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The purpose of this paper is at first to characterize a 4zn-dimensional afh-
nely connected manifold (with or without torsion) whose restricted homogeneous
holonomy group is the real representation of the complex symplectic group Sp
(n, C) or one of its subgroups. And conversely, we discuss to introduce in a
4n-dimensional manifold an affine connection (with or without torsion) whose
restricted homogeneous holonomy group is the real representation of Sp(n, C)
or one of its subgroups.

The almost complex symtlectic manifold is equivalent to an almost qua-
ternion manifold (§ 3), but the natural affine connection (§4) in an almost
complex symplectic manifold is different from the natural affine connection
((@, ¥)-connection by Obata’s terminology, [5]) in an almost quaternion mani-
fold®. They coincide if and only if the affine connection is a metric connection
(with or without torsion) with respect to a related Riemannian metric (§ 3,

Definition).

1. Preliminary remarks. Let C,, be a complex 2n-dimensional linear
space. Complex symplectic group Sp(n,C) in C,, is the subgroup of GL(2n,C)
leaving invariant a bilinear form 2’ N w'*" = 2'w**" — 2**"w’ ¥ where (2%)
and (w*) (a = 1,...... ,2n) are vectors in C,,. Therefore if M,, is a complex
(2n, 2n)-matrix giving a transformation of Sp(n,C), then M,,J.n'M,, = Jon,
where ‘M,, denotes the transpose of M,, and J,, is a matrix such as J =
(__ lg,, EO">4). Conversely if M,, satisfies the above relation, then it is a matrix
giving a transformation of Sp(n, C).

Next, we consider the real representation of Sp(n, C) in a real 4n-dimen-
sional real linear space R*".

Put M = (MZ" ]l% ), where M,, denotes the complex conjugate of M,,,
2n

1) We shall show that this manifold must he necessarily an “almost complex symplectic
manifold” (§3).

2) Cf.Ehresmann {1J: Libermann (3], [4]; Obata (5].

3) S runs from | to #. In this paper we adopt the summation convention.

4) In this paper, Ey denctes a unit matrix of degree N.
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then M satisfies

- —iEn 0 — _iEZn 0 12— -
D w75 g, )m=(T0" B, ¢ =D
and
Jow ONp _ (Jen O

(2.2) (o 7o) = (77 10)

If we perform a complex transformation to the matrix I by a complex

C

regular matrix of the form v = ( 0 (%)’ then we obtain M =771 MWr =

(MZ" _O )and the matrix (J“ 0 > is transformed into an anti-symmetric
0 M, 0 Jen

O 0 ,
regular complex matrix of the form( 6 5 > (loyy =— 04,). And M satisfies
2n
t/a-z'n_O> ;_(0-271_0>
(13) (% Y = (% o)

Conversely, we can normalize this matrix M’ to a complex matrix M =

<1‘321|M02 7.> satisfying (1.2) by a suitable complex transformation.

Therefore, with respect to complex bases, a transformation I belonging
to the real representation of GL (2n,C) gives a transformation of the real
representation of Sp (n,C)if and only if it satisfies (1.3) where o,, is an anti-
symmetric regular complex matrix.

Suppose a complex matrix

1 E,, E,, 1 (E,, iE;,
e ) e ol _E)
n '\/ 2 _iEZ'n iEZn ? an /\/ Ezn —iEZn ’
then we have

M=Lomrs= (g g
where M,, = H,, + iK,,, H,, and K,, being real matrices of degree 2n and

M gives a transformation of the real representation of Sp(n, C) with respect
m )
to real bases. We also have real matrices F and F':

a9 —iE,, 0 1 0 E,,)
(14) F=I4n< Oz iE2n>I4}l - <—E2" 6 ’

o Jow 0Ny _ (Jon O>
(1.5) F—Lm(é J2n>I4n_<0 —Jan/
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) ®
These F and F satisfy

, I @ ® W@ o @
{1.6) FP=—E,,'F=—F FF)y=—(F F)
and on account of (1.1), (1.2), we see that

(1) 1) (2) )
(1.7) M7'FM=F ‘MFM=F.

Conversely, if a transformation M in a real 4 n-dimensional linear space

® @
R** transforms F, F of (1.4), (1.5) by (1.7), then we can introduce complex
)
bases in R,, in which M takes the form I since M leaves invariant the F,

and we can easily see that the transformation M belongs to the real represen-

tation of Sp(n, C).

2. Characterizations. Let A,, be an affinely connected manifold (with
or without torsion) of class C? whose restricted homogeneous holonomy group
A’ is the real representation of Sp(n,C) or one of its subgroups. At first,
assume that A,, be simply connected.

If we attach a suitable frame [R,] at a point O of A,,, then the restr-

icted homogeneous holonomy group A’(O) at O transforms the two matrices
@ @
F, F with components (1.4), (1.5) according to (1.7). And we attach to each

point P of A,, a frame obtained from [R,] by a parallel translation along

an arbitrary but fixed curve joining O to P. Then we have frames of refe-
M @
rence on A,, and we see that there exist tensor fields F, F whose components

are given by (1.4), (1.5) respectively with respect to the frames of reference

(¢} (2)
under consideration. We remark that F' is of type (1,1) and F is of type (0,2),
that is,

1) (I)h (2) (2)
F= (Ft ), F= (Fm)ﬁ)-
These two tensor fields are of maximal rank 472 and of null covariant

derivative by virtue of (1.7).
With respect to general frames of reference, especially with respect to

20 )
natural frames of reference, we see that there exist two tensor fields F = (F;"),
®  ®
F = (F,,) satisfying
I @ @ a o o @

(1)
(2‘1) Fia Fah:__sth’ Fih=_th FiaFa.h :—Fh.a ais

™
F;, being of maximal rank 4 and

5) Throughout this paper, if otherwise stated, the latin indices &, i, j, k,---a, b, ¢, ---Tun
from 1 to 4n.
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m, ®
(2-2) Vst = 0,‘Vqun =0,

where v; denotes the covariant differentiation with respect to the affine con-
nection I';" of A,

If A, is not simply connected, consider the universal covering manifold
A,, of A,, in which there are introduced an affine connection naturally from
that of A,,. Then the conclusion for A,, induces the same conclusion for

A

MW ™ )
Assume conversely that there exist two tensor fields F= (F,"), F* = (F,)
satisfying (2.1) and (2.2). Let A°(O) be the restricted homogeneous holonomy
' 1) ) 2)
group at O. Then A%O) leaves invariant two matrices F, = (F,"),, F} =
)
(Fy)o satisfying

) ) (€] (2 M @)

