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In this paper, we shall briefly say that a vector field v is isometric, conformal
or projective if it generates a one-parameter group of isometric, conformal or
projective transformations respectively.

A few years ago, A.Lichnerowicz [2] proved that, in a compact Kihlerian
manifold M*" of complex dimension # = 2, a conformal vector is always isometric.
Recently, the theorem was generalized for almost-Kihlerian manifolds by
S.Tachibana [3] and S.I.Goldberg [1] in different ways. Either of them used
some integral formulas.

The purpose of the present paper is to give an alternative proof of Lich-
nerowicz’ Theorem, which is free from integral formula in some sense. Moreover
we shall prove a theorem on a projective vector in the same method.

Our notations follow those of K.Yano’s book [4]. Latin indices, running from
1 to 27, indicate that equation$ are referred to a general coordinate system (x"),
and Greek indices, running from 1 to 7, indicate that equations are referred to a
complex coordinate system (2% 2*°). The dimension of manifold will always mean
complex dimension.

1. Conformal vector. A conformal vector v = (") in a Riemannian
manifold M** with metric tensor g¢;, is characterized by the equation

(1. 1) £.95 = V,u, + Viv; = 2pg;,

£, indicating the Lie differentiation with respect to v and p being a real-valued
scalar, called the associated scalar with v. If the associated scalar p is zero or a
non-zero constant, the vector field v is reduced to an isometric or homothetic

one respectively.
Concerning a conformal vector v, we know the following formulas [4,p.160] :

h
(1. 2) £, {ji } = 8%, + 8p, — gyp",

(1- 3) £kaiih = — Sszpi + 8,;Vk,oi - gjinPh + gkiVjph3
(1. 4) £.K = —2pK — 2(2n — 1)V,p’,
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where we have put
1. 5) pi = 9, P" = pig™"

and K is the contracted scalar curvature.
First we shall prove the following

LEMMA 1. In a Kihlerian manifold M*™ of complex dimension n, the
associated scalar p of a conformal vector is the real part of an analytic
Sunction for n> 2, and we have

(1. 6) Ap=g"v;vip=0
for n=2.
PrOOF. By (1. 3) and the well-known formula of Lie derivative of a tensor,
we have
a7 V'V K + KVt + K Vvt + K Viv' — Kol Vios
= = gkaViPs + @inViPi — §iiViPn + JkiViPn-

We take a complex coordinate system (2% 2*) in M?", and put the indices
h=a, i=0,j=v* and £ =28% in (1. 7). Then by the hybridism of the metric
tensor ¢;, and the covariant curvature tensor K;;;, of a Kihlerian manifold, we
obtain the eqaution

95aVyPs — JraVepPp + FrsVepLa — gssVyPLa = 0.
By contracting this equation with ¢g**,we have
(1. 8) (n — 2)Vy-ps + gy9* *Vspa = 0,
and, by contracting again with ¢""#,
n — D Tn = 0,

from which we obtain (1. 6) for n=2. Further it follows from (1. 8) that

(1.9 Vyps =0 :
for n > 2. Since p is real valued, the equation (1. 9) implies that the associated
scalar p is the real part of an analytic function. Q. E. D.

Now let us give an alternative proof of Lichnerowicz’

THEOREM 1. In a compact Kihlerian manifold M of dimension n= 2,
a conformal vector v is always isometric.

PROOF. On a compact manifold M?", Hopf’s maximal principle or Bochner’s
lemma tell us that the equation (1. 6) implies that p is a constant, that is, the
vector field v is homothetic. However, it is well known [4,p.222] or can be proved
by integration along a trajectory of v [5] that p should be equal to zero, ie., a
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homothetic vector on a compact manifold is isometric. Q. E. D.

From Lemma 1 and the formula (1. 4), we have immediately

THEOREM 2. In a Kihlerian manifold whose contracted scalar curvature
K is a non-zero contant, a conformal vector is isometric.

Since a Riemannian homogeneous space has a constant scalar curvature, we
have

THEOREM 3. In a Kihlerian homogeneous space with non-zero scalar
curvature, a conformal vector is isometric.

2. Projective vector. A projective vector v is characterized by the equation
h
2.1 £, {ji } = V,v.v" + K"t = 8p, + 8tp;,

where p, is the gradient vector given by
2.2 P = Vivio"/(2n + 1).

Putting p = v,v"/(2n + 1), we call p and p; the associated scalar and vector

with v respectively.
Concerning a projective vector, we know the formula

2. 3) £, K" = — &Vip + SiVip
or
@. 4) V'V Kyjin + Kijin Vit + K Vvt + Kijin Vit — Kyt Vivs

= — ¢a Vi + 95nVii-
By the same argument as those in §1, we have easily the following

LEMMA 2. In a Kihlerian manifold M*", n = 2, the associated scalar p
of a projective vector is the real part of an analytic function:

(2. 5) VyVep = 0.

THEOREM 4. In a compact Kihlerian manifold M*™, n = 2, a projective
vector is isometric.

REMARK. By use of the complex structure F;* and the operations O and
O¥* in [4], we can give proofs of the above theorems, too, which are essentially
same as those given here.
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