PROJECTIVE MODULES OVER SEMILOCAL RINGS

Yukitoshi Hinohara

(Received March 31, 1962)

Let R be a commutative ring with a unit element. If there exist no proper ideals \mathfrak{a} , \mathfrak{b} such that $R = \mathfrak{a} \bigoplus \mathfrak{b}$, then R is said to be indecomposable. If the number of maximal ideals of R is finite, then R is said to be semilocal. In [6], I. Kaplansky proved that, over a local ring, any projective module is free. Our objective in this paper is to generalize his theorem into

THEOREM. Over a commutative indecomposable semilocal ring, any projective module is free.

Every ring considered in this paper has a unit element which acts as unit operator on any module. A denotes a ring (not always commutative) and R denotes a commutative ring. Modules are always left modules.

1. Some lemmas on projective modules. We begin with a trivial

LEMMA 1. Let L, M, N be modules over a ring Λ such that $L \supset M \supset N$. If N is a direct summand of L, N is a direct summand of M.

PROOF. Let $L = N \bigoplus N'$. Then we have $M = N \bigoplus (N' \cap M)$.

LEMMA 2. Let P be a projective module over a ring Λ and p an element of P. If $p \notin \mathfrak{m} P$ for any maximal right ideal \mathfrak{m} of Λ , then Λp is a direct summand of P and p is a free basis of Λp , where $\mathfrak{m} P$ is the image of $\mathfrak{m} \bigotimes_{\Lambda} P$ $\rightarrow P$ by the natural map.

PROOF. Let F be a free module such that $F = P \oplus Q$, $\{u_i\}$ a basis of F;

$$p = \sum_{i=1}^{n} r_i u_i, r_i \in R;$$

 $u_i = p_i + q_i, p_i \in P, q_i \in Q$

Then we have that the right ideal (r_1, \ldots, r_n) generated by r_i is equal to Λ , since, if $r_i \in \mathfrak{m}$ for a maximal right ideal \mathfrak{m} , we have

$$p=\sum r_i p_i,$$

i.e., $p \in \mathfrak{m} P$. Therefore there exist elements s_1, \ldots, s_n in Λ such that

Y. HINOHARA

$$\sum r_i s_i = 1.$$

We consider a free module $F' = \Lambda v \bigoplus F$, where v is a variable. Then we have

$$p = v + \sum r_i(u_i - s_i v).$$

Now $\{v, u_1 - s_1v, \dots, u_n - s_nv, u_{n+1}, \dots\}$ and $\{p, u_1 - s_1v, \dots, u_n - s_nv, u_{n+1}, \dots\}$ are free bases of F'. Thus Λp is a direct summand of F', whence Λp is a direct summand of P by Lemma 1. It is evident that p is a free basis of Λp .

LEMMA 3. For a projective module $P(\neq (0))$ over a ring Λ , we have $JP \neq P$, where J is the Jacobson radical of Λ .

PROOF.¹⁾ Let F be a free module such that $F = P \bigoplus Q$ and x any element of P. Select a basis $\{u_i\}$ of F such that the expression of x in terms of that basis has the smallest possible number of non-zero entries. Assume that JP = P, i.e., $JF \supset P$,

$$x = \sum_{i=1}^{n} r_{i}u_{i}, \quad r_{i} \neq 0, \ r_{i} \in \Lambda;$$
$$u_{i} = p_{i} + q_{i}, \quad p_{i} \in P, \quad q_{i} \in Q;$$
$$p_{i} = \sum_{j=1}^{m} s_{ij}u_{j}, \quad s_{ij} \in \Lambda; \quad i = 1, 2, \dots, n.$$

Then we have

$$x = \sum_{i} r_{i} u_{i} = \sum_{i} r_{i} p_{i} = \sum_{i,j} r_{i} s_{ij} u_{j}.$$

Thus we have

$$r_1 = \sum_{i=1}^{n} r_i s_{i1}$$
, i. e., $r_1(1 - s_{11}) = \sum_{i=2}^{n} r_i s_{i1}$.

By assumption $s_{11} \in J$, whence $1 - s_{11}$ is inversible in Λ . Put $s = 1/(1 - s_{11})$, and we have

$$r_1 = \sum_{i=2}^n r_i s_{i1} s_i$$

Therefore

$$x = \sum_{i=2}^{n} r_i (u_i + s_{i1} s u_1).$$

This is a shorter expression for x, a contradiction if $x \neq 0$, since $\{u_1, u_2 + s_{21}su_1, u_3 + s_{22}su_3, u_3, u_4, u_5, u_{12}, u_{13}, u_{13$

206

¹⁾ The method of this proof is due to Kaplansky [6]. This lemma is prop. 2.7 of H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), pp. 466-488].