(2-3) Fli::_'Ealn, LF{‘)“:—F:’ FUF:zh't(FOF:l

m® M @
where F,, Fy denote the values of F, F'* at O. We can choose a frame [R,]

o
at O such that the components of F,=(F;"), are given by the form (—(—)E E“6>
2n

m
and further, by a complex transformation of the frame, F, changes into

1) 1) —
%,0 = IInI FD IAn = ( OlEQn ZE()2n>9

o )
I,, being given in §1. With respect to this complex frames, let &§ = (Fuo

@
be the matrix corresponding to FF and put

st= (% %)

) @
whene f,,f..fs and f, are complex matrices of degree 2n. Since Ty = (Fn)o is
anti-symmetric in ¢ and A, we have

if; =-fi if; = ‘“.t], if; = ‘_«/3

o)

Qo i o
and further since 3%, o = < ZZ‘ if; 2> is also anti-symmetric by virtue of
3

if4

@ (
(2.3) we have ‘f, = f;, and hence f, = f; = 0. That is, ¢ is of the form F}

=(J(:‘ %) Since

@ [¢3)
* __ kL
Iﬂ) - ];n v J;n =

L( fitfu i(fl‘ﬁt))
2 ‘i(fl_ﬂ) Sfitfi
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—_ (2)
must be real, we see that £, = f, and hence 7§ takes the form
(2) f 0
* _(J1 U
gk (0 ﬂ)
. 8. J 0 .
Consequently we can normalize this 54 into the form (0 J) by a suitable

complex transformation given by a matrix of the form (g %) under which the

M

form of &, is unchanged. And hence A°%Q) is the real representation of
Sp(n,C) or one of its subgroups taking account of the preliminaries of § 1.
Thus we have

THEOREM 2. 1. The necessary and sufficient condition that the restri-
cted homogeneous holonomy group of a 4 n-dimensional affinely connected
manifold Auw (with or without torsion) be the real representation of Sp(n,

o @
C) or one of its subgroups is that there exist two tensor fields F/', Fi,
satisfying

W, @, . ) ® o o Moo
(I) Ft Fa =_85, FHL=—Fhi, EZ Fa,h="—Fh Fat’

@
F,, being of maximal rank 4n and

W, 2)
(II) V;Ft = 0, VjFih = O.

1) (2
F/* gives an almost complex structure and Fj, gives an almost (real)
) @ o)
symplectic structure”. If we put F,* F,, = F,,, then F,, is anti-symmetric and

of maximal rank 4n. It is also of null covariant derivative by virtue of (II).
Hence we have

COROLLARY 2.1. Let the assumption for A,. be the same as in the
Theorem. Then there exist in Au three tensor fields satisfying

a h h J—
F" F, =_‘8i, Fth=_th F,, =— Fy,
)y (2 1 @ 3) [N )] [Q)) (3‘) (2)

Fta Fo,=-— Fha Fy, = Fy, an Fo =— Fha w == Fy,

@

{(1) @ (2) 2 @ ®)

@ 6
F', F,, being of maximal rank and

, (l)n @) 3)
(II) Vth = O, Vthh = O. VJFUL = 0.

6) With respect to (real) symplectic structure, see Ehresmann (2] and Libermann (3],
especially Chap. IV.
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3. Almost complex sympectic structure. Let X,, be a real 4n-dime-

o
nsional manifold of class C* admitting two tensor fields F}", F;, satisfying (I)
@
where F,, is of maximal rank, or necessarily admitting three tensor fields
, @ @ )
satisfying (I") where F,,, F;, are of maximal rank. We call such a manifold

X an almost complex symplectic manifold (or briefly almost CS-manifold)
o @
and further we call the set of two tensor fields (F.", F,,) (hence necessarily

Q@ ®
three tensor fields Fy", Fy,, F,;) an almost complex symplectic structure (or

briefly almost CS-structure).
As is known, an almost quaternion structure in a real 4 n-dimensional

omoo@
manifold X,, is defined by a set of two tensor fields of (1,1)-type (F", F/")
@ @ @ o

m S
satisfying F," F,' =— &, F,"F," = FL F =— F"F,”."” And the exis-
tence of such two tensor ﬁelds of (1, 1)-type implies necessarily the existence

@)
of the third tensor field F;" of (1,1)-type which is an almost complex structure

1%
and in quaternic relations with F," and F,":
W @ @ o @ O® @ @ MG o ) @
F)l

FtaFahz_FlFah Flh’ FtaFah— FtaFah_Fi’ FtaFu":—FtaFa,_

THEOREM 3.1. In a differentiable 4n-dimensional manifold X, a
given almost quaternion structure induces an almost complex symplectic
structure and conversely from a given almost complex symplectic structure
we can find an almost quaternion structure. That is, the two structures are
equivalent.

PROOF. Suppose at first that a differentiable X,, admits an almost quater-

( ')
nion structure (F = (F¢ ), F = (F, )) which satisfy
@ @ @ © @ @ @
b/ h h
F°F'=— 8, F* F,1 =— 8, F'F, =— F'F".
Or, in matrix forms.
M M @0

F? =—E, F‘=—F FF——FF

where we denote for brevity the unit matrix of degree 47 by E instead of
E,..
® OO @ )
If we put F = FF =— FF, then we get the following relations :

3) [IO] mA @ &3 3@ @

FP=—FE FF=—FF=F, FF=— FF =

7) Ehresmann (1]; Libermann (3], [4]; Obata [5].
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. . . (]) (2) . .
by virtue of the given conditions for F, F. Since in our X* there exists
always a positive definite Riemannian metric G = (¢;), we put
Mmoo @ 6O

= (g% = —(G + FG'F + FG'F + I’G‘F) &

Then G* is also positive definite and it is simultaneously hermitian with
M@ e
respect to F, F, F, i. e.

o @ ® @ .
FG*‘F G* FG*F = G¥*,  FG*F = G%,
or in tensor forms
. Q.0 . RGO . RN .
9 Fi'F =g, 9o Fi'F = g5, gaby FY = ghi.
Hence, if we put

2 (2)

" ) (2) - (2)
FG = F (Ft Yan = HL)

» o
then we can see that F* = (F,,) are anti-symmetric and of maximal rank. And

we have
Mm@ e @ @ e
FF* = FFG* =— FFG"‘ =—~ FG¥F~!' =— (FF¥),
or in tensor forms

@ W@
F ¢ Lap = — F h a.t
m, ’L @ )
That is, the tensor ﬁelds = (F"), F* = (F,,) gives an almost complex
symplectic structure.
) oo @ @
We will prove the converse. Let F = (F,"), F* = (F,,) be an almost
complex symplectic structure :
@ O e

(&) (2)
(3.1) F* =— E, 'F* =— F*, FF* =— (FF*),

@ ®

F* = (F,,) being of maximal rank. We remark that the third condition of
Ye) @ o

(3.1) can also be written as FF* = F¥F.

o o
Consider an arbitrary Riemannian metric G = (¢;) in X, then it is well

known
Mo M)

= (9:) = —(G + FG 'F)

8) Cf.Obata (5], Section 14 ; Wakakuwa [7], Lemma 1.3.
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. . .. . )
is a positive definite Riemannian metric hermitian with respect to F':

oW
3.2) FG'F=0G.
Further, if we put
~ @ e - PO
G = (9;) =— F*G'F* (95 = 9"Fo;Fy),

then G is also positive definite, and consider the characteristic equation

|G — pG|= 0.2

Since G are and G both positive definite, the » different characteristic roots
pulu=1,.... ,v) are all positive and the elementary divisors are all simple

because the matrix (G — pG) is of (0,2)-type. Let R (u=1,...... ) be the
characteristic root spaces corresponding to the different characteristic roots p,.

