ON THE SATURATION AND BEST APPROXIMATION

Gen-ichirô Sunouchi

(Received April 16, 1962)

Let $f(x)$ be an integrable function with period 2π and let its Fourier series be

$$
a_{0} / 2+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)=\sum_{k=0}^{\infty} A_{k}(x) .
$$

Denote the method of typical means of this series by

$$
R_{n}^{\lambda}(f)=\sum_{k=0}^{n-1}\left(1-\frac{k^{\lambda}}{n^{\lambda}}\right) A_{k}(x) .
$$

Then this method saturates with the order $n^{-\lambda}$, that is, we have
Theorem A. For the typical means,
$\left(1^{0}\right) f-R_{n}^{\lambda}(f)=o\left(n^{-\lambda}\right) \Longleftrightarrow f=a$ constant,
(20) $f-R_{n}^{\lambda}(f)=O\left(n^{-\lambda}\right) \Longleftrightarrow f \in W^{\lambda}$,
where W^{λ} means the class of functions for which

$$
\sum_{k=1}^{\infty} k^{\lambda} A_{k}(x) \sim f^{\lambda} \in L^{\infty}(0,2 \pi) .
$$

See Aljančić [1], Sunouchi [3] Sunouchi-Watari [4]. Recently Aljančić [2] proved the following therm.

Theorem B. Let $k=0,1, \ldots \ldots$ and $0<\alpha \leqq 1$. Then

$$
f^{(k)}(x) \operatorname{}^{2} \Lambda_{\alpha}(k+\alpha<\lambda) \Longleftrightarrow f-R_{n}^{\lambda}(f)=O\left(n^{-k-\alpha}\right)
$$

where $f^{(k)}(x) \in{ }^{2} \Lambda_{\alpha}$ means

$$
f^{(k)}(x+h)+f^{(k)}(x-h)-2 f^{(k)}(x)=O\left(|h|^{\alpha}\right) .
$$

However this fact is not confined to only the typical means, but also is valid for more general approximation processes. Indeed we can deduce Theorem B from Theorem A by method of the moving average.

Theorem. Let $k=0,1,2, \ldots \ldots$, and $0<\alpha \leqq 1$. Suppose that for linear approximation processes $T_{n}(f)$
$\left(1^{\circ}\right) \quad|f(x)| \leqq M_{1}$ implies $\left|T_{n}(f)(x)\right| \leqq k_{1} M_{1}$, and
(2 $\left.2^{0}\right)\left|f^{\lambda}(x)\right| \leqq M_{2}$ implies $\left|f(x)-T_{n}(f)(x)\right| \leqq k_{2} M_{2} n^{-\lambda}$, where $n^{-\lambda}$ is the best approximation of the class of functions

$$
f^{(k)}(x) \in^{2} \Lambda_{\alpha} ; k+\alpha=\lambda, k \text { is an integer, } 0<\alpha \leqq 1 .
$$

Then

$$
f^{k)}(x) \in^{2} \Lambda_{\alpha}, k+\alpha<\lambda \Longleftrightarrow f(x)-T_{n}(f)(x)=O\left(n^{-k-\alpha}\right) .
$$

Roughly speaking, this method yields the best approximation, whenever the order of the Lipschitz class is smaller than the order of saturation.

Proof. It is sufficient to prove that $f^{(k)}(x) \in \Lambda_{\alpha},(k+\alpha<\lambda)$ implies $f-T_{n}(f)=O\left(n^{-k-\alpha}\right)$, because the converse part is evident from the best approximation (Zygmund [5], I, p. 119) and the first difference theorem can be transfered to the second difference theorem (Aljančić [2]).

We set $I_{1}(f)(x)$ the moving average of $f(x)$, that is

$$
I_{1}(f)(x)=\frac{1}{2 \delta} \int_{-\delta}^{\delta} f(x+t) d t
$$

and

$$
I_{k}(f)(x)=\frac{1}{(2 \delta)^{k}} \int_{-\delta}^{\delta} I_{k-1}(f)(x+t) d t, k=2,3, \ldots \ldots .
$$

At the beginning we suppose that λ is an integer. For simplicity we consider $\lambda=3$. The proof for $\lambda=1,2, \ldots \ldots$ is principally the same.

