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1. Introduction. In a previous paper,” we have defined for some odd
dimensional manifolds two kinds of structures which we have called (¢, £, n)-
structure and (¢, &, 7, g)-structure. The latter is a (@, £, n)-structure with a positive
definite Riemannian metric g which stands in a notable relation with the (¢, &, 7)-
structure. These structures are remarkable in the sense that any differentiable
manifold with (@, &, 9)-structure is an almost contact manifold and any almost
contact manifold admits (@, &, , g)-structure.

In this paper, we shall study two kinds of structures for differentiable mani-
folds of any dimension, the first one ((¢, Yr)-structure) may be regarded as gene-
ralizations of almost complex structure, almost product structure and (¢, &, n)-
structure, and the second one ((¢, V¥, g)-structure) may be regarded as generali-
zasions of almost Hermitian structure, almost product metric structure and (@, &,
7, g)-structure. We shall confine ourselves only to algebraic considerations, analytic
considerations will be published in later papers.

2. (¢, ¥)-structures.

1°. Let M" be a differentiable manifold of dimension 7. Suppose first that
there exist over M" two tensor fields ¢; and V;® of type (1, 1) which satisfy the
following conditions :

2.1 rank [$]| =/,

(2.2) rank [Y¥}| = m,
(2-3) dipi = 0,
(2.4) Vil =0,

1) S.Sasaki, On differentiable manifolds with certain structures which are closely related
to almost contact structure I, Tohoku Math. Journ. 12(1960) pp. 459-476.
2) We assume, unless otherwise stated, that the indices run the following range of inte-
gers :
i,7,k,a,B,y=1,2,...... ,a(=1l+m),
a,b,c=1,2,...... .,
P,(I’f'=l+l, ''''' s n

E,F=1,...,0, HK=l+1,...,[(=],+1)
L=I+1,...... J+m!, L*=l+wm'+L,
M,N=I[+1,...... SJl+my,
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(2.5) eGPl + EVivl = &,
where [, m are non negative integers such that
(2.6) L+ m=n,

and & & are + 1 or — 1. In such case we say that the manifold M"™ in consi-
deration has a (¢, ¥)-structure of type (sgn &, sgn &) or M" is a differentiable
manifold with a (@, ¥)-structure of type (sgn &, sgn &). From our definition we see
that if a differentiable manifold M" admits a (¢, ¥)-structure of type (sgn &, sgn
&), then it admits also a (— ¢, ¥)-structure, a (¢, — ¥)-structure and a (— ¢, — ¥)-
structure, all of type (sgn & sgn &). Hence, we identify all of these structures.

2°. First we shall prove the following

THEOREM 1. Suppose M" be a differentiable manifold with a ($,¥)-
structure of type (sgn &, sgn &). Then in every sufficiently small coordinate
neighborhood U of M", we can find frames (€, &) (a =1,...... S p=1+1,...
«esy ) Such that

®) = M€,
where (n3,7%) are the inverse matrix of (€, E,) and N5, pf are scalars such
that

2.7

([ AN = €8,
| gt = €53,

PROOF. As the rank of |¢}| is equal to I, there exist s linearly inde-
pendent vector fields over U which are solutions of the equation

(2.9) $i¢ = 0.

Let us denote any such vector fields by & and take n vector fields &, &, over
U so that they are linearly independent. If we put the inverse matrix of (&, &)
by (9% %), then ¢} can be written as

¢; = N\gEAf.
By virtue of the construction, we have
(2. 10) $iE) = 0.

Therefore, we can easily see that A% = 0 and hence we get

(2.8)

(2.11) &5 = M€y + MENS.

Next, Y% can be written also as
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¥ = ppkunf.
If we put this into (2.3), we get
Pl = pi(iEME = 0.

However, ¢;€, ’s do not vanish for any value of a, so we get ugnf = 0. Hence,
we get w3 = 0. Therefore, ¥} has the following form:

(2-12) V5 = il + wEl.
Thirdly, putting (2. 11) and (2. 12) into (2.4), we get
Vgl = (oA + WAL = 0.
Hence, we see that the relation
(2.13) HiNs + AL = 0

holds good. v
Finally, putting (2.11) and (2. 12) into the left hand side of (2.5), we get

EPPL + EVIPL = ENINELL + & WipiE.
Comparing this with
& = Ent,
we see, by virtue of (2.5), that the relations
ENNe = &,
(2.14) & popt = &7,
EADNY + Epiul =0
hold good.
Now, we take another frame &, which are given by
£ = \E, + \E,
| &= & Wit

Then, the inverse matrix 7% of £, is easily seen to be

(2.15)

“a — EX"' b
(2.16) | p”:’” o
N5 = Mon3 + He75.

