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CO

1. Introduction. Let s% be the Cesaro sum of a series 2^ &n with a0 -— 0,
n-0

that is, A% being Andersen's notation,

n

00

and let σ% be the Cesaro mean of the series 23 an > that is, σj = si/An . The

series 23 an is said to be evaluable (C, a), a > — 1, to s, if σ* -> s as w -> 00.

Let & > 0 and Xn = log (« + l). If, when ω -» 00,

λn<ω

then the series 23 an is said to be evaluable (log n, k) to s. It is well-known

that a series evaluable (C, &) is also evaluable (log n9 k) to the same sum. In the

following, let p be a positive integer and let α be a real number such that a

^ — 1. The series 23 an is said to be evaluable by Riemann- Cesaro method of

order p and index #, or briefly, to be evaluable (JR, p, a) to s, if the series

converges in some interval 0 < t < £0 and its sum tends to CPi<x s as ί

where

ί——^—- Γ « e" p (sin w)p d«, -

' 1 , α = - 1.

or α=0,/>=

Under this definition, the summabilities (R9p, — 1) and (R,ρ, 0) are the well-

known summabilities (#,/>) and (Rp)9 respectively. In our earlier papers [2,3,4],
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we have investigated some properties on this summability. In particular, sufficient
conditions for the summability (R,p,a) has been considered. For example,
that the series is e valuable (C,p — 1 — δ), δ > 0, is sufficient for the sum inability
(R,ρ,ct). See [2; Corollary 1]. The purpose of this paper is to establish neces-
sary conditions for the summability (R, p, a). In this direction, the following
theorems are known.

THEOREM A (B. Kuttner [6]) If a series is evaluable {R, 2), it is also
evaluable (C, 2 + δ), δ > 0, to the same sum. Further the series is evaluable
(log n, 2) to the same sum.

THEOREM B (A. Zygmund [8]) If a series is evaluable (i?,l), it is also
evaluable (C, 1 -f δ), δ > 0, to the same sum. Further the series is evaluable
(log n, 1) to the same sum.

For the summability (R, p, a), we shall prove the following theorems.

THEOREM 1. A series evaluable (R, 2, a), — 1 ^ a < 1, is evaluable
(C, 2 + δ), δ > 0, to the same sum.

THEOREM 2. A series evaluable (i?, 2, a), — 1 ^ a < 1, is evaluable
(log n, 2) to the same sum.

THEOREM 3. A series evaluable (R, ha), — 1 Ŝ a ^ 0, is evaluable

(C, 1 + δ), δ > 0, to the same sum.

THEOREM 4. A series evaluable (Ry 1, a), — 1 <Ξ a <Ξ 0, is evaluable
(log n, 1) to the same sum.

THEOREM 5. A series evaluable (R, 1, a), — 1 ^ a ^ 0, is evaluable
(i?, 2, a) to the same sum.

In theorems 1-4, if we put a~0, we obtain (Rp) analogues of Theorems
A and B. When a — — 1, Theorem 5 was proved by B. Kuttner [7]. See also
G. H. Hardy [1; p. 365]. Theorems 1-5 are proved in the sections 3-7 of this
paper. I take this opportunity of expressing my heartfelt thanks to Professors G.
Sunouchi and T. Tsuchikura for their kind encouragements and valuable sugges-
tions during the preparation of this paper.

2. Preliminary Lemmas.

LEMMA I. If a series ]P bn sin2/tf converges for all t in an interval,
n=\

CO

then the series ^ bn is convergent.

This Lemma is due to B. Kuttner [6]. See also G. H. Hardy [1; p. 366].
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CO

LEMMA 2. (B. Kuttner [6]) If a series ]Γ] bn cos nt converges to zero unί-

00

formly for t in an interval including origin, then the series ]>Z ri*bn is
n-l

evaluable iC, 2) to zero.

