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1. Introduction. Let s7 be the Cesdro sum of a series ) @, with a, =0,
n=0

that is, A% being Andersen’s notation,

n
sh=2_ A, a,
v=y
and let o} be the Cesiro mean of the series ) a,, that is, o% = s3/A%. The

M=)

o

series ) a, is said to be evaluable (C,a), @ > — 1, to s, if 0% — s as n—> co.
n=0

Let £> 0 and A, = log (n -+ 1). If, when ® — oo,

k

Z(1-) s

A<w

then the series Y a, is said to be evaluable (log7 k) to s. It is well-known
n=0

that a series evaluable (C, k) is also evaluable (logn, k) to the same sum. In the
following, let p be a positive integer and let a be a real number such that «

o

= — 1. The series Y a, is said to be evaluable by Riemann-Cesiro method of

n=()

order p and index a, or briefly, to be evaluable (R, p, @) to s, if the series

= sin nz \"
Y s < >
n=1

nt

converges in some interval 0 < ¢ < ¢, and its sum tends to C,. s as t—> 0+,
where

L [y (o uy e
— | u sin )’ du, —1<a<p—1 or a=0,p=1,
(L@w == I(Clﬂ'l) [} ( ) i) P
1, a=—1.

Under this definition, the summabilities (R, p, — 1) and (R, p,0) are the well-
known summabilities (R, p) and (R,), respectively. In our earlier papers [2, 3, 4],
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we have investigated some properties on this summability. In particular, sufficient
conditions for the summability (R,p, @) has been considered. For example,
that the series is evaluable (C,p — 1 — 8), 8§ > 0, is sufficient for the summability
(R, p, a). See [2; Corollary 1]. The purpose of this paper is to establish neces-
sary conditions for the summability (R, p, a). In this direction, the following
theorems are known.

THEOREM A (B. Kuttner [6]) If a series is evaluable (R, 2), it is also
evaluable (C, 2 + 8), 8 > 0, to the same sum. Further the series is evaluable
(log n, 2) to the same sum.

THEOREM B (A.Zygmund [8]) If a series is evaluable (R,1), it is also
evaluable (C,1 + 8), § > 0, to the same sum. Further the series is evaluable
(log n, 1) to the same sum.

For the summability (R, p, @), we shall prove the following theorems.

THEOREM 1. A series evaluable (R,2,a), — 1= a <1, is evaluable
(C, 2+ 98), 8 >0, to the same sum.

THEOREM 2. A series evaluable (R,2,a), — 1= a <1, is evaluable
(log n,2) to the same sum.

THEOREM 3. A series evaluable (R,1l,a), — 1< a =<0, is evaluable
(C, 1+ 9), >0, to the same sum.

THEOREM 4. A series evaluable (R,1,a), — 1= a =<0, is evaluable
(log n,1) to the same sum.

THEOREM 5. A series evaluable (R,1,a), —1=a =0, is evaluable
(R, 2, ) to the same sum.

In theorems 1-4, if we put =0, we obtain (R,) analogues of Theorems
A and B. When a = — 1, Theorem 5 was proved by B. Kuttner [7]. See also
G.H. Hardy [1; p- 365]. Theorems 1-5 are proved in the sections 3-7 of this
paper. I take this opportunity of expressing my heartfelt thanks to Professors G.
Sunouchi and T. Tsuchikura for their kind encouragements and valuable sugges-
tions during the preparation of this paper.

2. Preliminary Lemmas.

oo

LEMMA 1. If a series ) b,sin’nt converges for all t in an interval,
n=1

then the series D b, is convergent.

n=1

This Lemma is due to B. Kuttner [6]. See also G. H. Hardy [1; p. 366].
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LEMMA 2. (B.Kuttner [6]) If a series > b,cosnt converges to zero uni-

n=1

oo

formly for t in an interval including origin, then the series Y n®b, is
n=l

evaluable (C,2) to zero.

LEMMA 3. Let £*y,(t) =1 — cost and yt) = dy.(t)/dt. Then, for fixed
7> 0 and large @ and n,

7 , 3 .
f {“’272(0) t) + 23 — sm:ot -2 cosswt } sin nt dt
) on n @7

= — n G(n, ®) + R(n,0),

where

mw n
1) G(n,w):{7(1—7> fornse

0 for n > o,

2 2n 1 1

2.2) Rno) = o= s 0 ( wn2> +0 (——(m 1 n)’)
and
2.3) R(n, ®) = OQ1).