The equation (2. 15) can be solved with respect to &, giving
E = e\l — ENIAWIEL,
{ & = HiE,
and the equation (2. 16) can be solved with respect to 7} giving

2.17)
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7§ = Ao,
oo | |

n} = — & phpiNin; + & pin}.
If we put (2.17) and (2. 18) into (2.11) and (2. 12), we can easily see that the
relations

L— Xa—f;—b,
(2.19) { ?; vSa®l;

V) = W€
hold good, where A}, u® are scalars over U such that
{ AoNG = €83,
wod = E'8).
Consequently, if we change our notations and write €., 57 instead of &, 7% we
see that our theorem is true. Q.E.D.
We call the frame such that the tensors ¢j, ¥ take the form (2. 7) satisfying
(2. 8) an adapted frame of the first order.
REMARK 1. The above demonstration shows that the conditions (2.2) and
(2.6) follow from the conditions (2. 1), (2. 3), (2.4) and (2.5).

REMARK 2. From (2.8) we see that if € = — 1, then / is even and if
& = — 1, m is even.

3°. Suppose that M" be a differentiable manifold with a (¢, ¥)-structure.
Then, at every point P of M™, the set of vectors such that
(2.20) $E =0
is an m-dimensional vector subspace V, spanned by &, at P. In the same way
we can see from (2.2), that the set of vectors at P such that
(2.21) V€L =0

is an /-dimensional vector subspace V, spanned by &.. Hence, V, and V,, are
disjoint and complementary. In other words, if we denote the tangent space at

P by TP, then
(2. 22) TP == Vl @ Vm-

The correspondence P € M™" to V, at P and the correspondence P € M" to V,,
at P define the so-called /- and sm-dimensional distributions over M". We call
them D, and D,. Then we get the following

THEOREM 2. Suppose M" be a differentiable manifold with a (b, ¥)-stru-
cture. Then, the two distributions D, and D,, are disjoint and complementary.
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Adapted frames of the first order in a coordinate neighborhood U are nothing
but frames whose first [ vectors span the vector space V, of D, and whose last m
vectors span the vector space V, of D, at every point of U.

4°. Now, we consider a transformation of adapted frames of the first order
1 & = aitl,

& = B
where @ and @ are non-singular matrices. Then, it induces a transformation of
n of the form

(2.23)

't — ’a'u b,
(2. 24) { 7; 2y

% =B},
where ‘a and ‘B are inverse matrices of @ and B respectively. Putting (2.23)
and (2. 24) into

¢) = Nl

= Aol
we see that
(2.25) acny = Noad,
which shows that A{’s transform like components of a mixed tensor under trans-
formations (2.23). Hence, if & = — 1, we can take a so that the matrix A\ takes
the form
O - E[/
(2. 26) A= )
K, 0

where E. is a unit matrix of dimension /' = /2. In this case ¢ reduces to the
form

(2.27) ¢ = — Emi" + Eunf,

where A runs over 1,2,...... ,0' and A* = A + I'. If we take B arbitrary, then
with respect to the frame (&}, &, &) thus deternvined, ¢ has the following com-
ponents :

0 —Eu|
(2. 28) 6= E. o0 |
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Especially, we can see that the characteristic roots of the matrix ¢ are equal to
0, i and — 7 with multiplicities m, /” and [ respectively.

On the other hand, if & = + 1, then the characteristic roots of the matix A
are equal to — 1 or + 1. If multiplicities of the roots — 1 and + 1 are /; and
1, (I, + I, = ]) respectively, then we can take a so that the matrix A takes the
form

— Ey 0
(2.29) A= ,
0 Elz

where E; and E, are unit matrices of dimensions /;, and /,. In this case ¢ takes
the form

(2. 30) ¢ = — Enl + Eml.