Case 1. $k=0,0<\alpha \leqq 1$ and $f \in \Lambda_{\alpha}$.
Since

$$
I_{3}(f)(x)=\left\{f_{3}(x+3 \delta)-3 f_{3}(x+\delta)+3 f_{3}(x-\delta)-f_{3}(x-3 \delta)\right\} /(2 \delta)^{3}
$$

where $f_{3}(x)$ is the third primitive of $f(x)$, we have

$$
\frac{d^{3}}{d x^{3}} I_{3}(f)(x)=\Delta_{\delta}^{3} f(x) /(2 \delta)^{3}
$$

and $f(x)$ belonging to the class Λ_{α},

$$
\left.\left|\frac{d^{3}}{d x^{3}} I_{3}(f)(x)\right| \right\rvert\, \leqq c_{1} \delta^{\alpha-3}
$$

When $0<\alpha<1, \widetilde{f}(x) \in \Lambda_{\alpha}$ and when $\alpha=1, f(x) \in{ }^{2} \Lambda_{1}$ which yields $\widetilde{f}(x) \in{ }^{2} \Lambda_{1}$ which yields $f(x) \operatorname{}^{2} \Lambda_{1}$ (Zygmund [5], I, p. 121). Hence we get similarly

$$
\begin{equation*}
\left.\left|\frac{d^{3}}{d x^{3}} I_{3}(\tilde{f})(x)\right| \right\rvert\, \leqq c_{2} \delta^{\alpha-3} . \tag{*}
\end{equation*}
$$

On the other hand

$$
I_{3}(f)(x)-f(x)=\frac{1}{(2 \delta)^{3}} \int_{-\delta}^{\delta} \int_{-\delta}^{\delta} \int_{-\delta}^{\delta}\{f(x+t+u+v)-f(x)\} d t d u d v
$$

and

$$
\begin{equation*}
\left|I_{3}(f)(x)-f(x)\right| \leqq c_{3} \delta^{\alpha} . \tag{**}
\end{equation*}
$$

Hence, if we set

$$
g(x)=f(x)-I_{3}(f)(x)
$$

then

$$
f(x)-T_{n}(f)(x)=I_{3}(f)(x)-T_{n}\left\{I_{3}(f)\right\}(x)+g(x)-T_{n}(g)(x) .
$$

From the hypothesis, (*) and (**),

$$
\left|f(x)-T_{n}(f)(x)\right| \leqq k_{2} c_{2} \delta^{\alpha-3} n^{-3}+k_{1} c_{3} \delta^{\alpha} .
$$

We set $\delta=\pi / n$ and

$$
\left|f(x)-T_{n}(f)(x)\right| \leqq C n^{-\alpha}(0<\alpha \leqq 1) .
$$

Case 2. $k=1,0<\alpha \leqq 1, f^{\prime}(x) \in \Lambda_{\alpha}$.
Applying Taylor's theorem to the fact $f^{\prime}(x) \in \Lambda_{\alpha}$,

$$
\left|\Delta_{\delta}^{\frac{3}{\delta}} f\right|=O\left(\delta^{1+\alpha}\right) .
$$

In the same way as Case 1, we have

$$
\left|\frac{d^{3}}{d x^{3}} I_{3}(f)(x)\right| \leqq d_{1} \delta^{\alpha-2},\left|\frac{d^{3}}{d x^{3}} I_{3}(\tilde{f})(x)\right| \leqq d_{2} \delta^{\alpha-2} .
$$