PROOF. It is known (E. W. Hobson [5; p.567]) that
fm'yz(t) cos 2 ¢ dt = G(n, o).
A o

Hence

—;—m B voio(t—2)} sinnt dt = %wfwfyz(mt){sin n(z+t)+sinn(z—1)} dt

—c0 0
= G(n, ») sin nx.

Differentiating this equation with respect to z, and then putting =0, we obtain

2. 4) - @? f enfy;(wt) sinnt dt = n G(n, ®).
0

On the one hand

o f v{wt)sin nt dt = — 2 f smat gy f smoismat g,
w
n

2
n n £ t



372 H.HIROKAWA

_I__g_f cos @t sin nt dt
n

® 3
_ 2cosny |, sin(w+n)y sin(o—n)y , cos(w+n)y
(2.5) —~ + —~ +
. - 3 2 _ 2 3
wnn 2(o +n)y 2(@—n)y o(@+n)y

et 0) o)

and evidently

(2.6) fv?fw'y;(wt) sin nt dt = O(fmt” dt) = 0(1)
n n
On the other hand
f"1 2 _ sinwt _ 2cosot } sinnt dt
wn® 7? oy’ :

2.7 _ _ 2cosmm sin(@+n)n _ sin(w—n)y n cos(® +n)y

ony’ 2Aw+n)yy’  2Ae—n)y'  o(leta)’

cos(n—w)y 2 2n

o(n—o)®  onm'  on'(n’—oe’)

and evidently

" .
(2.8) f { 23 -~ 2 :’t 2 cosswt } sin nt dt = O(1).
0 ' @M 7 7

From these equations Lemma follows, the result (2.2) following from the equa-
tions (2. 4), (2.5) and (2.7), while the result (2. 3) following from the equations
(2. 4), (2.6) and (2.8).

LEMMA 4. If a series ) b,sinnt converges to zero uniformly for t in
n=1

o

an interval (— n,7), then the series ) nb, is evaluable (C,1) to zero.
n=1

PROOF. The method of proof is similar to that of Kuttner’s Lemma 2. We
multiply the equation

> b, sin nt =0

n=1
by
mz,y;(wt) + 23 _ Slnzﬁ)t _ 2 cos ;Dt ,
w7 7 o7
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and integrate with respect to # from zero to 7. Since the series is uniformly
convergent, we may integrate term by term. Then, using Lemma 3, we obtain

—an ( ) Zb R(n, ®)

n<w n=1

:( >+ X )b,. R(n, )

|n—w|s1 In-w|>1
- Jl + Jz,

say. Since it is known that if b, sin n¢ is convergent to zero for ¢ in a set of
positive measure then &, = o(1), it follows, using (2. 3),

> b, R(n, ®) = o(1).

r——
On the other hand, using (2. 2),
2 b, 2

nb, 1 o
J, = 3 Z - 3 Z 2 (72

2
ON° pe>1 7 DN pas) W@

+ O( > LA

In—w|>1 (m - n)z

): Jor — Jus + O(Ws) + O(Ta)
say, where, using b, = o(1),

- o(—l—z i ) = o(1).

@ n=1

1 b
= g .
Let us put p = [@] — 1, [@] denoting the integral part of o,

PR L B T R

In—w|>1 ((0 - n)2 - n=1 ((0 - n)2 n=p+3 (w - n)z

—1912]: |b| [ [b' ol 1
- n)? T2 (o —n)"’ (z (w—n)“)

n=1 (m n=[p/2]+1 N=p+3

:o((w__-lw. 2)+o(nz_l )+o<1>
= 0(1/w) + o(1) = o(1).

o

Now, since the series Y b,sinznt is uniformly convergent in (0, 7), we may
n=1

integrate this series term by term from zero to ¢, ¢ being included in (0, 7). Thus
the series
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= " bn . ot
E%’L(l—cosnt):2nz=lb7sm”—n2“

. .o by
is convergent for £,0 < ¢t <#. Hence, by Lemma 1, the series ) —- is con-
n=l

vergent. Therefore

2 b 2 b 2 b,
Jo1 3 :E: CEe= on® = on? -
QN pla>1 P N n1 B N w1 7
= o(1).

