SOME RESULTS ON THE DIRECT PRODUCT OF W*-ALGEBRAS

TEISHIRÔ SAITÔ AND JUN TOMIYAMA

(Received May 30, 1960)

Introduction. In connection with the papers [4] and [5], the following question arises: Let M and N be finite factors, and let G and H be the groups of *-automorphisms of M and N respectively. Then, is it true that the fixed algebra of $G \times H^{1}$ in $M \otimes N$ is the direct product of the fixed algebra of G in M and that of H in N? The above question motivates the preparation of this paper, but our investigation will be done from the standpoint of the general theory of the direct product of W^* -algebras, and the main result will be stated in Theorem 1 in § 1. In § 2, as the applications of Theorem 1, two results will be proved. Theorem 2 is a structure theorem on the direct product of maximal abelian W^* -subalgebras, and Theorem 3 gives the affirmative answer to the question of the fixed algebra.

1. Throughout our discussion, we mean by $R(A_x)$ the W^* -algebra generated by the family of operators A_α and $R(\mathbf{M}, \mathbf{N})$ the one generated by the W^* -algebras \mathbf{M}, \mathbf{N} .

The following theorem is the main result of this paper.

THEOREM 1. Let M, P and N, Q be W^* -algebras on some Hilbert space H and K respectively, and satisfy the condition

- (1) $((\mathbf{M} \cap \mathbf{P}') \otimes (\mathbf{N} \cap \mathbf{Q}'))' = (\mathbf{M} \cap \mathbf{P}')' \otimes (\mathbf{N} \cap \mathbf{Q}')';$ then we have
 - (2) $\mathbf{M} \otimes \mathbf{N} \cap (\mathbf{P} \otimes \mathbf{Q})' = (\mathbf{M} \cap \mathbf{P}') \otimes (\mathbf{N} \cap \mathbf{Q}').$

This theorem shows that if the, so-called, commutation theorem holds for a W^* -algebra $(\mathbf{M} \cap \mathbf{P}') \otimes (\mathbf{N} \cap \mathbf{Q}')$ we get the conclusion (2). Hence, for example, if \mathbf{A} and \mathbf{B} are maximal abelian W^* -subalgebras of \mathbf{M} and \mathbf{N} respectively we have the relation (2) for $\mathbf{A} \otimes \mathbf{B}$ because, in this case, $((\mathbf{M} \cap \mathbf{A}') \otimes (\mathbf{N} \cap \mathbf{B}'))' = (\mathbf{A} \otimes \mathbf{B})' = \mathbf{A}' \otimes \mathbf{B}'$. Therefore we know that the direct product of maximal abelian W^* -subalgebras \mathbf{A} and \mathbf{B} is also a maximal abelian W^* -subalgebra of $\mathbf{M} \otimes \mathbf{N}$. If \mathbf{M} and \mathbf{N} are finite W^* -algebras, their W^* -subalgebras are also of finite type, and hence the commutation theorem always holds for these W^* -algebras. Therefore we have the conclusion

¹⁾ For the definition of $G \times H$, see Lemma 2 in [4].

$$\mathbf{M} \otimes \mathbf{N} \cap (\mathbf{P} \otimes \mathbf{Q})' = (\mathbf{M} \cap \mathbf{P}') \otimes (\mathbf{N} \cap \mathbf{Q}')$$

for any W^* -algebras **P** and **Q** if **M** and **N** are finite W^* -algebras.