 $\dots, u_n + s_{n1}su_1, u_{n+1}, \dots$ is a free basis.

Now let R be a commutative ring, S a multiplicatively closed set not containing 0 of R. As usual we denote by R_s the ring of quotient with respect to S, and if $S = R - \mathfrak{p}$ for a prime ideal \mathfrak{p} , we write $R_\mathfrak{p}$ for $R_{R-\mathfrak{p}}$. Similary, for an R-module M, we denote by M_s the module of quotient with respect to S, and we write $M_\mathfrak{p}$ for $M_{R-\mathfrak{p}}$, if \mathfrak{p} is a prime ideal. We know that $M_s = M \bigotimes_R R_s$ and that there exists a canonical map $\varphi \colon M \to M_s$ and the kernel of this map is the S-component of (0) in M: Ker $\varphi = \{m \in M | \text{ there exists } s \in S \text{ such}$ that $sm = 0\}$.

Now we have the following result which states that, over a commutative indecomposable semilocal ring, any non-zero projective module is faithfully flat²).

LEMMA 4. Let R be a commutative indecomposable semilocal ring, and $P(\neq (0))$ a projective module. Then we have that $\mathfrak{m}P \neq P$ for any maximal ideal \mathfrak{m} of R.

PROOF. First we notice that P_m is a projective module over a local ring R_m . Therefore, if $P_m \neq (0)$, we have that $\mathfrak{m}R_mP_m \neq P_m$ by Lemma 3. But $\mathfrak{m}P = P$ implies that $\mathfrak{m}R_mP_m = P_m$. Therefore we have $P_m = (0)$ if $\mathfrak{m}P = P$. Now $P_m = (0)$ implies that, for any element p of P, there exists an element s of $R, s \notin \mathfrak{m}$, such that sp = 0. Thus the fact that $\mathfrak{m}P = P$ for each maximal ideal \mathfrak{m} of R implies that (0: p) = R for any element p of P, i.e., P = (0). Thus there must exist a maximal ideal \mathfrak{n} of R such that $\mathfrak{m}P \neq P$. Now let $\{\mathfrak{m}_1, \ldots, \mathfrak{m}_m; \mathfrak{n}_1, \ldots, \mathfrak{n}_n\}$ be the set of all maximal ideals of R such that $\mathfrak{m} = 0$, by proving that, if $m \neq 0$, R is not indecomposable.

Now P_{π_j} is a projective module over R_{π_j} . Therefore there exists an element $p_j \in P_{\pi_j}, \notin \pi_j P_{\pi_j}$. Let φ_j be the canonical map of $P \to P_{\pi_j}$. Then we may assume that $\overline{p}_j \in \varphi_j P$. Put $\varphi_j(p_j) = \overline{p}_j$. Since $P_{\pi_i} = (0)$, there exists an element s_{ij} of R such that $s_{ij} \notin \mathfrak{m}_i$, $s_{ij}p_j = 0$, whence $s_{ij}\overline{p}_j = 0$. By Lemma 2, $R_{\pi_j}\overline{p}_j$ is a direct summand of P_{π_j} and \overline{p}_j is a free basis of $R_{\pi_j}\overline{p}_j$. Therefore we have $\varphi_j(s_{ij}) = 0$ in R_{π_j} , i.e., there exists an element s'_{ij} in R such that $s'_{ij} \notin \mathfrak{n}_j$, $s_{ij}s'_{ij} = 0$. Let \mathfrak{a}_i be the principal ideal generated by $s_{i1}s_{i2}$ s_{in} and \mathfrak{b}_i the ideal generated by $(s'_{i1}, s'_{i2}, \ldots, s'_{in})$. Then we have that $\mathfrak{a}_i \notin \mathfrak{m}_i, \mathfrak{h}_i \notin \mathfrak{n}_j$ for $j = 1, 2, \ldots, n$ and that $\mathfrak{a}_i \mathfrak{b}_i = (0)$. Put $\mathfrak{a} = (\mathfrak{a}_1, \mathfrak{a}_2, \ldots, \mathfrak{a}_m)$, $\mathfrak{b} = \mathfrak{b}_1 \mathfrak{b}_2 \cdots \mathfrak{b}_m$, and we have that $\mathfrak{a} \notin \mathfrak{m}_i, \mathfrak{b} \notin \mathfrak{n}_j$ for $i = 1, 2, \ldots, m$; $j = 1, 2, \ldots, n$ and that $\mathfrak{a} \mathfrak{b} = (0)$. Therefore we have m = 0 and we have $m P \neq P$ for any maximal ideal \mathfrak{m} of R.

Combining this with Lemma 2, we have

COROLLARY 5. Over a commutative indecomposable semilocal ring, any finitely generated projective module is free.

²⁾ Cf. §6.4, p.57 of [4].

