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A well known result by A.Rosenberg [ 6 ] shows that the algebra of all
completely continuous operators on a separable Hubert space is characterized
by the uniqueness of its irreducible representations. In connecting with this, in
1959, S.Sakai showed in an unpublished paper that such an algebra is also
characterized by the conjugate space, that is, a simple C^-algebra whose con-
jugate space is separable is necessarily isomorphic to the algebra of all com-
pletely continuous operators on a separable Hubert space.

The purpose of this paper is to determine the structure of all O-algebras
whose conjugate spaces are separable. The result is the following

THEOREM. Let A be a C*-algebra whose conjugate space is separable.
Then A is a GCR algebra having a composition series Ip of countable
type such that each /P+i//P is a separable dual C*-algebra, that is, the
C*( oo )-sum of the algebra of all completely continuous operators on a
separable Hilbert space.

Since a simple dual C^-algebra is nothing but the algebra of all completely
continuous operators on a suitable Hilbert space, the theorem implies the above
Sakai's result.

The proof splits into several lemmas. Let A be a C^-algebra without as-
suming a unit. We denote by A* the conjugate space of A. Then, as is well
known, the second conjugate space A** of A may be identified with a weakly

closed self-adjoint algebra A on a suitably chosen Hibert space H. Since
such an algebra always contains the greatest projection playing as a unit, we

may assume without loss of generality that A contains the identity operator on

H, which is denoted by 1. Now the algebra A has many special properties
relating to A(cί. [ 4 ], [ 8 ]) and it will be appropriate to point out some of
them before going into discussions. We notice at first that the σ-weak topology

of A is equivalent to o (A, A*)-topology, and the space A* is considered to be

the space of all σ-weakly continuous linear functionals on A, i. e. (A)*. Thus
each bounded linear functional φ on A is canonically considered as a σ-weakly
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continuous linear functional on A, which we denote by φ. In particular, if φ is

a pure state of A, φ is a σ-weakly continuous pure state of A. Hence there

exists the carrier projection eφ of φ which is a minimal projection in A. Let
irφ be the irreducible representation induced by φ on the canonical representation
space Hφ, then irψ can be extended to a σ-weakly continuous representation τrψ

of A on Hφ. Clearly πφ is an irreducible representation of A on Hφ and it can
be shown that this representation is unitarily equivalent to the irreducible
representation m-φ of A induced by φ. On the other hand irJ | A, the restriction
of iTφ to A is an irreducible representation of A on Hz and this representation
is unitarily equivalent to τrφ. We refer to Dixmier [ 2 ] for details of discussions
concerning the theory of von Neumann algebras.

Now let φ and ψ be pure states of A and eφ and eψ carrier projections of

φ and ψ respectively. The following lemma is more or less known.

LEMMA 1. The necessary and sufficient condition that φ and ψ induce
unitarily equivalent representations of A is that eφ and e^ are equivalent proje-
ctions in A.

PROOF. Suppose that φ and ψ induce unitarily equivalent representations

of A. The φ and ψ induce unitarily equivalent representations of A. The
canonical representation 77̂  is unitarily equivalent to the representation of

A as a ring of left multiplication operators on the Hubert space Aeψ endowed
with the inner product (xeφ, yeφ) = λ such as eφy*xeφ = \eφ. Therefore there

exists an isometric operator U from Aeφ to Aeψ such as

UxΌ~~\yeJ\ = xyβψ for all x,y € A.

Let z(eφ) and z{e^) be central envelopes of eφ and eψ in A, then both
projections z(eφ\ z(eψ) are minimal in the center of A and either z(eφ)z(e^) = 0
or z(eφ) = z(βψ) holds. If z(eφ)z(e^) — 0, we have

Uz{eφ)U^ι[xe^\ = (zeφ)xeψ = 0 for all x € A

and on the other hand

z(eφ)xeφ = xeφ for all x £ A,

a contradiction. Hence z(eφ) = z(eφ) and the comparability theorem shows that

eΨ ~~ e^ in A.

Conversely suppose that eφ — eψ in A and let v be a partially isometric

operator in A such as v*v = eφ, vv* =[eφ. Define the map

U Aeφ -* Aeψ by U(yeφ) = yv*e^
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Clearly U is an onto map and since eφ is a minimal projection in A, we get

e4 = \\yeφ\\2.

Since we have l^^l = ll̂ ê U where | | means the norm in the Hubert

space Aeφ, the above equality shows that U is an isometry. Moreover, for

arbitrary elements x,y € A, we have

UxZJ-Xyeφ) = U(xyveφ) = xyeψ.