PROOF OF THE THEOREM. It is obvious that

$$M \otimes N \cap (P \otimes Q)' \supseteq (M \cap P') \otimes (N \cap Q').$$

On the other hand, we have, by the assumption (1)

$$(\mathbf{M} \otimes \mathbf{N} \cap (\mathbf{P} \otimes \mathbf{Q})')' = R((\mathbf{M} \otimes \mathbf{N})', \ \mathbf{P} \otimes \mathbf{Q})) \supseteq R(\mathbf{M}' \otimes \mathbf{N}', \ \mathbf{P} \otimes \mathbf{Q})$$

$$= R(R(\mathbf{M}' \otimes I, \ \mathbf{P} \otimes I), \ R(I \otimes \mathbf{N}', \ I \otimes \mathbf{Q}))$$

$$= R(\mathbf{M}', \ \mathbf{P}) \otimes R(\mathbf{N}', \ \mathbf{Q}) = (\mathbf{M} \cap \mathbf{P}')' \otimes (\mathbf{N} \cap \mathbf{Q}')'$$

$$= ((\mathbf{M} \cap \mathbf{P}') \otimes (\mathbf{N} \cap \mathbf{Q}'))'.$$

Thus

$$\mathbf{M} \otimes \mathbf{N} \cap (\mathbf{P} \otimes \mathbf{Q})' \subseteq (\mathbf{M} \cap \mathbf{P}') \otimes (\mathbf{N} \cap \mathbf{Q}'),$$

and the proof is completed.

2. In this section, we shall apply Theorem 1 to the analysis of the direct product of maximal abelian W^* -subalgebras and the discussion of the fixed algebra, stated in the introduction. Through this section, our investigation will be restricted to the finite factors of type II.

Let **M** be a finite factor of type II and **A** a maximal abelian W^* -subalgebra of **M**. Let **P** be a W^* -subalgebra generated by the unitary operators U of **M** satisfying $UAU^* = A$. Then, according to [1] we have the following definition.

DEFINITION 1. A is called regular if P = M, singular if P = A, and semi-regular if P is a factor or equivalently $M \cap P' = (\lambda I)$.

Holding the fact that $\mathbf{A} \otimes \mathbf{B}$ is a maximal abelian W^* -subalgebra of $\mathbf{M} \otimes \mathbf{N}$ if \mathbf{A} and \mathbf{B} are maximal abelian W^* -subalgebras of \mathbf{M} and \mathbf{N} respectively, it is natural, in the context of Definition 1, to consider the regularity, singularity and semi-regularity of the direct product of maximal abelian W^* -subalgebras of finite factors of type II. The following theorem gives a partial answer for this question.

THEOREM 2. Let M and N be finite factors of type II, and let A and B be maximal abelian W^* -subalgebras of M and N respectively. Then the following statements hold:

- (1) If A and B are both regular, $A \otimes B$ is regular.
- (2) If A and B are both semi-regular, $A \otimes B$ is semi-regular.

PROOF. Let **P** (resp. **Q**) be a W^* -subalgebra of **M** (resp. **N**) generated by the unitary operators $U \in \mathbf{M}$ (resp. $V \in \mathbf{N}$) such as $U\mathbf{A}U^* = \mathbf{A}$ (resp. $V\mathbf{B}V^*$

= B), and let R be a W^* -subalgebra of $M \otimes N$ generated by the unitary operators $W \in M \otimes N$ satisfying $W(A \otimes B)W^* = A \otimes B$.

If A and B are both regular, P = M and Q = N. Thus we have

$$M \otimes N \supseteq R \supseteq P \otimes Q = M \otimes N, \quad R = M \otimes N,$$

and $A \otimes B$ is regular.

Next, suppose that A and B are both semi-regular. As $R \supseteq P \otimes Q$, we have $R' \subseteq (P \otimes Q)'$ and, by Theorem 1,

$$\mathbf{M} \otimes \mathbf{N} \cap \mathbf{R}' \subseteq \mathbf{M} \otimes \mathbf{N} \cap (\mathbf{P} \otimes \mathbf{Q})' = (\mathbf{M} \cap \mathbf{P}') \otimes (\mathbf{N} \cap \mathbf{Q})' = \lambda(I \otimes I),$$
thus $\mathbf{A} \otimes \mathbf{B}$ is semi-regular.

The rest of this section will be devoted to solve the question of the fixed algebra.