(2

)
Put F’r G-* = (F ") and let x = (") be an arbitrary vector in R,,
ie.,

~ @
G = pxG or — IF*G‘IF* = pzG,

o
then the vectors zF = (F "), xF = (F(," ) are also in R,. For,using (3. 1)

and (3.2), we can see that

1) ~ Mme (2) ) () (2)
(xF) G =— xFF *GUF* = — xF*F G 1F*
(OB (2) ) M
=— xF“G Tt F* =— gF*GF*F?
2G 1 = pr Gt

"_"Pu(xI(;‘SG

)
and this shows that the vector zF = (F £") is also in R,. Similarly we can

I

)
see that zF lies in R,, too
Hence if we choose the frames of reference [e;] such that [e,,] span the

o @ @
root space R,, then G = (¢;,), F = (F"), F' = (F;") decomposes into » blocks
simultaneously, i.e, (¢;) = (¢5,) + (Gs) +--- - + (gyiv), etc.,
Thus with respect to the frames of reference now introduced
= (gTL) = (\/E g/x"l) '1— (\/P—z gjz’z) _‘_ """ _i— (‘\/pT— ngiv)

defines a positive definite Riemannian metric such that

9) Cf.Iwamoto (8] ; Lichnerowicz (9.
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@ (1)
FG”I‘ G¥, —F*G*IF* G*.
Therefore, if we put
® @
F*G** = F,
then we can verify that
(O] (2 m(e) 1)

F?=—E F =—-—E FF=—FF

by virtue of (3.1), or in tensor forms

@ @ (2) ’2) ) @ @ @

F;aFah — an’ Fi = — SIL, F;aFah — F aF h

2)

<1> ) <
Consequently, we can find an almost quaternion structure F = (F,"’),
(2)
= (F,") derived from the almost CS-structure. And hereby we have completed
the proof of Theorem 3.1.
On account of the proof of the above Theorem, we see that there exists

a positive deﬁnite Riemannian metric g7 combining the almost quaternion
®
structure (F}", F") and the almost CS-structure (F, , F,.), such that

o om o, @
g Fy'F’ = g8,  F'9m = Fp,
hence necessarily
®,, ©
Flgan = Fip.

DEFINITION. We call such an almost quaternion structure and an almost
CS-structure to be naturally related and call ¢}, he related Riemannian
metric.

4. Natural affine connections in almost complex symplectic manif-
old.

(l) @

Let X,, be an almost CS-manifold with almost CS-structure F,*, F,,:

@ ) () @ (2 @M (@

[¢}]
(4'1) Fi Fah=—8:,’ FHL=_FM’ FtaFah=_FhuFat'

It is noted that in X,, there exists the third tensor field of (0, 2)-type
®
F,, satisfying
®» O e IO o @ 10

@)
(4-2) sz_Fhw FtaFah: Fn at""Fim Ft Fah='— ha 'at=-Fch

o)
F,, being of maxiaml rank.
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There exists a related Riemannian metric ¢} (§ 3 Definition) such that
L0 L0 e D QL@ e
Gl F = g5, Fog™" = Fy, Fug™" = F,
(1)11, (Z)IL h
where (F", F, ) gives an almost quaternion structure. If we put

) 3)

(2) 3)
i . i n
I " g*lal a.h,, ' g*wl a

@ @
then F', F'* are also anti-symmetric in Z, A~ and we have

@ @ ®
(4'3) Ftalﬂ,‘=~8?, Fﬂ l,
@ @ @ @ m
FiaFah —_— Fum F
We remark that although the related Riemannian metric ¢J; is not
® @ ™ @
unique, but the F‘” and F’" are both unique for Fy,, F,, since F,aF‘“ =— &,
@ &
and F,, F** =— 8!. Hence Wlth no use of g} we can define I'”‘ such that

@ @
F,.(— F*) = 8§, since such a Fm is a tensor field. It is similar for F’”.

If the covariant differentiation v, with respect to an affine connection
satisfies

) ) )
V;F" =0, V;F;, = 0 and hence necessarily V,F,, = 0,

then the restricted homogeneous holonomy group of the affine connection is
the real representation of Sp(n, C) or one of its subgroups. We call such an
affine connection a natral affine connection or briefly natural connection of
the almost complex symplectic manifold X,».

We can easily verify that a natural affine connection in an almost CS-
manifold coincides with a natural affine connection in an almost quaternion
manifold (@, ¥)-connection by Obata’s terminology, Obata [5]) if and only
if the connection is a metric connection (with or without torsion) with
respect to the related Riemannian metric.

In the similar way as those of Schouten and Yano [10] and Obata [5],

o)
we introduce the following operations making use of F,".

Let P;" be an arbitrary tensor field in X,, and we define'”

1

h ]. n (l) b a(l) h
%}Pn = *Zf(Pje -- I, ib F, )

10) These are the same as O, *Of¢of Schouten and Yano [I1(] cr &, &, ®; # of
Obata [5].
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oo 1 h @, 0
%Pﬂ :—2‘(Pn _FtijFa)
(1)* h 1 n a ) (1(]) n
TPy =—2~(P,-, + F'Py,°F.")
(1)' n 1 n @ a(” b h
%Pj =—2—(PJ‘¢_F)F¢PMJ)
Q. . 1 IO S
% Pﬂ:?(Pn +FthPab)'
® @ OING)

And we also introduce anew by using F,", Fu and F,,, Fu the following

operations

52) n 1 ¥ n (1(2) (2) n
gP/: = 7(le - ij Fath )

SI)’ h 1 h é2) @ /3
?} Py =‘2—(ch + Py, Fath ),

& h 1 n 11(3) (3)[7/;
J%Pjt = T(Pﬂ - P,n; F,F )

53)’ n 1 13 (1(3) (3)bn,
& Pjt =7(le + ij FatF )

OECING)
And we define operations ‘¥, §§, 7§ for an arbitrary affine connection I';,*

as follows.
(¢3] [¢))

(]) 3 o, 1 a’
%I‘jt, = Pj!’ - 7(Vth )Fah

SZ) n h 1 @ ) 13
7}11]{ = Pjt - 7(Vtha)Fa

3) [CYENC))

%Pun = chh - %(VJFM)FM
(%)

Then, we see that the operations ¥ (u = 1,2,3) are linear for an affine
connection T'" and a tensor P":

(w) ) (u)
%(Fj:h + Pjin) = %Pﬂh + %}Pjtn (z = 1,2,3).
@
These are shown by a direct calculation. For example, consider 5.

yd
Denoting by v, the covaraint differentiation with respect to T';" + P", we

see that
p (2) (2

@
ST + P =@, + P") — _’21"‘(V1Fta)Fﬂn
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h h 1 @ @ an 1 0(2) 0(2) @ n
= ch + Pji - '—‘Z*(VcFm)F + —2‘(Pjs Fca, + Pja Ftc)Fa
= Pjt - _‘_‘(VJFM)F‘Q” + -—(Pﬂ - Jba aiFo,")

f?) h 2 h
= ZSPjt + %P it -
The others are proved similarly.