LEMMA 3. Let t2y2(t) = I — cos t and yΊ(t) = dy2(t)/dt. Then, for fixed

η > 0 <zra? /argtf ω ^ ^ ^

sin ωί 2 cos <ot \ . . ,.
- , : \ sin Λί dt3 ^2 ωτ73

= - Λ G{n, ω)

[JL-(ι -Si-) forn<ω
(2.1) G(n, ) = 2 V ω ) J -

0 for n > ω,

(2.2) Λ(* ) = -^j- 3, f
1 ,. + θ ( - ^ ) + θ ( 1

ω ^ 3 ω^3(w2 — ω 2 ) \ ωn2 I \ (ω — w)2

(2.3)

PROOF. It is known (E. W. Hobson [5; p. 567]) that

Γy2(t) cos — t dt = G{n, ω).
Jo ω

Hence

- i . ω f γ2{ω(ί —Λ:)} sinntdt = — ω Γ
2 J-oo 2 Jo

= G(w, ω) sin ̂ Λ:.

Differentiating this equation with respect to x, and then putting x=0, we obtain

(2. 4) — ω2 f yί(ωί) sin nt dt = n G(n, ω).
Jo

On the one hand

ω »η "r,

, f-

 7 Λ . ,, ,. 2 Γ sinwί 7. , Γ sinωίsinwί ,
ω2 I y*(α>ί) sin nt dt = I — α ί + I at
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, _2_ f °° cos ωt sin nt ,

rr\ __ _ 2 c o s # ? ; , sin (ω 4-72)77 __ sin (ft) — ri)η , cos (ft) + w)?;

ft)3 2(ω + ri)* 2(ω—n)η2 ω(ω + ) *

cos (ft-ft))?;

ωn2 / \(ω — w)2 /,

and evidently

(2. 6) ω2 Γy'lωt) sin nt dt = θ( ft'2 dt) = O(l)

On the other hand

2 sin ωt 2 cos ωt

97s ft)?;3
dt

fn rj\ __ _ 2 cos nη , s in(ω + yz)τ; _ s in(ω —^)jy cos (ft) + ??)?;

"" ωnη* 2(ω + n)η2 2{ω~n)η2 ω(ω+)3

, cos(n — ω)η , 2

( ) 3(w — ft))??3 ft)^3 ft)τ;3(n3 — ft)2)

and evidently

/o OΛ Π 2 sinωί 2 cos fttf | . x J x ^/-v

(2.8) i — Γ - — \ sinnt dt= O(l).
J o I ft)?;3 T; 2 ωη3 I

From these equations Lemma follows, the result (2. 2) following from the equa-

tions (2. 4), (2. 5) and (2. 7), while the result (2. 3) following from the equations

(2. 4), (2. 6) and (2. 8).
CO

LEMMA 4. //* α series ^ &w sin #£ converges to zero uniformly for t in
n = l

CO

an interval (— η, η), then the series Σ n^n is evaluable (C, l) to zero.
n-l

PROOF. The method of proof is similar to that of Kuttner's Lemma 2. We

multiply the equation

^ bn sin nt — 0
n=i

by

corf rf ωrf
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and integrate with respect to t from zero to η. Since the series is uniformly

convergent, we may integrate term by term. Then, using Lemma 3, we obtain

= ( Σ + Σ ) KR(n,ω)
\|W-ω|̂ l |n-ω|>V

say. Since it is known that if bn sin nt is convergent to zero for ί in a set of

positive measure then bn = o(l), it follows, using (2. 3),

= Σ K R(n, ω) =

On the other hand, using (2. 2),

J 2 — 3~ 2LJ — 3 2LJ 2 2~ ~*~ UI ^ 2

say, where, using bn = o(l),

Let us put /» = [«] — 1, [»] denoting the integral part of ω,

^)a s s ( - nΎ +0Ψ f

Now, since the series ]Γ bn sin wί is uniformly convergent in (0, η), we may
71 = 1

integrate this series term by term from zero to t, t being included in (0, η). Thus

the series
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Σ-^-d - cos nt) = 2 Σ
Λ n

is convergent for ί, 0 < t <̂  *7 Hence, by Lemma 1, the series Σ — ^ is con-
w = l n

vergent. Therefore

Finally, putting rn = Σ —~ a n c ^ u s m g Abel transform,

2 ' «ft. ,

, 1 ί(P+3)rp+3 •
mη3 l p + 3 ω ^n

(p+3)rμ+3 _ ' / n n+1 \)

Therefore, summing up the above results, we have

as ω -> oo,

which is equivalent to that the series Σ n^n is evaluable (C, 1) to zero.