Let G be a group of *-automorphisms of a W*-algebra M. After [3] we obtain the following definition.

DEFINITION 2. By the fixed algebra of G in M, we mean the subalgebra $\mathbf{P} = [A \in M | A^{\alpha} = A \text{ for all } \alpha \in G]$, where A^{α} is the image of A under a *-automorphism α .

THEOREM 3. Let M and N be finite factors with the invariant C=1, and let G and H be groups of *-automorphisms of M and N respectively. Then the fixed algebra of $G \times H$ in $M \otimes N$ is the direct product of the fixed algebra of G in M and that of H in N.

PROOF. Let **H** and **K** be the underlying Hilbert spaces of **M** and **N** respectively. Then G (resp. H) admits a faithful unitary representation $\alpha \in G \to U_{\alpha}$ on **H** (resp. $\beta \in H \to V_{\beta}$ on **K**) such that $U_{\alpha}^*AU_{\alpha} = A^{\alpha}$ for all $A \in \mathbf{M}$ (resp. $V_{\beta}^*BV_{\beta} = B^{\beta}$ for all $B \in \mathbf{N}$)²⁾. Put

 $\mathbf{P} = [A \in \mathbf{M} | A^{\alpha} = A \text{ for all } \alpha \in G], \ \mathbf{Q} = [B \in \mathbf{N} | B^{\beta} = B \text{ for all } \beta \in H].$ It is easily seen that $\mathbf{P} = \mathbf{M} \cap R(U_{\alpha} | \alpha \in G)', \ \mathbf{Q} = \mathbf{N} \cap R(V_{\beta} | \beta \in H)'.$ Hence, by the result in § 1, we have

$$\mathbf{P} \otimes \mathbf{Q} = (\mathbf{M} \cap R(U_{\alpha} | \alpha \in G)') \otimes (\mathbf{N} \cap R(V_{\beta} | \beta \in H)')$$

$$= \mathbf{M} \otimes \mathbf{N} \cap (R(U_{\alpha} | \alpha \in G) \otimes R(V_{\beta} | \beta \in H))'$$

$$= \mathbf{M} \otimes \mathbf{N} \cap R(U_{\alpha} \otimes V_{\beta} | (\alpha, \beta) \in G \times H)'.$$

Obviously, $(\alpha, \beta) \in G \times H \to U_{\alpha} \otimes V_{\beta}$ on $\mathbb{H} \otimes \mathbb{K}$ is a faithful unitary representation of $G \times H$ satisfying $(U_{\alpha} \otimes V_{\beta})^*C(U_{\alpha} \otimes V_{\beta}) = C^{(\alpha,\beta)}$ for all $C \in \mathbb{M} \otimes \mathbb{N}$. Hence $\mathbb{P} \otimes \mathbb{Q}$ is the fixed algebra of $G \times H$ in $\mathbb{M} \otimes \mathbb{N}$.

²⁾ This fact is found in Lemma 1 in [6]

As an immediate consequence of Theorem 3, we have:

COROLLARY. In Theorem 3, if G and H are both ergodic, that is the fixed algebra of G in M and that of H in N are both $\{\lambda I\}$, $G \times H$ is also ergodic.

REFERENCES

- [1] J. DIXMIER, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of Math., 59(1954), 279-286.
- [2] _____, Les algèbres d'opérateurs dans l'espace hilbertien, Paris, (1957).
- [3] H.A. DYE, On groups of measure preserving transformations I, Amer. Journ. Math., 81 (1959), 119-159.
- [4] T. SAITÔ, The direct product and the crossed product of rings of operators, Tôkoku Math. Journ., 11 (1959), 229-304.
- [5] _____, Some remarks on a representation of a group, Tôhoku Math. Journ., 12 (1960), 383-388.
- [6] N. SUZUKI, Crossed products of rings of operators, Tôhoku Math. Journ., 11 (1959), 113-124.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.