Hence 7Γφ is unitarily equivalent to 7rj, and this implies the unitary equi-
valence of irreducible representations of A induced by φ and ψ.

An easy conclusion of Lemma 1 is the following

COROLLARY (Glimm-Kadison [5 : Corollary 9]). If φ and ψ induce disjoint
irreducible representations of A, then \φ — ψ\\ — 2. The converse does not
necessarily hold,

PROOF. In this case, eφ is orthogonal to eψ (in fact z(eφ)z(eψ) = 0). Hence
\eΨ — e^\ = 1 and

2^\φ- n = \φ - til ^ \& - ΨXe, -eΦ)\= 2.

We assume, for the rest of the discussions, that the conjugate space A* of
A is separable. Then we have

LEMMA 2. A is a GCR algebra containing a non-zero minimal projection.

PROOF. Let B be a maximal commutative self-adjoint subalgebra of A and
Ω the spectrum of B. For each ω € Ώ we denote by φω the associated pure

state of B. Let ωx and ω2 be an arbitrary pair of distinct points in ίl, then
one easily verifies that \\φωi — φωi\B — 2 where || |U means the functional norm
of <pωι — φωs on B. Denoting by φx and φ2 the extensions of φωi and φω2 to the
states of A we get the same relation, \φλ — φ2\ = 2. Therefore, since A* is
separable, the family of states of A, [φa \ ω« € ίl} denned by the above way is
at most countable and Ω is at most a countable set. Because the latter is a
locally compact Hausdorff space, one sees that there exists at least one isolated
point ω0 in Ω. Let e(ω) be the caracteristic function of {ω0}. Identifying B with the
space of all continuous functions on Ω vanishing at infinity we may assume that e
belongs to B. Clearly e is a minimal projection of B. We assert that e is also
minimal in A. In fact, for arbitrary self-adjoint element x e A and y € B we have,

exey = exeye = eyexe — yexe
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because eye — Xe for some complex number λ. It follows, since B is a maximal
commutative self-ad joint subalgebra of A, exe € B whence exe — \e for some
real number λ, which implies the minimality of e in A. Therefore we see that
A contains a non-zero CCR, hence GCR ideal.

Now let K be the largest GCR ideal in A and assume that A=iβK. Then
A/K has no non-zero GCR ideals (cf. Kaplansky [7: Theosem 7. 5]). On the
other hand, as is well known the conjugate space (A/K)* of A/K is isometric
to K°, the polar of K in A* and this implies the separability of (A/K)*. Then
the above arguments show that the C7C"-algebra A/K contains a non-zero GCR
ideal, a contradiction. Hence A = K. This completes the proof.

LEMMA 3. A is the direct sum of a countable number of factors of type I,

PROOF. Take an arbitrary central projection z in A. As in the last para-

graph of the proof of Lemma 2, (Az)* is a separable space. Hence Az con-

tains a minimal projection e which is also minimal in Az because Az is

cr-weakly dense in Az. We have, e ^ z. It follows that A is the direct sum of

factors of type I, i. e. A = ^ Aza where zΛ is a minimal central projection. Let
a

ψa be a pure state of A such as eφa rg za. Then we see that \\φa — φβ\\ =2 for
every pair of aβ(a Φ β) and the separability of A* implies that the index set

oo

{a} is (at most) countable. That is, A = ]P Azn.

It will be worth to notice that considering Lemma 1, [5 : Corollary 4] and

the property of A we may assume, without loss of generality, that A acts on

a Hubert space H such that, for each n, Azn = %5(znH) the algebra of all

bounded operators on znH. Since Azn is cr-weakly dense in Azn, Azn acts
irreducibly on znH.

LEMMA 4. If A is CCR, then it is a dual C*-algebra.

PROOF. Let [ea] be the maximal family of orthogonal minimal projections
in A and put

B = {a £ A\aea = eaa = 0 for every ea}.

Suppose 2? Φ { 0 }, then B is a Cγ~-subalgebra of A and since B* is isometric to
the factor space A*/B° of A* by the polar of B in A* the space B* is separable.
Therefore B has a non-zero minimal projection e. Moreover, for each element
a £ A, we have eae £ B which implies the minimality of e in A, however this
contradicts the maximality of the family {ea}.

