the cardinal (direct) product of all
oo*D

coordinate axes. By Theorem 14, a coordinate axis ΆΛ and the CP-ideal Ia +
a intersect. Let aΛ be the cross element of Aa and IΛ + a. Define a mapping
/ as follows; for any element of G such that a ί> 0, f(a) = (aa | a € D).

THEOREM 16. If a conditionally complete l-group G is a TVspace with
respect to its CP-ideal topology then G is isomorphic with a perfect sublattίce

of the cardinal {direct) product J I Aa of conditionally complete chain l-

groups.

PROOF. By § 10 Lemma 2 we have either Ia + a^ I* + b or/« + α g / α

•f b. We may suppose that Ia + <z 2 I a + b. Then we have Ia Λ- a 3 a \} b.
Hence by § 10 Lemma 2, /« + a = /« + {a U b). Thus we obtain aa = {a U
b)*', {a U b)Λ = aa U bΛ. Then we have

f(a U b) = ((α U i ) |α € D) = (αα U 6 |α € D)

= (aΛ\a € D) Π (6β |Λ € D) =/(α) U/(έ).

In a similar way we have f(a Π 6) = Λa) Π /(£) and / ( α + έ) =/(α) +

We shall now show that the mapping f is one-to-one. From the hypo-
thesis that G is a T2 -space, for any pair of elements a and b of G there is a
minimal CP-ideal / such that I B a and Iz^b. There exists sup \[a f] b,h\
Λ /}, which is denoted by c. Then [c9b'] is a chain-interval. By Lemma 6 and
§ 10 Lemma 1 there is a such that / = la + c, where Ia is a minimal CP-
ideal containing 0. Therefore aΛ Λ ba\

aφb <r>f{a) φf(b); sup aa = α.
a

We shall show that the set \{aa\a € Z))|<z € G} is a perfect sublattice

of H^l α . To prove this it is sufficient to show that if aa <Ξ g (a) ^ ba for all

ci € Z) then there exists an element c of G such that ca = # (#) for all Λ €
£). By the hypothesis there exists sup g(ά), which is written c. Then by Lemma

CO

8 we have a <^c ̂  b. Also ί^(α) ̂ S cα for all α € Zλ By Lemma 2 aΛ Π ^ =
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0 for all a =f= 0, hence we have

9(*o) Π (U g(a)) = U \g(a0) Π g(a)} = 0 = cao Π (U fl g(a)\

9(eh) U (U <7(B)) = c = cx U (U ?(«)) = sup cα.

Since G is distributive, we have g(ao) = cao. Thus G+ is lattice-isomorphic

with a perfect sublattice of Π ^ U By [5] p. 214 Th. 1, our theorem is true.
ccej)

THEOREM 17. A conditionally complete I-group is a Ύx space if and

only if G is isomorphic with a perfect sublattice of H AΛ.
aejj

PROOF. By the above note, the condition is necessary. Conversely, suppose

that the condition is fulfilled. By Theorem 5 Cor. 4, H AΛ is a 7Vspace. By
CCf-J)

Theorem 15 Cor., for any (aΛ \ a € D) < (bΛ | a € D) there is a chain-interval.
By the Theorem 15 Cor., f(G) is a T1 -space with respect to its CP-ideal top-
ology.

NOTE. This theorem can be proved from Th. 12'.
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