. — b, .
Finally, putting 7, = >_ — and using Abel transform,

V=T

2 nb,,

3 22
ON° jpgs1 W@

anb"-l-l(iL'Fib")

3 3_ 3 3 _
w”? n=1 n LY (l)’l] n=p+3 n L Nmp+3 n+(0

—o(ls 1) L [P+ ¢ n n+1
=0(Z) o prsme = 2, (

3 —o —
®Tn wn nepe3 n—o nt+l—o

(p+3)rpas - (n __ntl )
*orste 2" e " atite }

gy =

IA

N=p+3

o o

:0(1)+o<z ?;:];‘;’_)_;)—FO(Z —(n-ljf—w)z)

N=p+3 Ne=p+3

= o(1).

Therefore, summing up the above results, we have

Z”bn(l— %)=0(1) as @ — oo,

n<w

which is equivalent to that the series ) nb, is evaluable (C, 1) to zero.
n=0
LEMMA 5 Let a, = o(1), b, = 0o(1), a, = O(n*) and B, = O(n~®). Let
the formal product of the two series
1

- % + >~ (ancosnt + by, sinnt)
n=1

and
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1 = .
5 + >~ (@, cos nt + B, sin nt)
nal

where the last series converge to, say, S(t), be

—;— A, + > (Ancosnt + B,sinnz),

n=1

where, putting a_, = @n, b_n = by -y, = at, and B-, = B,

A“ = ';— Z (a,,.a,._m — bmﬂn_m) and Bn - % Z (amBn—m'l'bman—m)'

M=—oco M==co

Then

N N
%Ao + > (A, cos nt+ B, sin nt) — S(t) (—;— ay +2_(ay, cos nt +b, sin nt))

n=1 n=1
tends to zero, as N —> oo, uniformly in t of the interval [0, 2m].

This Lemma is due to A.Zygmund [9; p. 60, Theorem III]. See also G.H.
Hardy [1; p. 366].

LEMMA 6. If the series ) a, is evaluable (C,B) to s and if

nw=()

oy = st/ A} = o(log"n), 0<y <A,

then the series Y a, is evaluable (logn,v) to s.

n=0

This is due to A.Zygmund [10].
3. Proof of Theorem 1.

3.1. We are given that the series Y a, is evaluable (R, 2, @) to s, and we

n=0

may suppose, without loss of generality, that s = 0. Then

had @

Sn . 1
£) =3 —2-sin?—— m
F@) 2 sin® —~ 7

converges for ¢ in some interval (0, &), and F(¢) = o(t*"%). Since the series
oo P

S . . .
> —, is convergent, by Lemma 1, we may write our series as
nal

3.1) 1 a, + D a,cosnt,
2 n=1

where
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oo

sy n>0), ay = —zzan:zn—z %,

n=1 n=1

This series (3.1) converges to F(z) for ¢ in the interval (0,&). We shall first
prove that Theorem is true generally provided that Theorem is true in the two
particular cases;

3.2) a, = —

0o

(3.3) the series (3.1) is a Fourier series

and

(3.4) the series (3.1) converges uniformly to zero in an interval of ¢ includ-
ing origin.

We suppose that the series (3. 1) is convergent and bounded for || =< &, choose

a positive % less than %E, and take an even periodic function A(f) which

equals to 1 for |¢| =< 7, and equals to 0 for 29 < |¢| < m, and whose first three
derivatives exist and continuous. If

(3.5) A ~ % B, + i B, cos nt,

n=1

then B8, = O(n?). Since a, = o(1), it follows from Lemma 5 that if

(3.6) -;—'yo + > . cos nt
, n=1

is the formal product of the series (3.1) and (3.5), then

1 al 1 ul
3.7 -Z—'y.,+2fyncosnt—)»(t) {7% +Za,.cosnt}—->0
n=1 N=1
as N — oo, uniformly in ¢ Since the series (3.1) converges to F(¢) for [¢]| <
279 <& and Mz) =0 for 29 < |¢]| <, it follows from (3.7) that the series
(3.6) converges for all #, and to a sum F*(¢) defined by