On the other hand

$$
\begin{aligned}
g^{\prime}(x) & =I_{3}\left(f^{\prime}\right)(x)-f^{\prime}(x) \\
& =\frac{1}{(2 \delta)^{3}} \int_{-\delta}^{\delta} \int_{-\delta}^{\delta} \int_{-\delta}^{\delta}\left\{f^{\prime}(x+t+u+v)-f^{\prime}(x)\right\} d t d u d v
\end{aligned}
$$

and

$$
\left|g^{\prime}(x)\right| \leqq d_{3} \delta^{\alpha} .
$$

Hence from the hypothesis and the result of Case 1, we get

$$
\begin{aligned}
\mid f(x) & -T_{n}(f)(x) \mid \\
& \leqq\left|I_{3}(f)(x)-T_{n}\left(I_{3}(f)\right)\right|+\left|g(x)-T_{n}(g)\right| \\
& \leqq k_{2} d_{2} \delta^{\alpha-2} n^{-3}+C d_{3} \delta^{\alpha} n^{-1}=D n^{-(1+\alpha)},
\end{aligned}
$$

where $\alpha=\pi / n$.
Case 3. $k=2,0<\alpha<1, f^{\prime \prime}(x) \in \Lambda_{\alpha}$.
In this case, α is fractional and

$$
\left|\frac{d^{3}}{d x^{3}} I_{3}(f)(x)\right| \leqq e_{1} \delta^{\alpha-1}, \quad\left|\frac{d^{3}}{d x^{3}} I_{3}(\tilde{f})(x)\right| \leqq e_{2} \delta^{\alpha-1} .
$$

Moreover

$$
g^{\prime \prime}(x)=I_{3}\left(f^{\prime \prime}\right)(x)-f^{\prime \prime}(x)
$$

$$
\begin{aligned}
& \text { ON THE SATURATION AND BEST APPROXIMATION } \\
& =\frac{1}{(2 \delta)^{3}} \int_{-\delta}^{\delta} \int_{-\delta}^{\delta} \int_{-\delta}^{\delta}\left\{f^{\prime \prime}(x+t+u+v)-f^{\prime \prime}(x)\right\} d t d u d v, \\
& \leqq e_{3} \delta^{\delta}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mid f(x) & -T_{n}(f)(x) \mid \\
& \leqq\left|T_{3}(f)(x)-T_{n}\left(I_{3}(f)\right)\right|+\left|g(x)-T_{n}(g)\right| \\
& \leqq k_{2} \delta^{\alpha-1} n^{-3}+e_{3} D \delta^{\alpha} n^{-2}=E n^{-(2+\alpha)}
\end{aligned}
$$

where $\delta=\pi / n$.
When λ is fractional, the proof may be done in the same idea. For simplicity we suppose $1<\lambda<2$. Then it is sufficient to prove $\alpha=1$ and $1<\alpha<\lambda$. If we can prove these cases, another cases will be proved by method of the moving average (Zygmund [5], I, p. 117).

Case 1. $\alpha=1, f \in \Lambda_{1}, \quad 1<\lambda<2$.
Since

$$
I_{2}(f)(x)=\left\{f_{2}(x+2 \delta)-2 f_{2}(x)+f_{2}(x-2 \delta)\right\} /(2 \delta)^{2},
$$

we have

$$
\frac{d^{\prime}}{d x^{\prime}} I_{2}(f)(x)=\frac{1}{(2 \delta)^{2}}\left\{f_{2-\lambda}(x+2 \delta)-2 f_{2-\lambda}(x)+f_{2-\lambda}(x-2 \delta)\right\} .
$$

$\left|f^{\prime}(x)\right| \leqq M$ implies $f_{2-\lambda}^{\prime}(x) \in \Lambda_{2-\lambda}$ (Zygmund [5], II, p. 136), and

$$
\left|\frac{d^{\lambda}}{d x^{\lambda}} I_{2}(f)(x)\right| \leqq l_{1} \delta^{1-\lambda}
$$

Since $2-\lambda$ is fractional, $\widetilde{f_{2-\lambda}^{\prime}}(x) \in \Lambda_{z-\lambda}$ and

$$
\left|\frac{d^{\lambda}}{d x^{\lambda}} I_{2}(\tilde{f})(x)\right| \leqq l_{2} \delta^{1-\lambda}
$$

