ON THE SATURATION AND BEST APPROXIMATION

GEN-ICHIRÔ SUNOUCHI

(Received April 16, 1962)

Let f(x) be an integrable function with period 2π and let its Fourier series be

$$a_0/2 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx) = \sum_{k=0}^{\infty} A_k(x).$$

Denote the method of typical means of this series by

$$R_n^{\lambda}(f) = \sum_{k=0}^{n-1} \left(1 - \frac{k^{\lambda}}{n^{\lambda}}\right) A_k(x).$$

Then this method saturates with the order $n^{-\lambda}$, that is, we have

THEOREM A. For the typical means,

- (1°) $f R_n^{\lambda}(f) = o(n^{-\lambda}) \iff f = a \text{ constant},$ (2°) $f - R_n^{\lambda}(f) = O(n^{-\lambda}) \longleftrightarrow f \in W^{\lambda},$

where W^{λ} means the class of functions for which

$$\sum_{k=1}^{\infty} k^{\lambda} A_k(x) \sim f^{\lambda} \in L^{\infty}(0, 2\pi).$$

See Aljančić [1], Sunouchi [3] Sunouchi-Watari [4]. Recently Aljančić [2] proved the following theorm.

THEOREM B. Let $k = 0, 1, \dots$ and $0 < \alpha \leq 1$. Then

$$f^{(k)}(x) \in {}^{2}\Lambda_{\alpha}(k + \alpha < \lambda) \Longleftrightarrow f - R_{n}^{\lambda}(f) = O(n^{-k-\alpha}),$$

where $f^{(k)}(x) \in {}^{2}\Lambda_{\alpha}$ means

$$f^{(k)}(x+h) + f^{(k)}(x-h) - 2f^{(k)}(x) = O(|h|^{\alpha})$$

However this fact is not confined to only the typical means, but also is valid for more general approximation processes. Indeed we can deduce Theorem B from Theorem A by method of the moving average.

THEOREM. Let $k = 0, 1, 2, \dots$, and $0 < \alpha \leq 1$. Suppose that for linear approximation processes $T_n(f)$

(1°) $|f(x)| \leq M_1$ implies $|T_n(f)(x)| \leq k_1 M_1$, and

(2°) $|f^{\lambda}(x)| \leq M_2$ implies $|f(x) - T_n(f)(x)| \leq k_2 M_2 n^{-\lambda}$, where $n^{-\lambda}$ is the best approximation of the class of functions

 $f^{(k)}(x) \in {}^{2}\Lambda_{\alpha}; \ k + \alpha = \lambda, \ k \ is \ an \ integer, \ 0 < \alpha \leq 1.$

Then

$$f^{(k)}(x) \in {}^{2}\Lambda_{\alpha}, \ k + \alpha < \lambda \longleftrightarrow f(x) - T_{n}(f)(x) = O(n^{-k-\alpha}).$$

Roughly speaking, this method yields the best approximation, whenever the order of the Lipschitz class is smaller than the order of saturation.

PROOF. It is sufficient to prove that $f^{(k)}(x) \in \Lambda_{\alpha}$, $(k + \alpha < \lambda)$ implies $f - T_n(f) = O(n^{-k-\alpha})$, because the converse part is evident from the best approximation (Zygmund [5], I, p. 119) and the first difference theorem can be transferred to the second difference theorem (Aljančić [2]).

We set $I_1(f)(x)$ the moving average of f(x), that is

$$I_1(f)(x) = \frac{1}{2\delta} \int_{-\delta}^{\delta} f(x+t) dt$$

and

$$I_{k}(f)(x) = \frac{1}{(2\delta)^{k}} \int_{-\delta}^{\delta} I_{k-1}(f)(x+t) dt, \ k = 2, 3, \dots$$

At the beginning we suppose that λ is an integer. For simplicity we consider $\lambda = 3$. The proof for $\lambda = 1, 2, \dots$ is principally the same.

Case 1. $k = 0, 0 < \alpha \leq 1$ and $f \in \Lambda_{\alpha}$.

Since

$$I_{3}(f)(x) = \{f_{3}(x+3\delta) - 3f_{3}(x+\delta) + 3f_{3}(x-\delta) - f_{3}(x-3\delta)\}/(2\delta)^{3},$$

where $f(x)$ is the third primitive of $f(x)$, we have

where $f_3(x)$ is the third primitive of f(x), we have

$$rac{d^3}{dx^3} I_3(f)(x) = \Delta_\delta^3 f(x)/(2\delta)^3$$

and f(x) belonging to the class Λ_{α} ,

$$\left| rac{d^3}{dx^3} I_3(f)(x)
ight| \leq c_1 \delta^{lpha-3}.$$

When $0 < \alpha < 1$, $\widetilde{f}(x) \in \Lambda_{\alpha}$ and when $\alpha = 1$, $f(x) \in {}^{2}\Lambda_{1}$ which yields $\widetilde{f}(x) \in {}^{2}\Lambda_{1}$ which yields $f(x) \in {}^{2}\Lambda_{1}$ (Zygmund [5], I, p. 121). Hence we get similarly

$$(*) \qquad \left| \frac{d^3}{dx^3} I_3(\tilde{f})(x) \right| \leq c_2 \delta^{\alpha-3}.$$