Y. HINOHARA

REMARK. If R is an indecomposable commutative ring and P is a finitely generated projective module over R, then the \mathfrak{p} -rank of P (i.e., the number of free generators of $P_{\mathfrak{p}}$ over $R_{\mathfrak{p}}$) is independent of the prime ideal \mathfrak{p} of $R^{\mathfrak{d}}$. Therefore the above Corollary 5 is contained in Theorems 3, 4 of [1] since R is semilocal if and only if X = m-spec(R) is a decomposition space and dim $X = 0^{4}$.

LEMMA 6. Let P be a projective module over a commutative indecomposable semilocal ring R. If there exists a maximal ideal \mathfrak{m} of R such that $P/\mathfrak{m}P$ is finitely generated over R/\mathfrak{m} . Then P is finitely generated over R.

PROOF. Suppose P is not finitely generated and $\dim(P/\mathfrak{m}P: R/\mathfrak{m}) = s$. By Lemma 4, there exist elements $p_j \in P$, $\notin \mathfrak{m}_j P$ for $j = 1, 2, \ldots, m$ where $\{\mathfrak{m}_1, \ldots, \mathfrak{m}_m\}$ is the set of all maximal ideals of R. Let e_i be elements of R such that $e_i \in \bigcap_{j \neq i} \mathfrak{m}_j$, $e_i \notin \mathfrak{m}_i$. Then $p'_1 = \sum_{j=1}^m e_j p_j \notin \mathfrak{m}_i P$ for $i = 1, 2, \ldots, m$. Thus Rp'_1 is a direct summand of P, i.e., there exists a submodule P_1 of P such that $P = Rp'_1 \bigoplus P_1$. By assumption, P_1 is not finitely generated. Repeating this process, we can select s + 1 elemens p'_1, \ldots, p'_{s+1} from P such that $P = Rp'_1 \bigoplus P_{s+1}$. Then we have that $P/\mathfrak{m}P = Rp'_1/\mathfrak{m}Rp'_1 \bigoplus \ldots \bigoplus Rp'_{s+1}/\mathfrak{m}P_{s+1}$. Thus we have dim $(P/\mathfrak{m}P: R/\mathfrak{m}) \geqq s + 1$. This contradiction completes the proof.

2. Proof of Theorem. The following lemma is essential in the proof of our theorem.

LEMMA 7. (Eilenberg). Let P be a projective module. Then there exists a free module F such that $F \bigoplus P$ is free.

PROOF.⁵⁾ Suppose $P \oplus Q$ is free. Define F to be the direct sum of an infinite number of copies of $P \oplus Q$. Then F is free and it is evident that $F \oplus P \cong F$.

Before proving our theorem we must state two lemmas without proof⁶).

LEMMA 8 (Kaplansky). Any projective module over a ring is a direct sum of countably generated projective modules.

LEMMA 9 (Kaplansky). Let Λ be any ring, M a countably generated Λ module. Assume that any direct summand N of M has the following property: any element of N can be embedded in a free direct summand of N. Then M is free.

208

³⁾ See [3].

⁴⁾ Cf. [1], [2], [5] and [8].

⁵⁾ This proof is the same as in [7].

⁶⁾ See Kaplansky [6].

By virtue of Lemmas 8,9 the following Lemma 10 suffices to complete the proof of our theorem.⁷⁾

LEMMA 10. Let P be a projective module over a commutative indecomposable semilocal ring R. Then an element p of P can be embedded in a free direct summand of P.

PROOF. By Corollary 5, we may assume that P is not finitely generated. By virtue of Lemma 7, there exist free modules U,F such that $U = F \bigoplus P$. Let

> $\{u_i\}$ be a free basis of U, $\{f_i\}$ a free basis of F, π the projection from U to F,

(i. e., if $u \in U$, u = f + p', $f \in F$, $p' \in P$, then $\pi(u) = f$),

$$p = \sum_{i=1}^{n} r_{i}u_{i}, \quad r_{i} \in R,$$

$$\pi u_{i} = \sum_{j=1}^{m} s_{ij}f_{j}, \quad s_{ij} \in R, \quad i = 1, 2, \dots, n.$$

Put

$$F' = \sum_{i=1}^{m} \bigoplus Rf_i, \quad P' = F' \bigoplus P, \quad U' = \sum_{i=1}^{n} \bigoplus Ru_i.$$

Then $U \subset P' \subset U$ and U' is a direct summand of U, hence U' is a direct summand of P', by Lemma 1. Now we have $P' = U' \bigoplus U''$ and $p \in P \cap U'$. Put

$$\left(\sum_{i=2}^{m} \bigoplus Rf_i\right) \bigoplus P = P''$$

and we have

$$P' = Rf_1 \oplus P'' = U' \oplus U''.$$

Let π' be the projection from P' ot U'', and

$$\pi'f_1 \in \bigcap_{j=1}^{s} \mathfrak{m}_{ij}U'', \notin \bigcup_{j=s+1}^{t} \mathfrak{m}_{ij}U'',$$

where t is the number of maximal ideals of R and $\int denotes the set theoretical$

⁷⁾ This method of proof is the same as in [6].