F(2) [t] <9
FXt) = { M8 F@t) 9= |t] =29
0 < |t =

Since F*(¢) is bounded, the series (3.6) is the Fourier series of F*(z), by a

known theorem. We shall now define a seriesz ¢, by
n=0Q

1 o oo
Yo ==y nrry (n>0), vo=—22 9,=p nm,
=] n=1

where 77 is the (C, ) sum of the series > _ ¢, with ¢, = 0. Then the series (3.6)

n=0
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L oo

is related to the series ) ¢, as the series (3.1) to the series > a,. Thus, by

n=0 n=0

F*(t) = F(z) for small ¢, the series)_ ¢, is evaluable (R, 2, a) to zero. From

n=0

this, and our assumption of Theorem in case (3.3), it follows that the series
> ¢, is evaluable (C, B), 8 > 2, to zero.
n=0

On the other hand, since A(t) =1 for |z| <7, it follows from (3.7) that

L S - «y Sin®7nz/2
5 @ — @) + 2 (v — @) cosnt = 3 (75 — 5%) sin®nt/2
=1 ney

co

converges uniformly to zero for |£| < 7 and that the series ) (¢, — a,) is eva-
n=(

luable (R, 2, ) to zero. From this, and our assumption of Theorem in case

(3.4), it follows that the series >_ (¢, — a,) is evaluable (C, 8), 8 > 2, to zero.

n=0

Finally, since a, = ¢, — (¢, — @,), the series > a, is evaluable (C,8), 8 > 2,

n=0
to zearo. Thus Theorem is proved provided that Theorem is true in the two
particular cases (3.3) and (3. 4).

3.2. Proof for the Case (3.3). For the proof, we may suppose that
2 < 8 < 3 and choose 7y such that 8 =a + ¢ + 1. Then 0 <y < 3. Let

1 -
(3.8) o(2) ~ 5 % + > a, cos nt.
n=1

Since this series converges to F(£) for small ¢, we have @(¢) = F(¢) for almost
all such ¢ and we may suppose that this is true for all such z. Hence

(3.9 () = o(t*~").

Now, S, denoting the (C, ) sum of ths twice formally differentiated series of
the series (3.8) at £ = 0, we have

T at’

where Kj(¢) is the (C, ) mean of the series

(3.10) Sy = -2 A f o) L KUe) dr,
0

—%—+cost+0052t+cos3t+ ------ .

Since, denoting by C constants independent of » and ¢,



378 H.HIROKAWA

3. 11) \ d” <Ci (0=t=m)
dt
and
d" My y—v-1 1
(3.12) — K@) | < Cn™ ™t — <t<Zr),
dt n
for0<y=m+1, mn=123,.... (See A.Zygmund [11; p.60])

Hence, by (3.9),
Sy == 2 A*(f +f > (t):;—;KZ(t) dt

:o(n“’j: nstl“"dt) -i—o(n"f?z

1/n
J— O(n‘v+3 . nm—z) + 0(712 . ny+w—1)
— o(n'””“).

Since, by (3.2), remembering that @, = 0,

)

B.13) S=-— Z Al vV a, = ——Z AY_, 5% = L sEHYFL

v=0 v=0 2
we get s3*Y* = o(n**"*") and then we see, by 8 = a + v + 1, that the series

> a, is evaluable (C, 8) to zero.

n=0

3.3. Proof for the Case (3.4). This is shown as a corollary of Lem-
ma 2. If

1 -
—ay + X a,cosnt =0
2 n=1

uniformly in an interval including origin, then, by Lemma 2, we have

Z na, =0 (C’ 2),

n=1

that is, by (3.2),

n
Z Ai_va, = — % > A = — % 55t = o(n?).

v=1

Thus we get si"® = o(n®). Since a¢ + 3 == 2, we can easily see that si = o(n?),

and that the series ) a, is evaluable (C,2) to zero. Therefore, evidently, the

a=0
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series ) a, is evaluable (C, 8), 8 > 2, to zero.