Put f = Σ e a a n d consider the central envelope z of / in A. Since the set



100 j . fOMIYAMA

{a € A \eaa = aea — 0} = {0}, the map : A —> Az is one-to-one. We assert that
z = 1. Suppose, on the contrary, that z T^ 1 then there exists an integer n such
as zn ^ 1 — z. Let φ be a pure state on 4̂. and assume that the carrier projection
of ψ is contained in zn. We consider the pure state ψ of Az defined by ψ(αz)
= φ{α) for α £ A and denote by ψ the pure state extension of ψ to .A2. Since
y\ ~ y\

ψ is multiplicative on the center of Az there exists an integer m with ψ(zm)

= 1. Thus ψ is considered to be a pure state of Azm and

On the other hand, as Azm acts irreducibly on zmH and .A is CCR we see
that Azm — C(zmH), the algebra of all completely continuous operatators on
zmH, that is, Azm is an ideal of Azm. Hence ψ\Azm is a pure state of Azm.
Therefore by Dixmier [1: Theorem 3] ψ is σ-weakly continuous on Azm, hence
on the whole algebra Az. Thus the canonical irreducible representation 7Γ*
induced by ψ is σ-weakly continuous, so that TΓ^ \Az, the restriction of 7Γψ to Az,
is an irreducible representation of Az. Hence 7r£ | Az is unitarily equivalent to the
representation 7rψ induced by ψ and the former is the composition of the maps
Az—> Azm and Azm -* τr^(Az). It follows that τrψ

-1(0) = {x £ Az\xzm — 0}.
Therefore the transposition of πfλ(G) by the isomorphism Az —> A coincides
with the set {α € A\αzm = 0}. However the set is

{α € A\αz € Tiy-XO)}

= {α £ A\ψ(b*zαzcz) = 0 for every έ,c € ^4}

= {α ^ JL|^(δ^"αc) = 0 for every b,c € A]

= TΓVΓ^O) = {α € A\αzn = 0}.

Thus,

{α € ^I|α2:m = 0} = [α z A\αzn = 0} and nΦm.

Since 4̂ is CCR, the above relation induces the unitary equivalence between
the irreducible representations, A —> Azm on zmH and 4̂ —> Azn on z^H but this
is a contradiction. Hence 2 = 1.

Now let Pn = {α € ^4|αzw = 0}. Then it is easily seen that the structure
space ίl(A) which is the set of all primitive ideals in A with hull-kernel
topology is nothing but the set {Pn\n = 1,2, •}. Take an arbitrary point Pk,
then clearly [Pk] is a closed set in ίl(^4). We assert that {Pk} is an open set
in ίl(A). In fact, we can find a minimal projection e in A such as e € A Π ^4^

because 2 = central envelope of (/ = Σ eα) = 1. We have, e £ / ^ Pn and £ ̂  Pfc,

which implies that the set [Pn\n Φ k] is closed in Ω(A). It follows that Ω{A)
is a discrete space and A is isomorphic to the C*(oo)-Sum of {A/Pn\n = 1,2, •}.
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Since A/Pn is isorriorphic to the algebra of all completely continuous operators
on znH, A becomes a dual C^-algebra (cf. [7]).

REMARK. From the assumption that A* is separable, one can not deduce
the conclusion that A is a CCR algebra. For example, let A be the C^-algebra
generated by the identity operator and the algebra of all completely continuous
operators on an infinitely dimensional Hubert space. Then A is not CCR whereas
A* is a separable space.

Now we proceed the proof of the theorem. Recall that a composition series
of a C^-algebra A means a well-ordered ascending series of closed two-sided
ideals Ip, beginning with 0 and ending with A and such that for any limit
ordinal λ, Iλ is, the closure of the union of the preceding i,s. By Lemma 2, A

has a composition series Ip such that each IP+ι/IP is a CCJR-algebra. Let I9 be

the σ-weak closure of Ip in A, then Ip is a σ-weakly closed ideal in A. Hence

there exists a central projection zp such as Ip = Azp. Then, one easily sees that
(zλ+ι — zχ) (zp+ι — zp) = 0 if λ Φ p. Therefore, by Lemma 3, the index set {p}
is at most countable. On the other hand,

(7P+1//P)* ^ /; in /*+i

and /p+i is a separable space. Hence the subspace 7°, and (Ip+ι/Ip)* is a separable
one. Thus, by Lemma 4, we get the conclusion of the theorem.

It will be worth to notice that the converse of the theorem is also true.
For, with the notations above we have

1 = sup(zp+i — zp), and get the identity A = ]P A(zp+i — zp).

Hence,

4 = Σ ® (A(zp+1 - zP))κ

On the other hand, we have (Ip+i/Ip)* = (A(zp+ι — zp))χ. Since the conjugate
space of any separable dual C^-algebra is also separable, one concludes that

^1^, hence A* is a separable space.
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