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In this paper, we shall briefly say that a vector field v is isometric, conformal

or projective if it generates a one-parameter group of isometric, conformal or

projective transformations respectively.

A few years ago, A.Lichnerowicz [2] proved that, in a compact Kahlerian

manifold M2n of complex dimension n ^ 2, a conformal vector is always isometric.

Recently, the theorem was generalized for almost-Kahlerian manifolds by

S.Tachibana [3] and S.I.Goldberg [1] in different ways. Either of them used

some integral formulas.

The purpose of the present paper is to give an alternative proof of Lich-

nerowicz' Theorem, which is free from integral formula in some sense. Moreover

we shall prove a theorem on a projective vector in the same method.

Our notations follow those of K.Yano's book [4], Latin indices, running from

1 to 2n, indicate that equations are referred to a general coordinate system (xh),

and Greek indices, running from 1 to n, indicate that equations are referred to a

complex coordinate system (za, za*). The dimension of manifold will always mean

complex dimension.

1. Conformal vector. A conformal vector v = (vh) in a Riemannian

manifold M2n with metric tensor gn is characterized by the equation

(l 1) £Όffji = V^i + ViVj = 2pgjU

£,„ indicating the Lie differentiation with respect to v and p being a real-valued

scalar, called the associated scalar with v. If the associated scalar p is zero or a

non-zero constant, the vector field v is reduced to an isometric or homothetic

one respectively.

Concerning a conformal vector v, we know the following formulas [4,p.l60]:

(l 2) £„{ .. 1 - δfo + BiP) - gjiP\

(l. 3) t«KkH

h = - hlVipi + h)v*pi - g}lvkρ
h +

(1. 4) £ΏK =-2PK- 2(2n -
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where we have put

(1. 5) Pί = diP, ph = Pig
ih

and K is the contracted scalar curvature.

First we shall prove the following

LEMMA 1. In a Kdhlerίan manifold M2n of complex dimension n, the

associated scalar p of a conformal vector is the real part of an analytic

function for n > 2, and we have

(1. 6) AP = gjίVjVip = 0

for n^2.

PROOF. By (1. 3) and the well-known formula of Lie derivative of a tensor,

we have

(1. 7) vιVιKkHh

We take a complex coordinate system (za, za*) in M2n, and put the indices

fι = cc, i = β, j = γ* and & = δ*" in (1. 7). Then by the hybridism of the metric

tensor gH and the covariant curvature tensor KkHh of a Kahlerian manifold, we

obtain the eqaution

g^uVyψβ — gy aVδψβ + gy βVt Pa — g?>*βVy*pa = 0.

By contracting this equation with / f f ,we have

(1. 8) (n - 2)Vγ Pβ + gy*βg**aVs*pa = 0,

and, by contracting again with gy*β,

2(n - l)gy*βVy*pβ = 0,

from which we obtain (1. 6) for n ĝ  2. Further it follows from (1. 8) that

(1. 9) Vyψβ = 0

for w > 2. Since /o is real valued, the equation (1. 9) implies that the associated

scalar p is the real part of an analytic function. Q. E. D.

Now let us give an alternative proof of LichnerOwicz'

THEOREM 1. In a compact Kahlerian manifold M2n of dimension n^2,

a conformal vector v is always isometric.

PROOF. On a compact manifold M2n, Hopfs maximal principle or Bochner's

lemma tell us that the equation (1. 6) implies that p is a constant, that is, the

vector field v is homothetic. However, it is well known [4,p.222] or can be proved

by integration along a trajectory of v [5] that p should be equal to zero, i.e., a
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homothetic vector on a compact manifold is isometric. Q. E. D.

From Lemma 1 and the formula (1. 4), we have immediately

THEOREM 2. In a Kάhlerian manifold whose contracted scalar curvature

K is a non-zero contant, a conformal vector is isometric.

Since a Riemannian homogeneous space has a constant scalar curvature, we
have

THEOREM 3. In a Kάhlerian homogeneous space with non-zero scalar
curvature, a conformal vector is isometric.

2. Projective vector. A projective vector v is characterized by the equation

(2. 1) £ υ\
 h } = VjViVh + KίH

hvι = h)pt + δΪA,

where pt is the gradient vector given by

(2. 2) pt = ViVhv
h/(2n + 1).

Putting p = ^hv
h/{2n + 1), we call p and p% the associated scalar and vector

with v respectively.
Concerning a projective vector, we know the formula

(2. 3) £vKkjί

h = - hlVjPi + δ}V*A

or

(2. 4) vιVιKkjih

By the same argument as those in §1, we have easily the following

LEMMA 2. /# <z Kάhlerian manifold M2n, n^2, the associated scalar p
of a projective vector is the real part of an analytic function:

(2. 5) Vy*Vβp = 0.

THEOREM 4. In a compact Kάhlerian manifold M2n, n^2, a projective
vector is isometric.

REMARK. By use of the complex structure Fιh and the operations O and
O* in [4], we can give proofs of the above theorems, too, which are essentially
same as those given here.
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