LEMMA 4.1. For an affine connection or for a tensor,

(u) (®)
%gz% (u=1’2:3)
[Q)]

PROOF. For $§, the property is alraedy known (for exp. [5]). We will
@ Q)
prove for 3§. It is analoguous for .
n ) N i 2) . . . .
Put 3Ty =T, and denoting by V, the covaraint differentiation with
@
respect to I'", then we see that

(2) @) @ @ @

7}(}11;1 ) = 731-‘15 = Fji - %(VJFM)F‘Q”

2 (2 2) (2
= (T — %(VJFW)F”") —i(v,ﬂ.z)r"‘ - %

2 @ (2)

(9, F)F) o + (03P ) ) Ey] Fo

2 (2

=T, — (VFIF + ——(V;Fm)F“ "+ —(V;Fm)Fa "

CINC I
= F;t - *—‘(V;Fm)Fa %Pjt .
We can also verify for a tensor P, Q.E.D.

o)
The following Lemma is immediate from the definition of ¥ (x = 1, 2, 3).
LEMMA 4.2. Let T')" be an affine connection in X and let V; be the

)
covariant differentiation with respect to l‘,/‘. Then, in order that v,F"
(2) 3)

= O, Vthh =0 or Vthh, =0 is that %Pﬁ = O %Pﬂ = O or CEPﬂ =
respectively.

W
This Lemma is already known for F;*, ¥ (for exp. [5]).

» e e
LEMMA 4.3. The operations §,F, & for an arbitrary affine connection
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satisfy

() (v) [OJNC)] @ @ 3 3

)
T, =T, %(v,-mm - %(V,Fma" - ——(v, F,)F*

(v, u,v=1,2,3).

n e o
And the operations T, &, & for an arbitrary tensor field P," satisfy

(©) () (2) (2)

% %Pt - _(Pnn - Fib }baI‘a JbaI‘ th J‘baFathh)

(u==v; u,v=1,23).

PROOF. If we put
(') ) " (2) (’)ah
;i = %Fn =I" - = (Vtha)F

@
and denote by V, the covariant differentiation with respect to I',", then we

see that

(1)(2) @) M )

8‘(8‘Pﬁ ) = 8F7¢h - P/th - '—(V F )F g
@ n 1 ( a ca\ @ (r’)cb (0] ])
=T = L = L OERIFIE + L (VEEES R

n 1 OINON 1 M0, 1
=(T," — —2~(V;F¢a)Fa ) — 7(VJF£ VP, — T S

@ 3 2 (2

(v, I’bc)F”Ft + —4— VGFOF™

@ @
= P./th - (V;Ft )F — ﬁ(V;Fta)F‘m - % X

) IR
(v, F ")Fs + _(VjFa VFe

3 @

13 1 (])a S 3 1 @) (2)alL al
= I‘jt - '4— (Vth )Fa - T (Vtha)F - E(VJF‘ia)F

Q0 @
We can verify that the other & {H‘,, , &L", etc. are all equal to this

quantity. The latter part of the Lemma is proved similarly.
From Lemma 4.1, 4.2, 4.3, we have the following Theorem

THEOREM 4.1. Let T'," be an arbitrary affine connection' in an almost

11) An affine connection always exists in our Xjn.
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complex symplectic manifold Xy with almost complex symplectic structure
W ®

(F", F.", Fp) and let v, denote the covariant differentiation with respect
to T'y". Then the affine connection

'h h 1 (1)(1 O h 1 3 (z)ah. 1 & (S)G.h
I‘Ji = PJ( - T (Vth )Fa - “4” (Vtha)F - “4"‘ (Vtha)F
is a natural affine connection of Xn, that 1is, its restricted homogeneous
holonomy group is the real representation of Sp(n,C) or one of its subgroups.

THEOREM 4.2. The necessary and sufficient condition that an affine
(u) (v)
connection T of X be a natural affine connection is that FIT," =T,"

(u==v; u,v = 1,2,3), that is,

(l)a (1)11. (2) (2)ah 3) (3)ah
(Vth )Fa T (VJFta)F + (VJFta)F =0,

where v, denotes the covariant differentiation with respect to T',".

The following Theorem is.immediate from
QIOT . e oo
%L(}(Pn + Py )= %%Fﬁ + %%Pjt (u=+v; u,v=1,2,3)
and from Lemma 4.3, Theorem 4.2.

THEOREM 4.3. Let T'," be a natural affine connection of an almost
complex symplectic manifold X,, and let P;" be a tensor field over X .

Then the necessary and sufficient condition that the affine connection T
@
+ P," be again a natural affine connection is that P," satisfy § FP," = Py"

(u=+=v; u,v=1,2,3), that is,

A (Ub @ (O] n a [©)] (2)bh (3) a @ o
3Pﬁ; +F1ijFu +ijFaiF +PJD a,tF = 0.

This condition is equivalent to the following two conditions :

1) (1) 2) @

P," + F'P,'F =0, P, + P,"F,F" =0,
) @ @
which is verified by contracting FF,' and F,.F"to the equation indicated in
the Theorem.
The following Theorem is also immediate from Lemma 4.1, 4.3 and
Theorem 4.3.

THEOREM 4.4. Let T'))" be a natural affine connection in an almost
complex symplectic manifold Xy and let Q" be an arbitrary tensor field
over Xm. Then
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(u)(v)

@ ®
+ % 3‘ Qn = P/th + _‘(Qﬂ - Ft ijaF ij acF - iju alth)
(u==v; u,v=1,2,3)
is also a natural affine connection.

M) 2 [¢)
5. Nijenhuis tensor of F," and tensors F,,, F,, We introduce the

Q) )
Nijenhuis tensor N," of the almost complex structure F,":

(O] m a a (1)

N,‘ = —-(Fu 8[a| Fi] - FU 8”

and if T'," is an arbitrary affine connection in X,., we can write

I % I m
(5.1) Nn = {(Fu ViaFy" — Fi'vaF.")