Even if we take B arbitrary, with respect to the frame (&%, &, «f_;.) thus determined,
¢ has the following components :

- E, 0 !
(2.31) $=| 0 Ey |
o |

0

0

Similar facts hold good for Y too. Hence, summarizing the above results, we get
the following

THEOREM 3. Suppose M" be a differentiable manifold with a (¢, ¥)-stru-
cture of type (sgn & sgn &). Then we can take frames over every coordinate
neighborhood U so that ¢ and V¥ take the following forms :

@)= — Emi" + Eunj, for & =-—1

( = — &mf + &y, for € = +1
2.32 . ,

) Vi=—Enf" + Epyf, for & =-—1

=—&m) + & for & = +1

REMARK. If M", is a differentiable manifold with a (¢, ¥)-structure of type
(—, +) such that rank of |¥| is equal to 1, then with respect to adapted frames
of the first order in a coordinate neighborhood U of M™, ¥} may take the form
&n, as (¢, ¥)-structure is identical with (¢, — Y)-structure. Hence, the conditions
(2.1) to (2.6) reduce in this case to

{ rank |¢}| =27, n=20+1
(2.33) & =0, dim = 0,
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b = — & + Enfin,.

and trivial equations. These combined with &%, = 1 are nothing but the defining
equations of the (¢, £, n)-structure for M*'*!. However, contrary to the case of
(¢, &, n)-structure, our vector fields & and 7, are defined locally. They do not in
general constitute a vector field over M*'*!. Hence, the set of differentiable ma-
nifolds with (¢, ¥)-structures of type (—, +) such that the rank of |Y¥| is equal
to 1 is somewhat wider than the set of differentiable manifolds with (¢, &, 5)-
structures.

Formulas in (2. 32) are canonical forms of the tensors ¢ and Y. We call any
frame with respect to which ¢ and Y take such canonical forms an adapted frame
of the second order of the given (¢, ¥)-structure.

5°. Now, the tensor fields ¢ and Y define linear maps of tangent vectors at
every point of M" by v—> ¢ v and v—> Y v.

THEOREM 4. Suppose M" be a differentiable manifold with a (b, ¥)-stru-
cture and V, V. are associated vector spaces at any point P of M". Then

) ¢ v==¢Ew, " forveV,
(ii) Yy = & v, for ve V,,
(iii) Y v=0, Yvov =0, for v € Th

PROOF. If v € V,, then ¥ v = 0 and the converse is also true. In this case
we see easily that

Ppv = &8 — EYY)v = Ev.
Hence (i) is proved. In the same way we can prove (ii). (iii) follows immediately

from (2. 3) and (2. 4).

THEOREM 5. The linear maps v — (¢ + Y)v and v — ($ — ¥)v of tangent
spaces are non-singular.

PROOF. By virtue of (2.3), (2.4) and (2.5), we can verify that
(@ + ¥) (P + EY) = &P + EYYPr = 8.
Hence, ¢ + V¥ and &p + &Y are non-singular and inverse to each other. Simi-
larly, ¢ — 4 is non-singular.

3. Associated Riemannian metric g.

6°. In this section we study if we can associate a positive definite Riemann-
ian metric ¢ to any differentiable manifold M" with a (¢, ¥)-structure or not.
We begin with a lemma.
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LEMMA 1. Suppose M" be a differentiable manifold such that there exist
two distributions D, and D,, of dimensions | and m which are disjoint and
complementary. Then there exists a positive definite Riemannian metric h with
respect to which the vector spaces V, and V, of the distributions at every
point of M" are orthogonal to each other.

PROOF. First we introduce an arbitrary positive definite Riemannian metric
f over M". Suppose {U,} be a sufficiently fine open covering of M" by coor-
dinate neighborgoods.

Now we take / (resp. m) orthonormal vector fields &, (resp. &) over U, with
respect to f so that they span the vector space V, (resp. V,,) of the distribution
D, (resp. D,) at every point of U,. Of course, & and & are not orthogonal to
each other in general. We define

3.1 Wi (Us) =3 EE, + 2 &8,

On the other hand, let Ug be another coordinate neighborhood which belongs

to {U,} such that U, N U, is not empty and &, &, are vector fields over U,
defined in the same way as above. Then, it is evident that

_gfl = Z uabgib’
& =2 uncky

hold good over U, N U, where (u,,) and (u,,) are orthogonal matrices. We can
easily verify that
R (UL) = h"(Up)

holds good over U, 1 Us. This shows that the set of tensor fields A“(U,), UL
€ {U.}{, constitutes a global tensor field over M™. The inverse A;; of the tensor
field A%, then determine s a positive definite Riemannian metric over M". We can
easily verify that, with respect to A = (h,;), the two vector spaces V, and V,, are
orthogonal at every point of M". Q. E. D.

