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Introduction. One of the important questions in the theory of the crossed
products of rings of operators is the following: Is the crossed product of
a finite factor M also a finite factor for any group G of automorphisms of
M? The answer for this question is negative in general ([4]), and some
kinds of conditions on G under which the crossed product is a factor have
been obtained ([4]). In § 2 we shall deal with this question when G is abelian,
and sharpen the results in [2]. In §3 we shall consider the behaviour of the
action of G in the crossed product and give a condition on G wunder which
the crossed product is a factor.

1. Throughout this paper, we assume that all W*-algebras are finite
factors with the invariants C = 1. An automorphism of a W™-algebra means
a *-automorphism, and a group of outer automorphisms of a W*-algebra is
a group of automorhisms all member of which are outer automorphisms except
the unit. The unit of a group will be denoted by e. R(ai|A € A) means the
W *-algebra generated by the family of operators ax (A € A).

For convenience sake, we shall explain the construction of the crossed
product. Let M be a finite factor with the invariant C = 1 on a Hilbert space
H and G a group of automorphisms of M. Let @ be a separating and generat-
ing trace vector for M. For each ¢ € G we define

ulap) = a’ '@ for all a € M

where a” is the image of a by an automorphism 7. Then #, can be extended
to a unitary operator on H which will be also denoted by u,, and e—u, is a
faithful unitary representation of G on H such that
urau, = a’ for all a € M.
Now consider the Hilbert space H& 7, (G). If we choose the complete
orthonormal system {&.}ac in [, (G) such as
1 if Yy=a
&ly) = .
0 otherwise,

each vector of H®/,(G) is expressed in the form > @.&Q&. where @, € H
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and >°__ll@.l|* < oo.
For each a€M and ¢ € G we define the operators @& 1 and U, on HQZ,(G)
by

@®1) (X, 2 ® &) =, (a6

and

Us (X, c2eR8:) =2, toPu®E e

for all Z“EG%;@&, € HR® 1,(G). The set of all operators a @ 1(a € M) will
be denoted by M@ I For A=a®1 € MQI and ¢€G we denote @ Q1 by
A°. Then it is clear that

UsAU, = A° forall A€ MQI and ¢ € G.

The crossed product of M by G, denoted by (M, G) is the W *-algebra on
H & 1(G) generated by the set of all finite linear combinations >_ AU (A€

M®I, a; € G), and (M, G) is of finite type. It is noted that each element
A € (M, G) is uniquely expressed in the form

A = Z;GGAaUa

where A, € M 1T and Z is taken in the sense of the metrical convergence,
and @ & &, is a separating and generating vector for the crossed product
(M, G). The crossed product defined above seems to depend on the choice of
the representation of G on H, but it is shown that the crossed product is uni-
quely determined by M and G within unitary equivalence. For the details of
the theory of crossed products see [4].

2. First we shall prove the following Theorem.

THEOREM 1. Let M be a finite factor with the invariant C =1 on a
Hilbert space H and G an abelian group of automorphisms of M. Let P be
the fixed algebra of G in M. Then the crossed product (M,G) is a factor if
and only if there are no a € P(a== N1, N is a scalar) and ¢ €G (o +e) such as

xa = ax’ for all x € M.

PROOF. Necessity. Suppose that there exist an @ € Pu(a==21) and a 0 €G
(o == ¢) such as xza = ax’ for all € M. Since a €P, ulau. =a for all @ € G.

Thus for any Z;eGXaUN e (M, G),

1) The fixed algebra of G in M is the subalgebra of M composed ot all elements a€M
such that a* = a for all &« € G ([3: Definition 2]).
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(AUH (Z, XuUs) = 5 AXUsa = Y., , XaAUuo
= 3 KeAUUS = 3, XaUaAU? = (3 Xals) (AU?)
where A =a @ 1. Hence AU (M,G)N(M, G). On the other hand,
AUNp ® &) = aurp & &,
*

where @ is a separating and generating trace vector for M, and AUZ¥ is not
the scalar multiple of the identity operator on H &) I,(G).
Sufficiency. Suppose that the condition in Theorem 1 is satisfied. If

Z;(GX,,U,, is contained in the center of (M, G),

(.o XeUL) (AT = (AU (2, , X U.)
forall A=2a®1€MQ®]I and ¢ € G. Then

(Zne XuUs) (AU) = X, XoA* U
and

(AU,) (T, o XuUs) = 3., AXT U

Thus we have azl " = za% " for each @ € G where Xu = 2, X 1. Take o=e,

and we have

ax, = xea®" for all @ € M.