+ St — 2 PSR, — Fefy "]
Jt 15 (13} J 1 ab E]

where v, denotes the covariant differentiation with respect to I',* and S," is

the torsion tensor of T',".
@ ®
As to F,, and F,,, we put

() (2) 2)

Fy, = oy = — (aij + achl + anFﬁ):

3) 3

1 (3) 3) (3)
Fj{h = 8UF¢M =2 (a/Fm + achJ + ahFﬂ)'
3

® ®
Then, Fy, and Fy, are both tensor felds in X, and for an arbitrary affine
connection I'y" in X, we can write

@
(5.2) Fm = yyFu + = (S,u Fah + S’ Faj + Sut at)’

@ @
(53) Fjlh = VL’F‘h] + I (S_IlaFah + Slh Faj + Shja at)
From these equations, we easily have

@ ® @ @&

@
thaFa = VUFMIF‘Z - —_(Sjl + Sna atF - Slba a/FM),

(G C)] 3 3

ah @ (3‘7(1/1 2 13 a(3) 52/ 3 a bh
FﬂaF = Vitha!F - —3—(Sﬂ + lgjb Fai,Fb - S“; Fa_;F ).
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If S," is the torsion tensor of a natural connection, then we get

Q) h > h OPL) bQ h
(5-4) th (bﬂ - ZFU St]F - F Fc );

@ @ 2 (2)
(55) ijFan —_—_ & (S”h, w a r\ in - aijh)

()] @ ’
(5.6) F!taFah =—— (Sjt” + Sp Fath - Stb be ).

For a tensor P,,", we have

M 1) (&) )

S Py = — (P,/” - F,”Pm F "+ F'Py’ Fa"' - F F¢" )

and we obtain the following theorem.

@
THEOREM 5.1. The Nijenhuis tensor N," can be represented by means
@ ®
of the tensors F,,, Fy, as follows:

() [QRQ I C))

thn =- %*&( sl F* + thaFah)

1) (1)

== *—(Pjth - Fijw F t+ Fbeb Fun o Fan ar )s

@ @ @ @

where Py" = F,mF“ + Fy F™

PROOF. Let I',," be an arbitrary natural connection with torsion tensor
' Ao @ @

S," and at first we calculate F*F (F,F*) taking account of (5.4), (5.5)
and (5.6).
O @ @
* (F.ItaFa}l)
1 h a(z) (Z)ah a(Z) (2)b/»
= ‘G—E(Su + S FoF™ — Sio FoF™")

RONCERUIN
FJ (Slb —l— Sidc CbF( - de FCtF )F
@ @

+ Flb(S,;b + dec cbﬁ‘d - dechnga)F n
@ @
! - F_’aFtb(Sabh + Sadc chdh - bchcaFdh)]
1 » h a(z) (2)b/l a(2) (Z)bh
= ? [(Sﬂ + Sjb FatF — iy F:jF )

3) @A) @ 3

C () @ (
- (F;waaFah - tdc F + Fb bchcthn)
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(I)b a(]) 3 6(3 an b C(z) @ h
+ (Ft I F SJd ch + F; bd Fc;Fd )
al b a c('i (2)41 b c @ Zzh
(FJ Ft Sab + F ad ctF - F Sba FcJF )]
@

1)
- % [(Sy" — FleibaFah + FtbSJbaFa FJ“F‘DS“ )

» a(z) (mbh @ @) (Z)bh
+ (Sﬂ + Sjb FagF - Sib FaIF )

(Sjl + SjbaF alF " Sib ajF M)

@

@)
- FjaFtb(Sabh + Sadc :de’ - de FcaFd )
3 3

+ FaFcb(Sab + SaacFade’ - decha h)]

3 @ @ 3 3 3

1 o ale ah
=—— |:2N,,’ — o FuaF™ + o FyoF”
(ORO R ) QO @ @ 2
+—3“FJF¢( achh)—_“F; t( achh)J
1 m a 2) (1) @ a(l) (2 2ch
=——3—N;¢ [ij - Fj F, (Fach )]

3) [QOINCO O]

3) )
- [thaFah - FjaFt (FachCh)]‘

Analoguously we get
0@ 0 @ DN INe)

(2) (2)
5 (F ™) ———-Nﬂ - i [FuaF™ = FPE(Fop )]

@ @ @

®)
+ _“[Fj{a.F'm - Fj Ft ( a.ch.Ch)]-

Consequently we have
3 (1) 1) (2)

()]
AV”I" = — 7 8‘ (FﬂaFah + FﬂaFW(UL) Q. E. D.

(2) 3)

THEOREM 5.2. The tensors Fy, and Fy, can be represented as follows :
" ® ®» W @
a b c

@ m @
ij = 2P<thuFIalh) —“*P(FnaFlalh) - —2— Fj F'F,Fa

@ @ W (@)

B = 2PN Fram) + —P(F,. P + i FCFF, Foper

where
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P(ij) = —é“ (Tm + Tuu + Tnn):

for a tensor T,

PROOF. Let T'," be an arbitrary natural connection with torsion tensor
S,". Then by virtue of Theorem 4.4,
® ®

i 1) 1)
FU” = Pl‘h - _g— (S”n, - Fch;baFah Fath - SfbaF thh)

is also a natural connection and taking account of (5.4). (5.5), (5.6), the
torsion tensor S;" of I';* is calculated as follows :

n 1 h_ g efpn . Fog gan
S =?[(Sn = FySo'Fo' + FSp'FL')

@) ()

+ (Sjt + SjbaFalFb - tbaFa/FM)

3) (3)
+ (Sjtn + SJDaFatF - StbaFalp )]
@ @ @ 3 @
(2th + FjaFt abh - % ;taFM - “E‘FnaFah),
from which we get
1)u (2) (O] (l)b c( 3 (2) 3 @ O o
Sﬂ ah_ (2le Fah+Fj Fc ad L' cn 2 F]th_7thth)
and hence
P(S;* ah) = '—P(NjiaFla]h) + —P(F: Fc *Shaim Fcn)
[©) (©) )
+ i thh - —B—P(Fﬂlath )

Since S;" is the torsion tensor of a natural connection, we have from (5.2)

P(S.;la ah) - T (Sﬂ Fa,h, + S;haFat + Sih at) - _1_ Fﬂh’

_4

and further from (5.3) we get

(&) (2)

(1)11(1)1) 0(2) 1 1)a( b c b c b c
P(F,F‘S|a||p]Fch=)-§—(F,F¢ achh.+Ft Fh achJ+FIL Fj ab ct)

@ 1 @)

1 (69}
= TFFFLFMJC‘

Consequently, we obtain
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(2) 2 (1) a(i’ @ W M (3)
- F;m = ’S—P(th Flfl]h) - F Fl Fh abe
3 @ 3) )
or + 'ﬁFﬁn — P(th]ath )
(2) a @ 1) (') (1) (3)
thh =2 P(N.ﬂ Fltlh) - ”“—P(Fh Fla!ﬁ) - —_Fl Fabc-

®
The representation of F,, is also obtained by a quite similar way.