LEMMA 2. With respect to the metric h over M" defined in the proof
of Lemma 1, the relation

(3.2) hui¥l = 0
holds good.

PROOF. Let U be an arbitrary coordinate neighborhood of M". We take
frames over U so that orthonormal vectors &, (resp. €,) with respect to the metric
h span the vector space V, (resp. V).
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On the other hand, as (&, &) are adapted frames of the first order, we

have

& = NElay),

Vi = mi.
Hence, making use of the fact

€&, = 0,
we can easily verify that our Lemma is true.

7°. Now let us prove one of our main theorems.

THEOREM 6. Suppose M" be a differentiable manifold with a ($, ¥)-stru-
cture of type (sgn &, sgn &). Then, there exists a positive definite Riemannian
metric g over M" such that the relations

gVt =0,

gu® = Egndl,

gu¥i = Egu¥l,

bt + gV = gue

3.3)

hold good.

PROOF. We put
(3. 4) g = -%(h,-,- + hasldE + hag¥i).

Then, first by virtue of (2.3), (2.4) and (3.2), (3. 3), is easily seen to be true.
Secondly, we see by virtue of (2.4) and (2.5) that

gudt = —Zl—hm:f + ~21~hm@¢7<essf— &Y™
= %hm#“ + %h,m
= Egj,,,?yf.

In the same way, (3. 3); can be proved.
Thirdly, we see by virtue of (3.3),3 and (2.5) that

gu#;‘i’i + gtj‘l’;z‘["lfc
= ggm‘ﬁ(ﬁc + 8'91;.‘/’3‘1’1

= Gnx-
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Hence, (3. 3), is proved. 0. E. D.

We shall call the Riemannian metric ¢ whose existence is insured by Theorem
6 the associated Riemannian metric of the (¢, ¥)-structure in consideration. And
the differentiable manifold with the (@, Y)-structure and its associated metric ¢
is called a manifold with a ($,V, g)-structure. It is an analogue of the almost
Hermitian manifold for almost complex structure.

THEOREM 7. Suppose M" be a differentiable manifold with a ($,V, g)-
structure. Then, tensor equations

3.5 ( g“(qb; + «1»5.)(<1!>-if + 11»@) = Guns
1 guldh — ¥ @ — ¥ = gue
hold good.
PROOF. By virtue of (2.3), (2.4) and (3. 3),, we can easily see that
9Pl + i) (H + ¥i)
= g PPl + giViVE = g
In the same way (3.5), can be proved.

THEOREM 8. Suppose M" be a differentiable manifold with a ($,V, g)-
structure, then the two distributions D, and D,, are orthogonal with respect
to the metric g at every point of M".

PROOF. Take a point P of M" and &, are vectors which span the vector
space V, of D, at P and &, are vectors which span the vector space V,, of D, at
P. Then, by virtue of (3.3),,

gufZEL = (gwa‘/’? ‘1"? + gmp1l'2-” ‘I"JB)&&
=0,
which shows that V, and V,, at P are orthogonal to each other. Q. E. D.
4. Associated tensor fields.

8°. Suppose M" be a differentiable manifold with a (¢, ¥, g)-structure. If we
put

(4- 1) ¢;/ = G }L:
then, by virtue of (3.3),, we get
4.2) b, = &P,

Such a tensor will be called as &-symmetric with respect to its indices. Of course,
&-symmetry means symmetry if &€ = 4+ 1 and skew-symmetry if € = — 1. In the
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same way, if we put

(4- 3) "l"w‘ = gm‘l’ﬁb,
then, by virtue of (3.3),, V; is &-symmetric, i. e.
(4. 4) ‘I"ﬁ = 8"’";1-

We can solve (4. 1) and (4.3) with respect to ¢} and V¥ getting
i __ il .

(4 5) { ¢ﬁ. gmqs,”,
"l"j =g ‘I’nj-

Now, we put
(4.6) ¢ = ¢lg", ¢ = ¢"gu,
then
$ = g g

= &9" g™
= &plg"
4.7 S Y = &g
So, ¢¥ is an &-symmetric contravariant tensor fields. In the same way, if we put
4.8) ¥ =Yg, ¥ = ¥"gus
then we get
(4.9) Y = ey,

We call four tensor fields ¢;;, V¥y;, ¢, ¥ the associated tensor fields of the
(¢, ¥, g)-structure in consideration.