Hence by the assumption x, = A,1 for all @ € G, a 3= ¢ where A\, are scalars,
and so a =a* " for all a € G, a=¢ if A, =0 for a==e, which contradicts
to the arbitrariness of @ € M. From the relation ar, = x,a* " for all a € M,
xz, is the scalar multiple of the identity operator on H, and (M,G) is a factor.

As a corollary of Theorem 1, we obtain the slight improvement of the

example in [4]:

COROLLARY 1. Let M be a finite factor with the invariant C =1 on a
Hilbert space and a a non-trivial automorphism of M. Let G be a cyclic
group generated by a. Then & is outer 1f the crossed product (M,G) is a
factor. In particular, when the order of & is 2 or 3,(M, G) s a factor if and
only if G is outer.

PROOF. Suppose that (M, G) is a factor and a is inner. Then there exists
a unitary operator # € M such that «#*au =a” for all a € M. Since (w)*" =
(@*)" w(u)" = u for all n =0, %=1, %=2,..., u is contained in the fixed algebra of
G in M. Moreover we have



430 T. SAITO

au = ua® for all a € M.

Thus, by Theorem 1,(M, G) is not a factor which is a contradiction, and & is
an outer automorphism of M.

To prove the second part of our assertion, it is sufficient to show the “only
if” part because the “if part” is known ([ld,[4]). Suppose that (M,G) is a
factor and @® = e. @ is an outer automorphism of M as shown above, and
since @ = a~',a? is also an outer automorphism of M. Thus G is outer. If
a?® = e, it is obvious that G is outer.

The case where a’® = ¢ is nothing but the example in [3].

By virtue of Corollary 1 we can prove the following Theorem which is
closely related to [2] and sharpens the results in [2].

THEOREM 2. Let M and N be finite factors with the invariants C = 1,
and let G and H be groups of outer automorphisms of M and N respe-
ctively. Then G X H” is a group of outer automorphisms of M N.

PROOF. Let (a,8) € G x H be an arbitrary element which is different
from the unit (e,¢) of G x H, and let ®, be a cyclic group generated by
(a, B). Then it is sufficient to show that the crossed product (M@N, G, g,) is
a factor by Corollary 1. By [2: Theorem 1] and [3: Theorem] we have 1

(MEN, G, 5)) NMKN, G,0) SMEN, G x H)NMY) N, {(e, )}
= (M, G)Q (N, H)N((M, {e}) @ (N, {e}))
= (M, G)NM, fe})) Q (N, H)N(N, {e})).

On the other hand by [4: Theorem 3], (M, G)N(M, {e}) (resp.(N,H)N(N, {e}))
coincides with the center of (M, {e}) (resp. (N, {e})), because G (resp. H) is
outer. Thus (MQN, G ) is a factor, and the proof is completed.

REMARK. Theorem 2 holds when M and N are semi-finite factors. A sketch
of the proof is as follows. Let M be a standard factor on a Hilbert space H
and G a group of automorphisms of M. Then Lemmas 1 and 2 in [4] remain
true, and so we can define the crossed product as the same way as in the case
of finite factor, and Lemma 5 and Theorem 3 in [4] are also true”. Hence
we can easily seen that Corollary 1 is valid and the same computations as the
proof of Theorem 2 are available.

3. Let M be a finite factor with the invariant C = 1 on a Hilbert space
H and G a group of automorphisms of M. Let P be the fixed algebra of G in

2) For the definition of G X H, see Lemma 2 in [2].
3) These facts were pointed out by N. Suzuki when he published the paper [4].



ON GROUPS OF AUTOMORPHISMS OF FINITE FACTORS 431

M. Then (P, G) means the W *-subalgebra of the crossed product (M,G) gene-
rated by all finite linear combinations ZiAiUm, where A, =a,Q 1, a, € G. [t
is easily seen that each element in (P, G) can be expressed uniquely in the
form Z“GAQU,, where Ay = 2. & 1, ay, € P. The set of all operators a @ 1
on HR I(G) such as a € P will be denoted by P& 1.