LEMMA 5 Let an =• o(l), &„ = o(l), an = O(nΓ*) and βn = O(Λ"

ίΛ^ formal product of the two series

1 ~
~~7Γ &o + Σ (αw c o s w^ "̂ " ̂ w s m Λ^)

2 n = 1
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1
ΊΓCLo + Σ (an cos nt + βn sin nt)

^ r » - l

where the last series converge to, say, S(t), be

1
-z~ Ao + Σ (An cos nt + Bn sin wί),

, puttifig a-n = # w , * _ n = έΛ, Λ _ Λ = α M ΛW<i /β-w = β

= - — X) (αmαrt-m — bmβn-m) and Bn = ~Γ~ ^

1 ^ / 1 N \
7Γ Ao + Σ(Λn cos nt + BΛ sin nt)-S(t){-^-a0 + Σ(an cos nt + bn sin nt))

o, as N'-+ oo, uniformly in t of the interval [0, 27r].

This Lemma is due to A. Zygmund [9; p. 60, Theorem III], See also G. H.
Hardy [1; p. 366].

LEMMA 6. If the series Σ an is evaluable (C, β) to s and if

oϊ = sl/Al = oQ.ogyn), 0<γ<β,
CO

then the series Σ an is evaluable (log n, γ) to s.

This is due to A. Zygmund [10].

3. Proof of Theorem 1.

3.1. We are given that the series Σ an is evaluable (R, 2, a) to s, and we

may suppose, without loss of generality, that s = 0. Then

^"^ n

converges for t in some interval (0, ζ), and F(t) = ofy1'"). Since the series
00 s*

Σ ~~T 1S convergent, by Lemma 1, we may write our series as

1
(3.1) — a0 + Σ #n cos nt,

W.here
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(3. 2) a,. = - — rΓ* sa

n (n > 0), α o = - 2 E « . = Σ "~2 A

This series (3.1) converges to F(t) for t in the interval (0, ξ). We shall first

prove that Theorem is true generally provided that Theorem is true in the two

particular cases;

(3. 3) the series (3.1) is a Fourier series

and

(3. 4) the series (3.1) converges uniformly to zero in an interval of t includ-

ing origin.

We suppose that the series (3. l) is convergent and bounded for 11 | ^ ζ, choose

a positive η less than —^~ζ, and take an even periodic function λ(ί) which
Δ

equals to 1 for \t\ ^ η, and equals to 0 for 2η ̂  \t\ ^ 7r, and whose first three

derivatives exist and continuous. If

1
(3. 5) \{t) — β0 + Σ βn cos nt,

* n = l

then βn = O(n~2). Since an = o(ϊ), it follows from Lemma 5 that if

1 ^ Λ

(3. 6) — γ 0 + 2Z yn cos nt
, Δ n=i

is the formal product of the series (3. l) and (3. 5), then

1 N ί 1 N \
(3. 7) — 7o + Σ %»cos w ί ~ λ W \~^~ao + Σ) Λ» cos7i/[ -> 0

as N-> oo} uniformly in t. Since the series (3.1) converges to F(t) for \t\ ^

2^ < I, and λ(ί) = 0 for 2η ̂  | ί | ^ w, it follows from (3. 7) that the series

(3.6) converges for all t, and to a sum F*(f) defined by

F{t) \t\^η

F*(t) = \{t) F{t) η<; \t\

0 2η^ \t\ ^ T Γ .