n=(
Thus, Theorem 1 is completely proved.
4. Proof of Theorem 2. From the argument in the paragraph 3.1, it is

sufficient to prove Theorem in the two particular cases (3. 3) and (3. 4). Since the
summability (C, 2) implies the summability (logn, 2), it remains to prove The-

orem for the case (3.3). Since, by Theorem 1, the series Y a, is evaluable
(C,B), B> 2, it is sufficient, by Lemma 6, to prove that "

oy, = sa/A; = o(log® n).
For this, by 1 — a@ > 0, using (3.9), (3.10), (3.11) and (3.12), we have

1-a 2 a-af " * & i-w
n = — An n
S - ( fo + lln) o(t) g K. %(t) dt

1/n z
=0 (nl‘“ f n dt) +o0 (n’“" f nre? dt)
0 1/n

= o(n® log n).
Hence, by (3.13) for y =1 — a,

sz = o(n® log n),

which is the required result. Thus, Theorem is proved.

5. Proof of Theorem 3. The first stage of the proof is like that of the
proof of Theorem 1. From our assumption,

s o
(5.1) Fit)=>_ >t sinne
ne1 1
converges for ¢ in some interval (0, &), and F(¢) = o(t™*). Now, as in the
paragraph 3.1, we can easily see that Theorem is true generally provided that
Theorem is true in the two particular cases;
(5.2) the series in (5.1) is a Fourier series
and
(5.3) the series in (5.1) converges uniformly to zero in an interval of 2
including origin.
For the case (5.3), by Lemma 4, the series ) si is evaluable (C,1) to zero,
Nn=l

and then
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n
> AL sy = sitt = o(n).
v=0

Since a + 2 =>1, we see that s, = o(n). This shows that the series ) a, is

n=0

evaluable (C, 1) to zero. Hence, evidently, the series ) a, is evaluable (C B),

n=0
B > 1, to zero. We shall now prove Theorem for the case (5.2). We may suppose
that 1 < 8 < 2 and choose & such that 8 == a + ¢ + 1. Let

(/7

(5.4) o)~ —Snl sin 7z.
n=1

Then, by our assumption, we may suppose that @(z) = o(z™*). Now, S denot-
ing the (C, ) sum of the formally differentiated series of the series (5.4) at
t =0, we have

2 ” d
5.5 Sy =—-="A} - K3 t.
(5.5) A e KU d
Therefore, using (3.11) and (3.12),
v 2 (" " a4 gy
Sy - n( fo + fl /n) o) 2 x() dt

1n n
=o0 (ny f it dt> + o0 <ny f % e Yy dt)
0 1/n

= o(n**"*") + o(n+ n**")
= o(n"*"*) = o(r),

by 8 = a + v + 1. Since, remembering that a, = 0,

(5.6) Sh=2 A, s =i,

v=0
we have sf = o(n®), which is the requiredresult.

6. Proof of Theorem 4. From the argument in the former section, it is
sufficient to prove Theorem in the two particular cases (5.2) and (5. 3). For the
case (5.3), since the summability (C,1) implies the summability (logz, 1), it
remains to prove Theorem for the case (5.2). For this, by Lemma 6, it is
sufficient to prove that

o, = sp/ A = o(log n).
Since, by (5. 5),
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i 9 < d o
Siv = — 2 A= [ o) 2 Ko
2 £¢Oﬂ @ de

:_iﬂﬂf%”ﬁw%mwm

™ 1/n
1/n T
=o <n'”f ™% e n? dt> +o (n"“f Y Ak dt)
0 1/n
= o(m**n*") + o(nlog n)
= o(n log n),

we have, by (5.6) for y = — a, s, = o(nlogn), which is equivalent to that
sn/A}L = o(log n). Thus Theorem is proved.

7. Proof of Theorem 5. The method of the proof is also similar to that
of Theorem 3. Theorem for the two particular cases (5.2) and (5. 3) is obvious.
For, if

had o

(7.1) > % sinnt = F(t) = o(¢™%),

n=1

and if the series is a Fourier series, then

oo

9t

(7.2) > :; (1 ~cos2nt)=2) ::; sin? nt = [ F(u) du = o(£~%),

n=l n=1 “0

because a Fourier series can be integrated term by term ; and if the series in
(7.1) converges uniformly to zero for small £, then the series in (7.2) converges

o

to zero for small ¢. Thus the series Y a, is evaluable (R, 2, &) to zero.
n=0
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