On the other hand

$$I_{3}(f)(x) - f(x) = \frac{1}{(2\delta)^{3}} \int_{-\delta}^{\delta} \int_{-\delta}^{\delta} \int_{-\delta}^{\delta} \{f(x + t + u + v) - f(x)\} dt du dv$$

and

G. SUNOUCHI

 $(**) |I_3(f)(x) - f(x)| \leq c_3 \delta^{\alpha}.$

Hence, if we set

$$g(x) = f(x) - I_3(f)(x),$$

then

$$f(x) - T_n(f)(x) = I_3(f)(x) - T_n\{I_3(f)\}(x) + g(x) - T_n(g)(x)$$

From the hypothesis, (*) and (**),

$$|f(x) - T_n(f)(x)| \leq k_2 c_2 \delta^{\alpha - 3} n^{-3} + k_1 c_3 \delta^{\alpha}.$$

We set $\delta = \pi/n$ and

$$|f(x) - T_n(f)(x)| \leq Cn^{-\alpha} \ (0 < \alpha \leq 1).$$

Case 2. $k = 1, 0 < \alpha \leq 1, f'(x) \in \Lambda_{\alpha}$.

Applying Taylor's theorem to the fact $f'(x) \in \Lambda_{\alpha}$,

$$|\Delta_{\delta}^{3}f| = O(\delta^{1+\alpha}).$$

In the same way as Case 1, we have

$$\left|rac{d^3}{dx^3}I_3(f)(x)
ight| \leq d_1\delta^{lpha-2}, \ \left|rac{d^3}{dx^3}I_3(ilde{f})(x)
ight| \leq d_2\delta^{lpha-2}.$$

On the other hand

$$g'(x) = I_{3}(f')(x) - f'(x)$$

= $\frac{1}{(2\delta)^{3}} \int_{-\delta}^{\delta} \int_{-\delta}^{\delta} \int_{-\delta}^{\delta} \{f'(x+t+u+v) - f'(x)\} dt du dv$

and

$$|g'(x)| \leq d_3 \delta^{\alpha}.$$

Hence from the hypothesis and the result of Case 1, we get

$$egin{aligned} &|f(x) - {T}_n(f)(x)| \ &\leq |I_3(f)(x) - {T}_n(I_3(f))| \,+\, |g(x) - {T}_n(g)| \ &\leq k_2 d_2 \delta^{lpha - 2} n^{-3} + C d_3 \delta^{lpha} n^{-1} = D n^{-(1+lpha)} \,, \end{aligned}$$

where $\alpha = \pi/n$.

Case 3. $k = 2, 0 < \alpha < 1, f''(x) \in \Lambda_{\alpha}$. In this case, α is fractional and

$$\left|rac{d^3}{dx^3}\,I_3(f)(x)
ight|{\,\leq\,} e_1\delta^{lpha{\,-\,}1},\;\; \left|rac{d^3}{dx^3}\,I_3(ilde f)(x)
ight|{\,\leq\,} e_2\delta^{lpha{\,-\,}1}.$$

Moreover

$$g''(x) = I_3(f'')(x) - f''(x)$$

214

$$=\frac{1}{(2\delta)^3}\int_{-\delta}^{\delta}\int_{-\delta}^{\delta}\int_{-\delta}^{\delta} \{f^{\prime\prime}(x+t+u+v)-f^{\prime\prime}(x)\}dtdudv,\\\leq e_3\delta^{\alpha}.$$

Hence

$$|f(x) - T_n(f)(x)| \\ \leq |T_3(f)(x) - T_n(I_3(f))| + |g(x) - T_n(g)| \\ \leq k_2 \delta^{\alpha - 1} n^{-3} + e_3 D\delta^{\alpha} n^{-2} = En^{-(2+\alpha)}$$

where $\delta = \pi/n$.

When λ is fractional, the proof may be done in the same idea. For simplicity we suppose $1 < \lambda < 2$. Then it is sufficient to prove $\alpha = 1$ and $1 < \alpha < \lambda$. If we can prove these cases, another cases will be proved by method of the moving average (Zygmund [5], I, p. 117).

Case 1. $\alpha = 1$, $f \in \Lambda_1$, $1 < \lambda < 2$.