Since F*(t) is bounded, the series (3.6) is the Fourier series of F*(t)9 by a
CO

known theorem. We shall now define a series ^ cn by

7. = - \ n * τ«n (n > 0), 7o = - 2 £ 7n = £ n " 3 <
^ n«l n=i

CO

where τ£ is the (C, α) sum of the series Σ cn with c0 — 0. Then the series (3.6)
n-0
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oo oo

is related to the series Σ cn as the series (3.1) to the series Σ an Thus, by
n=>o n=υ

oo

F*(p) — F(t) for small t, the series Σ ^ i s evaluable (i?, 2, α) to zero. From
n=0

this, and our assumption of Theorem in case (3. 3), it follows that the series
oo

Σ cn is evaluable (C, /3), β > 2, to zero.

On the other hand, since \{t) = 1 for | ί | <Ξ 97, it follows from (3.7) that

— (γ0 — do) 4- Σ (yn - <xn) cos nt = Σ (τ* ~ sΐ) ~U "

oo

converges uniformly to zero for | £ | <j 97 and that the series Σ (cn ~~ an) is eva-

luable (i?, 2, a) to zero. From this, and our assumption of Theorem in case
00

(3. 4), it follows that the series Σ (cn ~~ an) is evaluable (C, /9), β > 2, to zero.

00

Finally, since #w = cn — (cn — an), the series Σ an is evaluable (C, /S), /S > 2,

to zero. Thus Theorem is proved provided that Theorem is true in the two

particular cases (3. 3) and (3. 4).

3.2. Proof for the Case (3.3). For the proof, we may suppose that

2 < β < 3 and choose γ such that β = a + γ + 1. Then 0 < 7 < 3. Let

1 ~
(3. 8) φ(f) ~ — - a0 -h Σ a« c o s nt-

n - l

Since this series converges to F(t) for small t, we have <p(ί) = F(t) for almost

all such t9 and we may suppose that this is true for all such t. Hence

(3.9) φ(t) = <>{?-).

Now, Sn denoting the (C, y) sum of the twice formally differentiated series of

the series (3. 8) at t = 0, we have

(3.10) SI = — Al \\{t) -f^Klit) dt,
ir Jo at*

where Kl(i) is the (C, γ) mean of the series

—ί- + cosί
2

Since, denoting by C constants independent of n and £,
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(3.11)

and

(3.12)

H.HIROKAWA

dtm

dtm

Klit)

Kl(t)

^ Cnm+1 (0 St S T)

\ n /

for 0 <; γ ^ m + 1, m, /* = 1, 2, 3, (See A. Zygmund [11; p. 60])

Hence, by (3. 9),

= -^- AX ( f''" + Γ ) φ(t) - £ - Kl(t) dt

= o (ny f 1/Bn3 ί1"" ώ ) + o (ny Γ n2"v r γ - α dt)

= o(ny+3 <

Since, by (3. 2), remembering that <z0 = 0,

n Ί n 1
(Q -iqN CY — V^ /\y a -, -*• V^ /lY c α _ i _ cα+v+i

we get 5^+ y + 1 = o(n"+Ύ+1) and then we see, by β = a -V y + 1, that the series
CO

^ αw is evaluable (C, /9) to zero.
n=0

3. 3. Proof for the Case (3. 4). This is shown as a corollary of Lem-

ma 2. If

1 ~
— ~ Qto + ΣfOCn COS Πt — 0

^ n=l

uniformly in an interval including origin, then, by Lemma 2, we have

E * 2 α w - 0 (C,2),

that is, by (3. 2),

V* 1 ^ 2 ^ 1 tf+3__
« / ** " O r / Tt — vV fy \ /

Thus we get s* f 3 = o(w2). Since Λ + 3 > 2, we can easily see that 5n = o(w2),
CO

and that the series J^ an is evaluable (C, 2) to zero. Therefore, evidently, the
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CO

series ]Γ an is evaluable (C, β\ β > 2, to zero.

Thus, Theorem 1 is completely proved.