Q. E. D.

COROLLARY. If we put
(2] @ (SO INE)] (OO

)
o = Fw, - 3P(F, F¢ Fldl]e]h): E/m = F/m - 3P(FJ F: Fldllelh):

then @) m @ @) 3 (3) (1) (OB )]

Eﬂh = FI Flehc abes Ej{h, = F¢ F;, Ejm

PROOF. From the second equation of Theorem 5.2, we have
@ o0 6 o @, 0

Y FF) Foye =— 2P(FFNaje Flal")

(Q) (1) 2) 2)

- ———P(Fl i F[d“e]h) - thln

hence subtracting this equation from ths first equation of the Theorem, we

get

(2) (0] (l)b (1) (3) (1) ¢ (1) d(l) . ¢ (2)
an — F, F¢ F ave = ZP((th + Fj Fy Niajjel )Flclh)
a @) M @O @O G
——-P(Fth]jL)_'“—F FchFabc
1) (1)3 (2) 1 @)
P(F’ F¢ F](l”g!h) + 2 Fj{h.'
But since

) aay 1 (1

N:( ’(" FJ F; Nde =
hlods true (Cf.[5], p. 55, Corollary 1), we obtain

1 (2) Q) (1) (") 1 @ @ @ 6(3) 3 (¢)] 0(3)
~——F;m - —P(F Flajen) = - & FSFF) Fop — —Z—P(Fn Flein)
or
@) 1) ) () [ ONO) (3) [6D)] () )
Fﬂh - 3P(FJ Fg F|d||g|h) = FI F{ Fh [Fabc - 3P(F Fb F]d”g[(‘)] Q-E.D.

From Theorem 5.1 and 5.2, we have
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oo @
THEOREM 5.3. If any two of N", Fyu, Fu. vanish, then the remaining

one also vanishes.

THEOREM 5.4. There exists in X., a natural connection T';" whose
torsion tensor Sy is given by

n 1 1) a 5 (2) (’\:” 3, M @ @) (’)h ) (3),L
Sji = ?Nﬂ - —]TE(F'”GF g + FﬂaFab F Ftb(FabCF\C + FuD(-F'c )

PROOF. Let I'," be an arbitrary natural affine connection in X,,, then by
virtue of Theorem 4.4,

' n N 1 " (l)b o (l)n a(2) ('-’)n . (2) (3)u
Pjt =I‘jt + _4‘(th —Ft le Fa _ij Fain _ij Fath)

is also a natural affine connection, where Q," is an arbitrary tensor field. If
we take

n 1 " RS ,
Q;t = ?(5S_ﬂ + Fy FibSubL)y

where S," is the torsion tensor of I',", then we can calculate

)

1 p 1) a(l) A a(Z) (2), (3 ;
T(Qﬂ& - Fiijb Fa,‘ - le FathL - Qib iFM)

, [ a (&) 0(1) e (l)’
= _‘[(55 C+ F, bSﬂ.b ) - ib(Sde + FJ deScw )Fab

@ (SO ¢S] @ () () (1)0(‘) o 3) (3)n
- 5(Sjb + F;CdeSca )FMFM *(5 Sﬂ)q + Fj FbaScQ )FalFb ]
(&)

o
T % [6S," + F/F’S.," — 5FtbSJb F + FSy" Fah

(2) (&) (¢ 1) (") 2)

2) (
- 5 S’b tF + FESCd F ,;Fdh - 5S]b FatF - chScd th”]

M
- 11_2 (128" — (25, — FS,F + BES, B — 2F S FAS,")

3)

() ()
- 5 <% S”h + SjbaFa,inn> - ( 1 Sﬂh + S F )

a @M

1 n @) (@ . (1)a(1> c 3) (3)dh
— FSE? (~2— Sur + Sost ch"“) — F, F;’( St + Syl FoF ﬂ
Hence we get

n r » 1 n 1) a(l) n m a(]) " (X)a(nb N
' =Ty = S, + {(2 S, + S, F.* + 5 FS, F, — 2 F FS,,")
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OO

+5(—S,, + .8, a,,Fb”)Jr 5(——5,, + S, Fo B )

a @M a @M

P 1 g B D 1 @ o
+ FSF? (75.,,, + S, F,,F* >+ F,“F,( Sot + S ch?"‘)J.

Let S, be the torsion tensor of I';", then from (5.4), (5.5), (5.6) we see
that

m ® ® ® @
St = % [4 N, — E FpF — 15 5 g R
3 O ® Ch Ho e
—"—Fth( abc )—'_—FJFl(Fuch )]

Thus T';* is a natural affine connection with torsion tensor Sj" of the
required form. Q.E.D.
COROLLARY. In order that we can introduce in X,, a natural affine
Q)
connection without torsion is that the Nijenhuis tensor N," of F," and the
2) 3
tenrors Fy,, Fy, all vanish.
PROOF. The necessity is evident from (5.4), (5.5), (5.6). We can also prove
the sufficiency by virtue of the Theorem.

6. Complex frames and complex analytic cases with respect to %’".

In general, let A,, be a 2m-dimensional almost complex manifold with
natural affine connection'”, thea the restricted homogeneous holonomy group is
the real representration of GL (m, C)or one of its subgroups.

If we choose complex frames of referfnce[e”, ez]® in A,., the connection
of A,, can be given by

(6.1) dP = m"e, + T, deg = Ties; conj.
B

where ¢® = gz, m* = w*. And if we put

ey = 1 (e — i€z), €z = 1 (e. + iea),

A 2 A 2
M 1

(@ + i) =g,

K

2

o m_.E_ ® . @ 3
Tg = Wg pr—(l)p‘l"tw:—’ﬂ'#,

712) The natural afiae connection means the connection with respect to which the almost
complex structure is of null covariant derivative.
13) The ranges of Greek indices are as follows.

a.ﬁ,'y,"',h,p,v,“':l,"‘,m; _“»_331"'»—;\»74:":“'=a+m, Bt+m, -, A+m, pt+tm---
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then the real Pfaffians ©®, %, 0% (= w%), o3 ( =— %) give the connection of

A,,, with respect to real frames of reference [e,, e'z](e{ = af(x) —aa;; s i, a=

1,.... 2m>.