THEOREM 9. Let ¢,;, ¥y, 9Y, ¥ be associated tensor fields of a dif-
ferentiable manifold with a ($,V, g)-structure. Then, the relations

"
v
hold good.
PROOF. By virtue of (4.6), (4.3) and (2. 3), we see that
¢"Vu; = Bhg™ gu¥s
= ¢ = 0.

Hence (4. 10), is proved. In the same way, we can prove (4.10),.
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9°. In the next place, we shall study the converse problem. We assume that
M" be a differentiable manifold with a &-symmetric tensor field ¢,; and &-sym-
metric tensor field ¥¥ such that

{ rank l¢i:’| = l,
(4.11) Jl rank V9| =m, (I +m =n)
‘l"m‘ﬁn.f =0

hold good. And we shall study if we can find a positive definite Riemannian
metric g such that the tensor field

& = g"bus Vi = Y gs;
and ¢ define a (¢, ¥, g)-structure over M" of type (sgn &, sgn &) or not.
First, we introduce an arbitrary positive definite Riemannian metric A over

M?". Then, ¢,,h""p,; is a symmetric tensor field over M™. Hence all roots of the
characteristic equation

(4.12) | bk by + Phi;| =0

are real. As |¢;;| is of rank /, 0 is a root with multiplicity . It is easily seen
that all other roots have the opposite sign to &.

Now, we denote all distinct non-zero roots by p,, p,,-..... , Pr, their multi-
plicities by s, f,,...... , 4. and the characteristic spaces corresponding to the roots
0 and py,...... ,Pr by Vo, Viseonoo. , V. respectively. Then, we see that

dim Vo =m, dim V)\ = M, (X = 1, ...... s 7')

As is well known, all different characteristic spaces are orthogonal to each other
with respect to the metric A.

In the same way, we take up the symmetric tensor field ¥4, ¥"*/ and consider
the characteristic equation

(4. 13) |V ™ + ah¥| = 0.

Then, it has 0 as a root of multiplicity /. Other roots are all real and they have
the opposite sign to &. We shall denote all distinct non-zero roots by &,, o,...

..., 0, their multiplicities by w»,, v,,...... , v, and the characteristic spaces of
characteristic covectors corresponding to the roots 0 and oy, o,,...... , o by Wg,
Wrt,...... , W¥ Then we see that

dim W§ =1, dim W¥ =, n=12,..... ,8)
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and W§,...... , W¥ are orthogonal to each other.

10°. Now, we consider a linear map of the tangent space T» at a point P
of M" to its dual space T% defined by

(4- 14) h H Xi _—> hinj-
Then, we get the following

LEMMA 3. Let hV, (A = 1,...... ,7) be the image of the vector space V,
under the map h, then
(4. 15) WE=hv,H-- P av,.

PROOF. Suppose that X € V, (A =1,2,...... , r fixed), then
b kP X7 = — phy; X .
By virtue of the last equation and (2.4) we see that
V' h V(= pihmX™)
= VbV 'y A by X7 = 0.

As p, =+ 0, this shows that A X € WY, hence AV, < Wy. Therefore, AV, P--
P hV, &= W§. However, taking account of the dimensions of W§ and AV, &---
- AV,, we see that the equality sign holds good. Q. E. D.

LEMMA 4. The tangent space Tr at any point P of M" decomposes into
the form
(4, 16) Tr=V, @ ...... @ V. @ h*W¥ @ ...... 69 h™*W¥,
and any two of these component spaces are orthogonal to each other.
PROOF. Quite analogously to Lemma 3, we can prove that
Vo=h"Wtp------ D rrwy.

As WF...... , W{ are orthogonal to each other, A" W¥,...... , h"1W7¥ are orthogonal
to each other too. On the other hand, VP V,H---- PV, is a decomposition

of the tangent space at any point of M". So our assertion is true. Q. E. D.