4. Proof of Theorem 2. From the argument in the paragraph 3. 1, it is
sufficient to prove Theorem in the two particular cases (3. 3) and (3. 4). Since the
summability (C, 2) implies the summability (log n, 2), it remains to prove The-

CO

orem for the case (3.3). Since, by Theorem 1, the series ^Z an is evaluable

(C, β), β > 2, it is sufficient, by Lemma 6, to prove that

For this, by 1 - a > 0, using (3. 9), (3. 10), (3.11) and (3.12), we have

Γi-' = ̂ ~ A}Γ« ( Γ + Γ ) φ(t) - £ - K]r\t) dt

- o (nι-« f'nn3 f- dt) + o in1'* Γ nι+aΓτ dt)
\ Jo / ^ Jijn '

Jo

= o(n2 log n).

Hence, by (3. 13) for y = 1 - α,

4 = o(^2 log //),

which is the required result. Thus, Theorem is proved.

5. Proof of Theorem 3. The first stage of the proof is like that of the
proof of Theorem 1. From our assumption,

(5.1) *K*) Σ

converges for t in some interval (0, ζ), and F(t) = o(t~a). Now, as in the
paragraph 3.1, we can easily see that Theorem is true generally provided that
Theorem is true in the two particular cases;
(5. 2) the series in (5. l) is a Fourier series
and
(5.3) the series in (5. l) converges uniformly to zero in an interval of t

including origin.
CO

For the case (5. 3), by Lemma 4, the series Σ 5* ιs evaluable (C, 1) to zero,

and then
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Since a + 2 > 1, we see that Sn = o(w). This shows that the series Σ an is

oo

evaluable (C, l) to zero. Hence, evidently, the series ]Γ an is evaluable (C /3),

/S > 1, to zero. We shall now prove Theorem for the case (5. 2). We may suppose
that 1 < β < 2 and choose y such that β — α + y + 1. Let

(5.4) p ( 0 ~ Σ — s i n ^

Then, by our assumption, we may suppose that φ(t) = o(t~Λ). Now, Si denot-
ing the (C, γ) sum of the formally differentiated series of the series (5.4) at
t = 0, we have

(5. 5) Sί= - ^- Al f φ(t) -j~ Kl(t) dt.
ΊΓ Jo dt

Therefore, using (3. l l ) and (3.12),

Γ) φ(t) -f- Kl(t) dt
h\J atΓ

- o (ny f'nn* Γ« dt) + o (ny Γ Γ« nι'yrλ'y dt)
\ JQ / \ Jijn /

= o(«α + γ + I) + o(72 n"+y)

= o(n«+y+ι) = o(^) ,

b y β = α: + γ + l. Since, remembering that α0 = 0,

(5. 6) SI = £ Al.v s«v = s"n

+y+\
v = Q

we have s% = o(nβ), which is the requiredresult.

6. Proof of Theorem 4. From the argument in the former section, it is
sufficient to prove Theorem in the two particular cases (5. 2) and (5. 3). For the
case (5.3), since the summability (C, l) implies the summability (log n, l), it
remains to prove Theorem for the case (5.2). For this, by Lemma 6, it is
sufficient to prove that

<r\ = s\/A\ = o(log n).

Since, by (5. 5),
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Sύa = " — AZ' Γ φit) -j- Kΰ"(t) dt
ΊΓ Jo at

) — Kn"(t) dt

+ o (fΓΛ Γ r" n«+11«-1 dt)

o(n log n)

= o(w log w),

we have, by (5.6) for γ = — α, si, = o(w log w), which is equivalent to that
sι

n/Al — o(log w). Thus Theorem is proved.

7. Proof of Theorem 5. The method of the proof is also similar to that
of Theorem 3. Theorem for the two particular cases (5. 2) and (5.3) is obvious.
For, if

(7.1) Σ — sin nt = F(t) - o(r α ) ,
n-l n

and if the series is a Fourier series, then

(7. 2) 2Z ~^~ (1 "~ c o s 2wί) = 2 Σ ~^~ s i n 2 nt = [ F(u) du = o^1"05),

because a Fourier series can be integrated term by term and if the series in
(7.1) converges uniformly to zero for small t, then the series in (7. 2) converges

CO

to zero for small t. Thus the series ]P an is evaluable (R, 2, a) to zero.
w=0
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