$I_{2}(f)(x) \in W^{\lambda}$ with the constant $l_{3} \delta^{1-\lambda}$.
On the other hand

$$
|g(x)|=\left|f(x)-I_{2}(f)(x)\right| \leqq l_{4} \delta
$$

Hence

$$
\begin{aligned}
\mid f(x) & -T_{n}(f)(x) \mid \\
& \leqq\left|I_{2}(f)-T_{n}\left(I_{2}(f)\right)\right|+\left|g-T_{n}(g)\right| \\
& \leqq k_{2} l_{3} l^{1-\lambda} n^{-\lambda}+k_{1} l_{4} \delta \leqq L n^{-1},
\end{aligned}
$$

where $\delta=\pi / n$.
Case 2. $k=1,1<1+\alpha<\lambda<2, f^{\prime}(x) \in \Lambda_{\alpha}$.
In this case $f_{2-\lambda}^{\prime}(x) \in \Lambda_{2-\lambda+\alpha}$, because $0<2-\lambda+\alpha<1$ and $f^{\prime}(x) \in \Lambda_{\alpha}$ (Zygmund [5], II, p. 136).

Hence

$$
\begin{aligned}
& \left|\frac{d^{\lambda}}{d x^{\lambda}} I_{2}(f)(x)\right| \leqq m_{1} \delta^{1-\lambda+\alpha} \\
& \left|\frac{d^{\lambda}}{d x^{\lambda}} I_{2}(\tilde{f})(x)\right| \leqq m_{2} \delta^{1-\lambda+\alpha}
\end{aligned}
$$

and $I_{2}(f) \in W^{\lambda}$ with the constant $m_{3} \delta^{1-\lambda+\alpha}$. Moreover

$$
\left|g^{\prime}(x)\right| \leqq m_{4} \delta^{\alpha} .
$$

Hence we have

$$
\begin{aligned}
\mid f(x) & -T_{n}(f)(x) \mid \\
& \leqq k_{2} m_{3} \delta^{1-\lambda+\alpha} n^{-\lambda}+L n^{-1} m_{4} \delta^{\alpha} \\
& =M n^{-(1+\alpha)}
\end{aligned}
$$

where $\delta=\pi / n$.
Thus we proves the theorem completely.
Applying this, we may deduce Theorem B from Theorem A. An easy corollary is the following.

Corollary. Denote $\sigma_{n}^{r}(f)$ the n-th Cesàro means of the r-th order $(0<r<\infty)$, then
(1) $f-\sigma_{n}^{r}(f)=o\left(n^{-1}\right) \Longleftrightarrow f=a$ constant,
(2) $f-\sigma_{n}^{r}(f)=O\left(n^{-1}\right) \Longleftrightarrow \widetilde{f^{\prime}} \in L^{\infty}(0,2 \pi)$
(3) $f-\sigma_{n}^{r}(f)=O\left(n^{-\alpha}\right) \Longleftrightarrow f \in \Lambda_{\alpha}(0<\alpha<1)$.
(1) and (2) is the saturation theorem (Sunouchi-Watari [4]).

References

[1] S. AlJANČı́ć, (a) Classe de saturation des procédés de sommation de Hölder et de Riesz, C. R. Paris, 246(1958), 2567-2569. (b) Classe de saturation du procédé des typiques de Riesz, Acad. Serbe Publ. Inst. Math., 13(1959), 113-122.
[2] S.AlJANČIĆ, Approximation of continuous functions by typical means of their Fourier series, Proc. Amer. M. S., 12(1961), 681-688.
[3] G. Sunouchi, Characterization of certain classes of functions, Tôhoku Math. J., 12(1962).
[4] G. Sunouchi-C. Watari, On determination of the class of saturation in the theory of approximation of functions I, Proc. Japan Acad. 34(1958), 477-481, II, Tôhoku M. J., 11(1959), 480-488.
[5] A.Zygmund, Trigonometric series, I, II, Cambridge (1959).

Mathmatical Institute, Tôhoku University