Now, suppose {U,} be an open covering of M". We take frames &,....... , En
over U, such that

E,...... s & span V,,

§#1+la """" ’ §H1+I‘2 span V2,

§M1+...+f4,-—1+19 """" s fl span Vr:



ON DIFFERENTIABLE MANIFOLDS WITH (¢,¥%)-STRUCTURES 145

ELH: ------ ) §l+v1 span A 1WT,

El+v1+...+v._1+l: """ > En span h_IWs*-

As the terminology which is used only in this section, we call such frame an
adapted frame. Then, with respect to adapted frames, the components of the
tensor field 2 have the form:

hl 0
_ “h,
4.17) h= k,+} s
0 hr+s
where #,,--.... s Py Rprgseeeee , h,.s are matrices of order p.,...... , &y and v,...... , Vs

respectively.
11°. To find the form of components of ¢;; with respect to adapted frames,
we consider the linear map X — X of the tangent space defined by
(4. 18) X = b, X,
LEMMA 5. If XeV,A=1,..... , 7), then 3(" eV
PROOF. By virtue of
(4.19) ¢mhhk¢ij = — Phi; X ’,
we can easily verify that
(¢ihhhk¢ki + PR P X ™
= ¢, 0" (= phenX™) + PiPimX "
= (. Q. E. D.
LEMMA 6. If X eV, (A=1,...... , 1), then
(4. 20) Xt = — pX"
PROOF. By virtue of (4.19), we see that
)7 b= hm‘ﬁnj(hﬂd’tmx m)
= hm(_ PAhh.mX 'm.)
= — P,\Xt- Q. E. D-
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Now, we put components of the tensor ¢ with respect to adapted frames in
the form

O ¢1T+"'

Pragreeeseeeeeennnns Pris res
where ¢, (u, v = 1,...... ,7) is a (My, My)-matrix, P, (= 1,...... , 8 v=1,..
vy 1) is a (v, py)-matrix, @y e = 1,...... , 0= 1,..... ,5) is a (i, v,)-matrix,
and @,y i, v = 1,...... ,s) is a (v, v,)-matrix. Then, we see that

;.’¢u ............ h;’g_blm
A = :
h;js (T CEERERRER h;»:s¢r+s r+s

If we assume that X € V,, then its components with respect to adapted
frames are of the form (X,,0,...... ,0), where X, is a vector with , components.

So, in this case the vector X =ht ¢X has components (A7'$,, X, A7’ X4,
ey Bt B0 X1). However, as X € V,, we see that

huX, =0, n=2,.... , 7+ 5).
Since X, is an arbitrary vector of V,, we get
Po =gy ==y = 0.
In the same way, by considering vectors of V,,...... ,V,, we get

b, =0 wfv; u,v=1,.... 7,
brino=0 (=1,...... ,8 v =1,..... , 7).
LEMMA 7. If Y€ R'W(A=1,...... ,$), then
(4.21) é,Y’ = 0.
PROOF. By assumption Y* = AY € W}, so
V'h VY = — o hY = — oY
By virtue of this and (4.11);, we see that
— a$,Y = S h.¥YY = 0,
which is to be proved. Q. E. D.

Now, suppose ¥ € AW PH------ P AW}, then the components of Y with
respect to an adapted frame have the form (O,...... ,0, Yeirgenooo ,Y,..), where
Y,iuluw = 1,......,5) are vectors with v, components. Hence, (4.21) shows us that
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¢u reo 0: ¢r+u rty = O:

where u = 1,...... ,7and v =1,...... ,s. Consequently, we see that ¢ has the
form
o8 0
o8
*. 0
(4.22) ¢ = ‘e
0 b, |
0 0
with respect to adapted frames, where ¢, (A = 1,...... ,7) is a &-symmetric p-
matrix.

To find components of Y with respect to adapted frames, we consider the
linear map

(4.23) Y = P, YT

Then, we can easily prove lemmas analogous to Lemmas 5,6 and 7. Making use
of these facts, we can similarly prove that the components of Y with respect to
adapted frames have the following form :

0 ! 0
"""" T
(4. 24) v=| w0 |
0 | .
0 Ty
where Y'"(A = 1,...... ,$) is a &-symmetric v,-matrix.

12°. Now, making use of the decomposition of the tangent spaces stated in
Lemma 4, let us introduce a new Riemannian metric g over M" by

9, 0
= g"
(4. 25) g gres s
0 Gr+s
where we have put
Ju == &py hy (u=1,..... 5 1),

4.26 S
( ) Gr+v = hr.po/N/— 8’0'1, (’U = 1, ...... ’S).
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As characteristic roots and characteristic spaces are independent upon the choice
of coordinate neighborhoods, the Riemannian metrics defined thus for every coor-
dinate neighborhood of the covering {U.} constitute a single globally defined
Riemannian metric over M".