Y. HINOHARA

union. Now assume that $\pi' P'' \subset \mathfrak{m} U''$ for a maximal ideal \mathfrak{m} of R. Then we have that

$$P'/\mathfrak{m}P' = Rf_1/\mathfrak{m}f_1 \bigoplus P''/\mathfrak{m}P'' = U'/\mathfrak{m}U' \bigoplus U''/\mathfrak{m}U''$$

and that

$$\pi'(Rf_1/\mathfrak{m}f_1) = U''/\mathfrak{m}U''.$$

Therefore $U'/\mathfrak{m}U''$ is finitely generated, whence so is $P'/\mathfrak{m}P'$. Thus by Lemma 6 P' is finitely generated and this is a contradiction since P is not finitely generated by assumption. Thus we conclude that, for any maximal ideal $\mathfrak{m}, \pi'P'' \not\equiv \mathfrak{m}U''$. Therefore there exists an element $p'' \in P''$ such that

$$\pi'p'' \notin \bigcup_{j=1}^{\circ} \mathfrak{m}_{ij}U'', \in \bigcap_{j=s+1}^{\circ} \mathfrak{m}_{ij}U''.$$

Then $\pi' f_1 + \pi' p'' \notin \mathfrak{m}_i U''$ for each *i*. Therefore $R\pi'(f_1 + p'')$ is a direct summand of U'', by Lemma 2, i. e., if we put $\pi'(f_1 + p'') = u''$, $U'' = Ru'' \oplus U'''$.

Now we have

$$P' = Rf_1 \bigoplus P'' = R(f_1 + p'') \bigoplus P'' = U' \bigoplus Ru'' \bigoplus U'''.$$

Let π'' be the projection from P' to U'''. Then we have $\pi''P' = U'''$. For: let u be any element of U''', $u = r(f_1 + p'') + q$, $r \in R$, $q \in P''$, then $u = \pi'r(f_1 + p'') + \pi'q = \pi''r(f_1 + p'') + \pi'q = \pi''q$. Therefore we have an exact sequence

$$0 \to K_1 \to P^{\prime\prime} \stackrel{\pi^{\prime\prime}}{\to} U^{\prime\prime\prime} \to 0.$$

This sequence splits since U''' is projective. $K_1 = P' \cap (U' \oplus Ru'')$ since $K_1 = \{p'' \in P' | \pi''p'' = 0\}$ and $\pi''p'' = 0$ if and only if $p'' \in U \oplus Ru''$. Now K_1 is a direct summand of P' and contained in $U' \oplus Ru''$ which is finitely generated. Thus K_1 is a direct summand of $U' \oplus Ru''$, hence K_1 is a finitely generated free module by Corollary 5. Therefore we have that

$$P'' = Rf_2 \bigoplus \cdots \bigoplus Rf_m \bigoplus P = K_1 \bigoplus K'_1$$

and that $p \in K_1 \cap P$ since $p \in U'$. Inductively we have

$$P^{'''} = Rf_3 \bigoplus \cdots \bigoplus Rf_m \bigoplus P$$
$$= K_2 \bigoplus K'_2, K_2 \cap P \ge p;$$

Lastly we have a finitely generated free module \overline{K} which is a direct sum-

210

mand of P and contains p. Thus we have completed the proof.

References

- H. BASS, Projective modules over algebras, Ann. of Math., 73(1961), 532-542.
 M. CHADEYRAS, Sur les anneaux semi-principaux ou de Bezout, C.R. Acad. Sc., (1960), 2116-2117.
- [3] O.GOLDMAN, Determinants in projective modules, Nagoya Math. J., 18(1961), 27-36.
- [4] A. GROTHENDIECK AND J. DIEUDONNE, Éléments de géométrie algébrique, Pub. Math. I. H. E.S., N°4 (1960).
- [5] Y. HINOHARA, Note on finitely generated projective modules, Proc. Japan Acad., 37 (1961), 478-481.
- [6] I.KAPLANSKY, Projective modules, Ann. of Math., 68 (1958), 372-377.
 [7] I.KAPLANSKY, Homological dimension of rings and modules, Univ. of Chicago, (1959), (mimeographed notes).
- [8] J.P. SERRE, Modules projectifs et espaces fibrés à fibre vectorielle, Séminaire P. Dubreil, no. 23, 1958.

TOKYO METROPOLITAN UNIVERSITY.