LEMMA 1. If G is abelian
P,G)=M,G) N RWU,|a € G).
Pl?OOF. We first recall that a€ P if and only if aus = usa for all @ € G.
Let >, .A.Us be an element in (P, G). Then for each € G we have

Us (X 6AuUs) = 2. UsBaUs = 3. AaUsa
=3 AUar = (. ,AUL) Us,
and so
(P,G)S(M,G) N RWU.|« € GY.
Conversely, if we take an arbitrary element 3. AuU. in (M.G) N
R(U,la € Gy,
Us (X, 6AaUa) = (X6 A4aUa) U, for all o € G.
Thus
> AT Uy = Y. AuU,, for all o € G,

hence we have @, =a% ' for each @ € G where A.=a.Q 1’€ MXI
Since o € G is arbitrary, a. € P for all @ € G. This proves that D> AU, €
(P,G) and
(P,G)2(M, G) N R(U.|a € G,
So we have (P,G) = (M,G) N R(U.|la € G)'.
As an immediate consequence of Lemma 1, we have the following result.

COROLLARY 2. If G is ergodic and abelian, R(U,|a € G) is a maximal
abelian W *-subalgebra of the factor (M, G).

In fact, the ergodicity of G leads to P = {\1}, and (P,G) = R(U.|a € G).
Thus, by Lemma 1, :

R(U.la € G)=M,G) N RU.|a<€ G).
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This proves Corollary 2 since R(U.|@ € G) is abelian.
Next lemma is a non-abelian analogue of Lemma 1.

LEMMA 2. Assume that G satisfies the condition: every non-trivial conjugate
class of G it infinite, that is for every & € G other than the identity,
the class {cac o € G} is infinite. Then we have

(M,G) N RU.|la € GY =P QL

PROOF. Let A= Z;EGAaUa be an arbitrary element in (M,G)N R(U..|a€G).
Then .

AU, =U,A for all ¢ € G.
Since AU, = 3., ;AlUer = 3. AvarsUse and U,A =Y. A7 Use, we have

™ a4y = Goar— for all ¢ € G and @ € G,

where Ax=a.&1€ ML Suppose that a,=0 for an a, € G, a,=e.
Let @ be a separating and generating trace vector for M. Then, by our hypothesis
the conjugate class {o@ys™' |0 € G} is infinite. As |lap| = ||a°@|| for alla€ M
and o € G, we have by (¥)

o—1

|@owr—@l| = lla% " @l| = ||lasel| for all ¢ € G.

Thus we have

2 laapll® = oo

which is a contradiction. Hence @.=0 for all a€G, ase, and A=A4,€P&1
because, again by (*)al™ = q, for all ¢ € G, and so M, G) N R(U.|a € G
S PQ®IL On the other hand, it is obvious that PRIESM, G)NR(U.lacG)

since au, = u.a for all a € P and & € G. Therefore we have
M,G)NRU.|lac GY =PQL
By Lemma 2 we have the following theorem.

THEOREM 3. Let M be a finite factor with the invariant C =1 and G
a group of automorphisms of M whose non-trivial conjugate classes are all

infinite. Then (M, G) is a factor.

PROOF. Let A = Z;e(;AaU“ be an arbitrary element in the center of (M,G).
Since (M, G)N(M,GYEM,G)N R(U.|lacG), A=A, PRI, where P is the
fixed algebra of G in M by Lemma 2. Moreover A commutes with all
2®1€M®I, and so we have a.x = xa, for all z € M where 4, = 2. & 1.
Thus @, € M1 M. Hence A is the scalar multiple of the identity operator on
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H& ,(G), and (M, G) is a factor.

REMARK. Theorem 3 can be slightly generalized as follows. Assume that G
has a subgroup G, such that for every element @ € G other than the identity,
the set {oado~'|oc € Gy} is infinite. Then the commutant of (M, G,) in the

crossed product (M, G) is the scalar multiples of the identity operator on
HQ I(G), where (M,G,) is a subalgebra of'(M, G) composed of all A

= Z;SG‘.A“U‘,G (M, G). In particular (M, G) is a factor.

This is a non-commutative version of Lemma 3 in [5].
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