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A simple calculus of variations problem involving second derivatives, i. e.,
the problem of minimizing

J= \ f(x, v, y , v") dx

in a class of admissible functions, y ~ y(x), does not seem to have been treated
very fully in the literature [1]. Possibly this is because the problem can be
reduced to one involving only first order derivatives by considering the problem
of minimizing

I f(x,y,z,z')dx

in a class of admissible functions, y = y(x), z = z(x\ satisfying the differential
equation, y — z = 0. However, the problem treated this way, as a so-called
Lagrange problem, is not necessarily equivalent to the original problem [2].
Possibly, too, it is assumed that the usual method of deriving necessary
conditions for problems involving only first order derivatives can be used just
as easily to obtain similar conditions for higher order problems. The usual
method would be to derive the Euler equation

fv ~ dfy/dx + d2fy»/dx2 = 0

and then derive the Weierstrass and Legendre conditions by methods depend-
ing on the validity of the Euler equation. There is some disadvantage in
this as Graves [3] has pointed out He has derived the Weierstrass condition
for problems involving first order derivatives without making use of the Euler
equation. It would be convenient to have necessary conditions for problems
involving second order derivatives derived directly and independently.

By using a special variation we obtain a necessary condition which yields
the Weierstrass condition [4]. Another variation gives a generalization of the
Legendre condition by assuming only the existence of the generalized partial
derivative fy"y>'. Still another variation gives the usual Euler equation in
integrated form [5]. These variations were suggested by polygonal varia-
tions used for problems involving first order derivatives [6]. The proofs are
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quite elementary. No use is made of the notion of fields or Hubert
invariant integral. Only simple limit arguments are used.

It will be assumed that f(x,y,y',y") is continuous in a region W of sets
of values (x,y9y ,y"). Sets of values in W are called admissible sets. Arcs,
y = y(,x\ of class Ό'Xy" piece-wise continuous) such that y(a) = c9y(b) = d,
y\ά) = p9 y\b) = q are called admissible arcs. A variation η{x) containing
a parameter £ is called weak if η(x) and its first and second derivatives with
respect to x approach zero with £. It is called strong if η" does not ap-
proach zero with £.

1. A generalization of the Legendre condition.

THEOREM. If f(x,y,y',y") is continuous and if y = y(x) makes J a
weak relative minimum in the class of admissible arcs and if

L = l'ιm[f(x,y(x)9y'(x),y'Xχ) 4- m)

-2f(x,y(x),yXx),y"(x))

+ f(χ,y(χ\yXχ\y"(χ) -m)ym2

exists for a ^ x <Ξ b, then at a point of continuity of y", L > 0.

The proof is given first for x = a which we assume a point of continuity
of y'. With m to approach zero, η(x) is defined as follows : η(x) = m(x — a),
a <; x <̂  a + S; η\x)= m{a -f 28 - x), a + £ <Ξ x <Ξ a + 3£; η\x) = m{x - a
— 46), a + 3£ ^ x ^ a + 4£; η'(x)=. 0, a + 4S^x^b. Then ^(Λ:) is the unique
function which vanishes at x = a and whose derivative is η(x). Note that
η(a) = η(b) =. η\a) = η\b) — 0. From the continuity of f,y,y\ and y"9 for
every value of m there exists an £ (m) > 0 with S(m) < \m\ such that if
\x - α| < 4 £ , | δ | < £, and | ρ | < £ then

\f(x,y(x) + δ, y\x) + p, y"(x) + m) - f(a, y(a\yXa\y'Xa) + m)\ < m\

<*) \Ax,y(x) + δ, yXx) + ft 3;"(j?) - m) - / ( Λ , ̂ λ ^ X ^ ) ^ " ^ ) - w)| < m4,

\Ka,y(a),yXa),yXά)) - f(x,y(x),yXx),y'Xx))\ < m4.

This defines £ in terms of m. If y = J;(J:) makes J a weak relative minimum,
and the following limit exists, it must be non negative, i. e.,

1= lim( [\f(x,y(x) + η{x\ y\x) + η\x\ y\x) + vXx))
w->0 ( Ja

-f(χ,yiχ\ y\χ\ y'Xχϊί\ dχ\/βm2 ^ 0.

From the mean value theorem for integrals
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= lim—-
m->o rn

+f(β, y(β) + <β), y(β) + V\β\ y"(β) ~ ™) -f(β y(β), /(/?), y'\β))

+/(% yQϊ) + V(Ύ)> y'(y) + VXΎ), y'Xi) ~ m) -/(γ, y(y\ /(y), yXyj)

+f (θ, y(θ) + η{θ\yXθ) + ηXθ), y'Xθ) + m) -f(θ, y(θ), yXθ\ y'Xθ)) \

where a <Ξa <Ξ a + 89 a + 8<:β^a + 28, a + 2€ ^ 7 ^ a + 38, a + 3S ^
θ ^ a + 4£. Now add and subtract

a),yXa\ y"(a) + m) ~ 4-f(a9y(a)9 yXά), y'Xa))