If m =2n and if the restricted homogeneous holonomy group A’ of
A;, = A,, is the real representation of Sp(n, C), then with respect to the
connection (6.1), an anti-symmetric tensor field"’ of the form

(62) (P O fa=Tas detlfunl 0
0 fix

is of null covariant derivative (Cf. § 1). And according to §1, we see that:
Let A,, be an almost complex manifold with natural affine connection and
consider complex frames of reference such as (6.1). Then the necessary and
sufficient condition that the restricted homogeneous holonomy group h° of
Ay, be contained in the real representation of Sp(n,C) is that there exists
an anti-symmetric tensor field'™ with null covariant derivative whose com-
ponents are given by (6.2), with respect to the complex frames of reference
under consideration.

We can normalize the tensor (6.2) by a suitable complex change of
frames of reference.

I
Now, let X,, be an almost CS-manifold with almost CS-structure (F",

@ 0)

F,,) and consider the case where X,, is complex analytic, F;" giving. the com-
M m

plex analytic structure of X,,. The Nijenhuis tensor N," of F,* necessarily

vanishes.

We call such an X,, a complex almost symplectic manifold and in this
oo@
case we call the structure (F,", F,,) a complex almost symplectic structure.

@
And further, if F;,;, =0 in complex almost symplectic X,,, then we call

such an X,, a complex symplectic manifold with complex symplectic struc-
o ®)
ture (F,", F,). In this case, we have necessarily Fy, = 0 by virtue of The-

orem 5. 3.
In a complex almost symplectic manifold X,,, if we introduce a complex

o — o)
analytic coordinate system (2% 2%), (2* = z%,) then the tensor field F," takes

14) The components are complex, the real and imaginary parts being functions of the
initial real coordinate system.
15) In case of m = 2n, the Greek indices run as follows:

@By A ¥y =1, 205 @By s N fhr = at2n, BA2m, A+ 20, ut2m,
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- iEZn O
. )and we denote this tensor field
tLign

anew by I = (1;"). With respect to the complex coordinate system under consi-

derati t}i‘) ((2‘) <A
eration, pu = (') = C D

&)
degree 2n. Then since (F},) is anti-symmetric, we have

‘A=—A,'D=-D,'B=—-C,

the numerical components of the forrn(

>, where A,B,C,D are complex matrices of

. @ /—iAd —iB\. . .
and further since IF = ( C 'D> is also anti-symmetric from the definition
i i
of the almost CS-structure, we have

‘B=C
and hence B=C = 0.
@

Therefore, if we denote the tensor (F},) with respect to the complex coordinate

system by f = (f.,), we see that
S 0)

0 fuil’
where £, = fur(z,2)and fizx = fix (2, ) are anti-symmetric in A, x4 and A, B
respectively. Since (f;,) must have real representations it is self-adjoint :
f A 0
0 fiz
Hence in a complex almost symplectic case, we denote the complex almost

symplectic structure with respect to a complex coordinate system by (I)", fi,),
(fun) being of the form (6. 3).

Hereafter we confine ourselves to such complex analytic coordinate systems
if otherwise stated.
If we put

S =(fu) =<

(63) £==( )s Un=Fixs fin == fiu)

S = Sufunr
@)

then of course this fj, is no other than the F,, in general real coordinate
system. fy, is also self-adjoint, and

Somn = —;— Oifwn; conj.

taking account of (6. 3).
A tensor field whose mixed components vanish is called pure. And we
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can easily see that: The necessary and sufficient condition that f.\(fix) do
not contain 2*(z) is that the tensor fy, be pure. Hence if the manifold is
complex symplectic, i.e., if fu, =0, then fir = fur (2), fax = fax (2).

If we put
, , —lf » 0 .
f=w == (7 )= =i,
0 ifur
’ (3) .
then fu, corresponds to the Fj, in the real case and
f jin = Auifm
@)
corresponds to the Fy,. We see that
Four == ifwu; conj.
. 1 ] . .
e Oifn =— % O fur =— ifvu; conj.

Hence we have

PROPOSITION 6.1. In an X,, with complex almost symplectic structure
(Iih, ﬁ/w f‘i’h)’ we have
For == ifvns fﬁ,u\ = — if5u;; conj.
This corresponds to Theorem 5.2 or to its Corollary.
In general, in a complex analytic manifold with complex coordinate system
(2%, 2%), the natural affine connection is given by (I',}, T';;*), the other I's

being all zero. And we remark that (T',%, T;z*) give also components of
a natural affine connection and (I}, I',;*) are components of a mixed tensor.

PROPOSITION 6.2. Let A,, be a complex analytic manifold with com-
plex coordinate system (2%, 2%) and with natural affine connection (T';*, T';z0).
Then the necessary and sufficient condition thot the restricted homogeneous
holonomy group h° is contained in the real representation of Sp(n, C) is
that there exist an anti-symmetric self-adjoint tensor field (fur, fix) (fa
= fux = 0) with null covariant derivatives.

That is, the A,, is necessarily a complex almost symplectic manifold and
the connection is a natural affine connecton with respect to the complex almost
symplectic structure (1", f,).

The condition v,f;, = 0 are written out fully as follows:

A, fx = V.fan = 0; conj. (identically satisfied)
(6'4) lv"fl‘-/\ = at’fp)\ - I‘vumfw)\ - Pv)\mf,;,m = 0; Conj.
Vifur = 9ifumr — I5 fon — T5x®fuw = 0; conj.
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Since 9;f,a = 0 if and only if £, is pure, we can easily obtain from (6.4).

PROPOSITION 6.3. Let X., be a complex almost symplectic manifold
with complex almost symplectic structure (I,", f,,). Then in order that there
exist a natural connection of the type (I}, T;3) with respect to (1", f),
it is necessary and sufficient that the tensor fy, be pure.

Hence, in a complex symplectic X, (£, = 0), there exists always a natural -
connection of the type (T, I';;*) with respect to the structure (1", fi,).

We can define a tensor f* such that f,,(— f*)= 8} since such an f*
has a tensor character, and we see that /™ is also self-adjoint and anti-sym-
metric in i, h.

PROPOSITION 6.4. In an X, with complex almost symplectic structure
(I", fu), there exists a natural connection with respect to (I, f,) whose
torsion tensor Si* is given by

’ , 3 .
v,:.)\ = v“wfm)‘ Sv,,,h = T Ve, M\; conj.

PROOF. Let T';" = (I‘,,,L , I';72) be an arbitrary natural connection with res-

pect to (1", fiu), then it satisfies (6 4). Since (T",,%, F--’\) is an affine connection

leaving invariant the 1" and (I';,", I',;*) is a tensor, an affine connection (T

I}, such that
{ = I %(S"“A“Sv *fanf™); conj.