We put

(4. 27) ¢; = gi’"l’n;-

Then, ¢! is a globally defined tensor field over M™ too. By virtue of (4.22) and
(4. 25), we see that ¢} has components of the form

gfl‘f’x 0 l 0 )

(4.28) @=| o o

with respzct to adapted frames. We now define a modified linear map of (4. 18)
by

(4.29) X' = g"¢,,X".

If we assume X € V,, then with respect to adapted frames, we see that

X*=g"bX" (v, w =1y )

1 S
=__1 X
~ — &py
Hence, we have
Au 1 ::“u u
X' = X"=&X
- EPI
This shows that
(91"¢1)’ =&
Similar formulas hold good for matrices gi'$x(A = 1,...... ,7) too. Hence, we see
that
& 0
* L] 0
(4.30) @= o, .
0 i 0

Finally, we put



ON DIFFERENTIABLE MANIFOLDS WITH (¢,¥)-STRUCTURES 149

(4.31) Vi = ¥"gu,

then, V! is a globally defined tensor field over M™. And, in the same way as
above, we can prove that (¥]) and (Y¥iyl) have the forms

0 0
(4.32) wh=| (Yo O
0 ! ‘.
i 0 ‘l’"gr+s
and
0 0
(4.33) W =| | E. 0
0 | .
0 &

with respect to adapted frames.
Combining (4. 30) and (4. 33). we see that

(4.34) Edipr + EPiPL = &

holds good with respect to adapted frames. However, as (4. 34) is a tensor equa-
tion, it does hold for any frame, especially for natural frames. We can easily
prove, by virtue of (4.28) and (4. 32) that

(4. 35) Pl =0, YPipl = 0.

As the ranks of |¢}|, |Y¥i| are / and m respectively, we see that our ¢} and ¥}
give a (¢, ¥)-structure of type (sgn &, sgn &) to M™".
We can easily prove that

b = gudi = Egndi
,‘P\iJ — ‘Pzgnj — 8"\[[‘,’lghi

(4. 36)

and
Pt = 0.
Finally, as we have shown in the proof of Theorem 6, the relation
9uBbi + gVt = g
follows from (4.35) and (4. 36). Consequently, we get the following

THEOREM 10. Suppose M™ be a differentiable manifold and there exist
&-symmetric tensor field $,; and &-symmetric tensor field V¥ such that
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rank |¢,| =1, rank |V =m, I+ m=n
and
"Pih‘ﬁu =0

hold good. Then, we can find a positive definite Riemannian metric g such
that the tensor fields

¢; = g“¢n;, "P'} = ‘ngh,
and g define a (b, V, g)-structure over M" of type (sgn &, sgn &).

COROLLARY. Suppose M™ be a differentiable manifold and there exists
&-symmetric tensor field ¢,; over M" such that

rank || =1, [Zn.

Then we can find a symmetric tensor field V¥ such that
rank (VY| =m, m=n—1

and a positive definite Riemannian metric g so that
¢ = g"bn Vi =¥"0ns

and g define a ($,V, g)-structure of type (sgn &, +).

PROOF. By assumption, at any point P of M", the set of vectors such that
;8 =0

span an m-dimensional vector subspace V,(P) of the tangent space Tp» at P.
Now, suppose 2 be a positive definite Riemannian metric A over M" and take
m orthonormal vectors &, with respect to the metric 2 and put

YIP) =2 &8

When P moves over M", it is evident that VY“’s constitute a globally defined
symmetric tensor field over M". We can easily verify that

rank |[YY| =m,
"I"M(ﬁm = 0.
Hence, by virtue of Theorem 10, we can conclude that our assertion is true.

Q. E. D.

5. The structure groups of the tangent bundles of manifolds with
(¢, ¥, g)-structures.

13°. The structure group of the tangent bundle T(M™) of a differentiable
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manifold M" is in general the general linear group GL(n). However, we can
prove the following

THEOREM 11. Suppose M" be a differentiable manifold with ($,V, g)-
structure of type (sgn &, sgn &). Then, the structure group of the tangent
bundle T(M™) is reducible to the following one :

(i) U(/2) x Uim/2) ife=&=—1,
(ii) U(L/2) x O(m,) x O(my) ifé=—1,8 =+1,
(iii) O) x O(y) X O(m,) x O(m,) if €=8& = + 1,

where [,(l,) is the number of negative (positive) roots of the characteristic
equation of @ and m.(m,) is that of Vi

PROOF. We shall prove only the case (ii). The other cases can be proved
quite analogously.