Since

$$I_2(f)(x) = \{f_2(x+2\delta) - 2f_2(x) + f_2(x-2\delta)\}/(2\delta)^2,$$

we have

$$\frac{d^{\prime}}{dx^{\prime}}I_2(f)(x) = \frac{1}{(2\delta)^2} \left\{ f_{2-\lambda}(x+2\delta) - 2f_{2-\lambda}(x) + f_{2-\lambda}(x-2\delta) \right\}.$$

 $|f'(x)| \leq M$ implies $f'_{2-\lambda}(x) \in \Lambda_{2-\lambda}$ (Zygmund [5], II, p. 136), and

$$\left| rac{d^\lambda}{dx^\lambda} I_2(f)(x)
ight| \leq l_1 \delta^{1-\lambda}$$

Since $2 - \lambda$ is fractional, $\tilde{f}_{2-\lambda}(x) \in \Lambda_{2-\lambda}$ and

$$\left| rac{d^\lambda}{dx^\lambda} \, I_2(ilde f)(x)
ight| {\,\leq\,} l_2 \delta^{1-\lambda}.$$

 $I_2(f)(x) \in W^{\lambda}$ with the constant $l_3 \delta^{1-\lambda}$.

On the other hand

$$|g(x)| = |f(x) - I_2(f)(x)| \leq l_4 \delta.$$

Hence

$$\begin{split} |f(x) - T_n(f)(x)| \\ & \leq |I_2(f) - T_n(I_2(f))| + |g - T_n(g)| \\ & \leq k_2 l_3 \delta^{1-\lambda} n^{-\lambda} + k_1 l_4 \delta \leq L n^{-1}, \end{split}$$

where $\delta = \pi/n$.

Case 2. $k = 1, 1 < 1 + \alpha < \lambda < 2, f'(x) \in \Lambda_{\alpha}$.

In this case $f'_{2-\lambda}(x) \in \Lambda_{2-\lambda+\alpha}$, because $0 < 2 - \lambda + \alpha < 1$ and $f'(x) \in \Lambda_{\alpha}$ (Zygmund [5], II, p. 136).

Hence

$$igg| rac{d^{\lambda}}{dx^{\lambda}} I_2(f)(x) igg| \leq m_1 \delta^{1-\lambda+lpha} \ igg| rac{d^{\lambda}}{dx^{\lambda}} I_2(ilde f)(x) igg| \leq m_2 \delta^{1-\lambda+lpha}$$

and $I_2(f) \in W^{\lambda}$ with the constant $m_3 \delta^{1-\lambda+\alpha}$. Moreover

$$|g'(x)| \leq m_4 \delta^{\alpha}.$$

Hence we have

$$\begin{aligned} |f(x) - T_n(f)(x)| \\ &\leq k_2 m_3 \delta^{1-\lambda+\alpha} n^{-\lambda} + L n^{-1} m_4 \delta^{\alpha} \\ &= M n^{-(1+\alpha)} \end{aligned}$$

where $\delta = \pi/n$.

Thus we proves the theorem completely.

Applying this, we may deduce Theorem B from Theorem A. An easy corollary is the following.

COROLLARY. Denote $\sigma_n^r(f)$ the n-th Cesàro means of the r-th order $(0 < r < \infty)$, then

- (1) $f \sigma_n^r(f) = o(n^{-1}) \longleftrightarrow f = a \text{ constant},$
- (2) $f \sigma_n^r(f) = O(n^{-1}) \longleftrightarrow \widetilde{f'} \in L^{\infty}(0, 2\pi)$
- (3) $f \sigma_n^r(f) = O(n^{-\alpha}) \longleftrightarrow f \in \Lambda_{\alpha}(0 < \alpha < 1).$
- (1) and (2) is the saturation theorem (Sunouchi-Watari [4]).

REFERENCES

- S. ALJANČIĆ, (a) Classe de saturation des procédés de sommation de Hölder et de Riesz, C. R. Paris, 246(1958), 2567-2569. (b) Classe de saturation du procédé des typiques de Riesz, Acad. Serbe Publ. Inst. Math., 13(1959), 113-122.
- [2] S. ALJANCIĆ, Approximation of continuous functions by typical means of their Fourier series, Proc. Amer. M.S., 12(1961), 681-688.
- [3] G. SUNOUCHI, Characterization of certain classes of functions, Tôhoku Math. J., 12(1962).
- [4] G. SUNOUCHI-C. WATARI, On determination of the class of saturation in the theory of approximation of functions I, Proc. Japan Acad. 34(1958), 477-481, II, Tôhoku M. J., 11(1959), 480-488.
- [5] A.ZYGMUND, Trigonometric series, I, II, Cambridge (1959).

MATHMATICAL INSTITUTE, TÔHOKU UNIVERSITY

216