11‘%}1‘::]:‘;”)\ (_ _ _afm‘fﬂ)\)_ 1 T A+ 1 Fv[‘v“pr.f ;COIlj.

is also an affine connection leaving invariant the ;. And further we can see
that this affine connection is indeed a natural connection with respect to (1%,
fu), by a simple calculation making use of (6.4). Taking account of (5.5) and
(6.3), the components of the tensor S;" are given by

St = m(s Nt Sy s funf™ = S fanf™) = — % waf™; conj.
Syt = ——(S + So" faufP) =— %f;,m “}; conj. Q.E.D.
REMARK. This Proposjtion corresponds to the Corollary of Theorem 5.4.

The natural connection (I';,!, I';;") possesses a freedom of tensors such as P,
symmetric in j and ¢ and satlsfylng i for + P fuo = 0; conj.
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APENDIX

In connection with the almost complex case, we state several propositions
on affinely connected manifolds with restricted homogeneous holonomy Sp(m,
R), the real symplectic group in 2 m-dimensional real linear space or one of
its subgroups. Hereafter the class of the manifolds in consideration are C?. The
following Proposition is easily obtained.

PROPOSITION 1. The necessary and sufficient condition that the restri-
cted homogeneous holonomy group of a 2 m-dimensional affinely connected
manifold A,.(with or without torsion) be Sp(m, R) or one of its subgroups
is that there exists over A,, an anti-symmetric tensor field Fy, of maximal
rank 2m satisfying

(1) Vij =0,

where v, denotes the covariant differentiation with respect to the affine
connection of Asn.

A tensor field F,, anti-symmetric in 7 and A of maximal rank in a 2 m-
dimensional manifold is called a null-system. A differentiable manifold admit-
ting a null-system F,, (=— F,;) or an exterior 2-form F,, dz‘ » dz" of maximal
rank is called an almost symglectic manifold (variété presque symplectique)
([2]; [3], especially Chap. IV), and the null-system or the 2-form is called almost
symplectic structure.

In an almost symplectic manifold, we can always introduce a positive
definite Riemannian metric such that F,, F,,9” = 9.,([9], Section 14) and F,"
= F,,¢g" gives an almost complex structure for which the metric ¢, is herm-
itian. If we put ¢*F," = F", then F, F** ==— §!. We call an affine connection
satisfying (1) for an almost symplectic structure F,, a natural affine connection
of F,,. The restricted homogeneous holonomy group of a natural affine connection
is Sp(m, R) or one of its subgroups.

We also remark that the above Riemannian metric ¢,, is not unique, but
F*" is uniquely determined from the given F}, since F,,F*" = — & (Cf.§5 and
§ 6).

We can prove the following two propositions and a corollary by direct
calculations.

PROPOSITION 2. Let I'," be an affine connection in an almost symplectic
A, admitting an almost symplectic structure F,,. Then the affine connection
I'y" such that

1—1;‘;/1, — Pﬂh _ %(VJF“L)FHIL
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is a natural affine connection of F,, that it, a connection whose restricted
homogeneous holonomy group is Sp(m, R) or one of its subgroups.

PROPOSITION 3. Let I'))* be a natural affine connection of F,, and let
P," be an arbitrary tensor field. Then,

P_;,;h = 1—1”11, + % (Pﬂh - ijaFa,;an)

is also a natural affine connection of Fy,.

COROLLARY. For an arbitrary natural affine connection T'y", in order
that

=T+ Q4" (Q)": a tensor)

be also a natural affine connection, it is necessary and sufficient that the
tensor Q" satisfy
jSaFan + Qj/.aFm =0 or Qﬂh + ijaFa‘th = O.

Now, put
ij = aijl = %(aij + O:F; + aqut),

then Fy, is a tensor field. If I'," is an arbitrary affine connection in A,, with

torsion tensor S;", then we have

2 a a
ij = VUFmI + ‘3— (Sjt Fo + Sm Faj + Sn_;aFai)-

If I'," is a natural affine connection of F,,, we get

% Fy = SjiaFah + Su'Fa + Sh;a uis

from which

% FﬁaFah' == — S‘ﬂn + S[ba aijn - SjbaFa[th-

On the other hand, if we put
‘o h 2 h a b/
L' =Ty —*‘3—‘( s _Sw FuF™),
then T',* is also a natural connection by virtue of Proposition 3 and its torsion
tensor S;" is given by

S}an = Pluun = ‘;— (S;cn + SjbaF wF”" — S FaiF™")
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= —;—FﬁaFah.

Thus we have

PROPOSITION 4. The mnecessary and sufficient condition that it be
possible to introduce a natural affine connection of F,, without torsion in
Ay is that the tensor Fy, = 9,F,, vanish identically.

COROLLARY. In our A;,, there exists a natural affine connection of
F,, with torsion tensor

SJ’,-,h = %Fﬁa Fah.

If Fjn = 0yFy; =0, then the 2-form F,,dz' N dx" is closed and in this
case Fy, is called a symplectic structure and the manifold is called a symplectic
manifold.

EXAMPLE. Consider an almost Kaehlerian manifold with metric tensor g,
hermitian with respect to its almost complex structure ¢,". Then the almost
symplectic structure ¢, = ¢,"g, satisfies O,¢,,) = 0, hence by Proposition 4
there exists a symmetric natural affine connection of ¢, but this natural conn-
ection does not leave invariant the individual g, and ¢, unless ¢," is inte-
grable, i.e., unless the manifold is pseudo-Kaehlerian.

REFERENCES
[1] C.EHRESMANN, Sur la théorie des espaces fibres, Coll. Top. Alg. C.N.R.S,, Paris
(1947), 3-35.
[2] ——, Sur les variétés presque complexes, Proc. Inter. Congr. Math., (1950),
412-419.

[3]1 P.LIBERMANN, Sur le probleme d'équivalence de certaine structures infinitésimales,
These (1953).

[4] ——, Sur les structures presque ccmplexes et autre structures infinitésimales
régulieres, Bull. Soc. Math. Franse, 83 (1955), 195-224.

[5] M.OBATA, Affine Connections on Manifolds with Almcst Ccmplex, Quaternion or
Hermitian Structure, Japanese J. Math., 26 (1956), 43-77.

[6]1 H.WAKAKUWA, On Riemannian manifolds with homogeneous holoncmy gorup Sp(n),
Tohoku Math. J., 10 (1958), 274-303.

[7] H.WAKAKUWA, On af{inely connected manifolds with homogeneous hcloncmy group
CL(n,Q) ® T!, Tohoku Math. J., 11 (1959), 364-375.

[8] H.IWAMOTO, On the structure of Riemannian spaces holonomy groups fix a null
system, Tohoku Math. J.,, 2 (1950), 109-135.

[91 A.LICHNEROWICZ, Généralisations de la géométrie kihlerienne glcbale, Coll. géom-
étrie différentielle, Louvain (1951).

[10] J.A.SCHOUTEN AND K.YANO, On intrinsic connection in X,, with an almcst herm-
itian structure, Indg. Math,, 17 (1955), 1-9.