We take sufficiently fine open covering {U,} of M" and determine in every
U, suitable frames. To do so, we take first a unit vector field & over U, con-
tained in D, and put

(5.1) E.=¢i8, 1*=10I'+1, I'=1/2

Then, we can easily see that &. is a unit vector field orthogonal to & and con-
tained in D,. Secondly, if we take a unit vector field & orthogonal to & and &k
and contained in D), then

(5.2) .=, 2%=10+2
is a unit vector field orthogonal to &, &, &. and contained in D, Continuing
this process, we can find orthonormal vector fields &(A = 1,...... ,1') and

(5.3) Ee=a, V=10 +21
so that they span D, in U,. By virtue of (2.5) we can solve (5. 3) as follows:

(5.4) & = — ¢

Next, we consider the characteristic equation
(5.5) ¥ + a8l| = 0.

Then, the characteristic roots are 0, — 1 or + 1. The characteristic space cor-
responding to 0O is the vector space V, of the distribution D,. We denote the
multiplicities of the roots — 1 and + 1 by m,; and m, and the characteristic
spaces corresponding to — 1 and + 1 by W_ and W,. Then, as is easily seen,
V., W_ and W, are orthogonal to each other.

Now, we take orthonormal frames (&, &, &y, &) over U, so that &, &.
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are related by (5.3) and span V,, E,(M =1 + 1,...... ,I + m;) span W_ and &
S=1+m + 1,...... ,n) span W,. Then, we can easily see that g, ¢ and ¥
have the following forms with respect to such frames :

[ Ev 0
— Ev
(5.6) g= ol s
0 Enm,
0 —E
( 0
(6.7 ¢=| Ev 0 | ,
0 0
0 0
(5.8) ¥ = —E, 0
0
O Em,z

Suppose U, N U is not empty and & E, E. E be vector fields over Up defined
in the same way as above, then over U, 1 Ug we get
{ E = af + bE.
Elo=clE\ + d,ﬁ?ﬁ\*,

{ Ey = ulE,,
& = ujks,
where (Z 2,) and (U¥) and (U}) are orthogonal matrices. However, by virtue of
(5.3), we can easily see that d = a, ¢ = — b. Hence, the structure group of

T(M™) in consideration is reducible to U(l") x O(m,) X O(m,).
14. Converse to Theorem 11, we can prove the following

THEOREM 12. Suppose M" be a differentiable manifold such that the
structure group of the tangent bundle T(M™) is reducible to

6) Ul x U@m"), 20 +m')=mn, or
(ii) Ul x O(my) x O(my), 20 + m, + my=n, or
(iii) O(l) X O(y) X O(my) x O(my), I+ 1, +my +m,=n

Then, we can introduce (b, ¥, g)-structure over M" of type (—, =), (—, +)
or (+, +) according as the structure group is of type (i), (ii) or (iii).

PROOF. We shall prove only the case (ii) The other cases can be proved
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quite analogously. Let {U,} be sufficiently fine open covering of M" by coor-
dinate neighborhoods. Then, in every U,, we can take frames &, &.(\ = 1,...
oA =04+, EWM=1+1,...,l +m), ES=1+m + L,......,n)
so that the transformation of frames of U, and of Uz over non-empty U, 1 Up
is given by an orthogonal transformation of the form

(& =aF + 0E,,

1 f&"‘ = - bﬁg\ + aﬁ—g\*y
= uEy,
& = ukL.

We denote the inverse matrix of (&) by (37) and define over every U, tensor
fields by

gi! = Z’??ﬂ}t:

ant
¢ = — & + Ew),
v = — Em)’ + Emj,
then all g,,’s, all ¢)’s and all Y¥{’s corresponding to U/,’s constitute global tensor
fields g, ¢ and Y respectively. This can be easily proved by virtue of the relations
A, e

{ = am; — by,

A

)" = Bt + aln,

M _ M N
{m = uynj,
s 8T
Ny = Ur;.

As g, ¢, ¥ have components of the form (5.5), (5.6) and (5.7) with respect to
our frames in consideration, we can easily verify that (2. 3), (2.5), (3.3) (= —1,
& = 1) hold good. However, these equations are all tensor equations. Hence,
they all hold good for any frames, especially for natural frames. Consequently,
our Theorem is proved. Q. E. D.
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