+ 2f(a,y(a), yXa), y'Xa) - m)

to the quantity inside the braces above, and regroup to obtain

/ = lim \2f{a9y(a),yXa\ y'Xa) + m) — 4.f(a,y(a), yXa\y"(a))
m->0

+ 2f(a,y(ά), yXa)9 y"(a) - m) + B\/m2

where B is the sum of eight terms each of which satisfies one of the condi-
tions (*) and hence the limit as m approaches zero of B/m2 equals zero. We
have then that / = 2L. Since 7 ^ 0 , L > 0. The conclusion of the theorem
has been shown to hold at the left hand end point x = a. Since y = y(x)
minimizes J on any subinterval the same conclusion holds for a replaced by
any value of x between a and b9 at which y" is continuous and the theorem
has been proved. If fV"V*> exists, it is equal to L.

2. A generalization of the Weierstrass condition.

THEOREM. If f(x,y,y',y") is continuous and if y = y{x) makes J a
minimum in the class of admissible arcs, then at a point of continuity of
y"(x\ for real numbers m9 k, mk > 0,

y"+ m) + f(x,y9y ,y"- k)m/k- (l + m/k)f(x,y9y',y")>0.

This is proved first for the left hand end point x = a as in § 1. We
define η(x) as follows : ^(x) = m(x —a), a ^ x Ŝ a + £ η(x) = mS —
k{x - a- S\ a + 6 ^x <Ξ a + £ + 2mS/k; η\x) = m(x - a - 28 - 2m8/k\
a + 8 + 2m8/k ^ x ^ a + 28 + 2m8/k; ηXx) = 0, a + 28 + 2 m8/k ^ x ^ b.
Then η(x) is the unique function which vanishes at x — a, and whose deriva-
tive is η{χ). Consider the curves C e : y = y(x) + y(x; m9 k, 8), Co : y = y(x).
For <S sufficiently small, Ce is admissible whenever Co is admissible. It is
easily seen that

lim [J(Ce) -
e - 0

for x = a. Since y = y(x) minimizes J on any subinterval the result is valid
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with a replaced by any value of x between a and b. The relation H>0
gives us the Weierstrass condition. For if y = y(x) makes J a strong relative
minimum, then if fy» exists, at a point of continuity of y",

lim H = f(x,y,y,y" + m) — f(x9y,y',y") - mfy>> (x,y,y,y") ^ 0.

If we put m = k, H > 0 also gives us the preceding generalized Legendre con-
dition. However, this establishes it as a necessary condition for a strong rela-
tive minimum, whereas the first discussion shows that it is necessary for a
weak relative minimum as well.

3. The Euler equation. By means of another special variation the
usual integrated form of the Euler equation can be obtained. For a fixed
δ > 0 and r, where a + 8 < r - δ < r < r + 8 < b - 8 < b , η\x) is defined

as follows :

η'(x) = (x — a)/8 for a <; x <: a + 8

η'(x) = l f o r α + δ < : x ^ r - δ

η\x) = (r - x)/8 for r - δ <Ξ x <Ξ r

η\x) = ( r - a - δ) (r - x)/(b - r - δ)δ for r ^ x % r + δ

,/(#) = (δ + α - r)/(jb -r-δ)ίorr + δ<:X<:b-S

η\x) = (r - a - S)(x - £)/(& - r -δ)δ for b - S^x^b.

The variation ^?(J:) is the unique function which vanishes at x = a and whose
derivative is η(x). Note that η(x) also vanishes at x = £, and that V(α)
= '̂(W = 0. Replace y,y\y" in J by y{x) + £??O), ^'(Λ:) + £v'(x)> and y'ϊa:)
+ £η"(x) and call the result /(£). It follows in the usual way that /(0) = 0
for all δ > 0.

I'(O) = ΐ\ηfy + Vfy>+ η"fv")dx = [\ϋη +fy,η")dx = 0

where we have set

G = fv> — I fy dx

to simplify the notation. Since this holds for all δ > 0

lim /'(0) = 0.
δ->0

If fy, fy>, and fV" are continuous the limits of the integrals of Gη taken over
the intervals [a, a + δ], [r — δ, r], [r, r + δ], [b — 8, b] are all zero. The limits
of the integrals of fv"η' taken over the intervals \a -f δ, r — δ], [r + δ, b — δ]
are also zero. The limits of the remaining integrals in /'(0) then give us
the following:
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lim IXO) = fcdx+f ΓG dx)(a - r)/(b -r) + fy<(a) - fy(r)

+ fv"(r) {a - r)/(b - r) + fv»(b) (r - a)/(b - r) = 0.

Now r was any point such that a < r < b. Replace r by x in the preceding
equation and multiply by b — x. By making use of the fact that

ΓG dx = Γ G dx + f G dx
Jb *b •'α

the Euler equation is obtained:

\ I fy dx dx — I fy dx + / „ " = cλ x + 6'2

where

(b - a)c1 = 1 fydx - I fy> dx + fy»(b) - fυ»(a)
**a •'α "a

(έ — a)c2 = — a J / /Ϊ/ ώ : — I /V <f.r — afy"(b) +
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