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Let φ(u) be defined in 0 rg u ^ 1 and continuous at u = 0 and of bounded

variation on (0, 1). Then we consider the mean of series ^ an by

Jfc=0

9(0) = 1.

When φ(u) = (1 — wβ)δ (/3, δ > 0), we say this Riesz mean of the series.
Let f(x) be periodic and integrable over (0, 2τr), let

f\x) ~~ -£- + Σ (akcoskx + bksinkx) = Σ -^(^X
λ = l Jfc—0

and be its Riesz mean

When δ = 1 and β is an integer, the approximation of f(x) by Riesz mean
Rn(x,f) was solved by Zygmund [ 4 ].

Sz. Nagy [ 3 ] treated the general case. He did not calculate completely, but
if we calculate following his method, we have,

THEOREM A. (Sz. NAGY). If f{x) is r-times differentίable and f{r)(x)
<Ξ Lip a (0 < a ^ 1), then

\Rn{χJ) -Rχ)\ =

I RJL*,f) - Ax) I = O ( - ^ r ) ,ifv = a + r,(*)

\Rn(χ,f) -Rχ)\ =

where γ = min(yS, r + δ). /w ί/ie special case a = 0 αn<i r — an even integer of (•*),

ί/ι̂  factor log w z*5 suppressed.

From this, we may infer that his order of approximation depends upon δ.
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However we can prove that this does not occur. That is, we can prove the
following theorem.

THEOREM. If fix) is r-th differentiable and fr\x) e Up a (0 < a ̂  1),

then

(1) \Rn(x,f) ~f(x)\ = θ ( - ^ r - ) , if β>ct + r,

(2) \Rn{x,f) -f(x)\ = θ("7p-) , ifβ = * + r,(**)

(3) IRn(x,f) -f{x)\=θ(fy,if β<a + r.

In the special case β — r — an even integer and a = 0 of (**),

(2') \Rn(x,f)-f(x)\=

The proof of this theorem is easily reducible to the following two pro-
positions.

PROPOSITION 1. The saturation order and saturation class of Riesz

mean are n~β and Σ kβAk(x) € L°°(0, 2τr), respectively.

This is independent of δ. The necessity part is proved by G.Sunouchi-
C.Watari [ 2 ], and sufficiency part is given by Sz. Nagy [ 3 ] implicitly. For
the sake of completeness, we shall perform the calculation following Nagy's
method.

LEMMA. Let us write ρ{iλ = sup max \Rn(x,f) —f(x)\, where the supre-
x x

mum is taken over the class consisting of functions for which

Then,

In order to prove the lemma, we use Nagy's theorem B [ 3 ].

THEOREM B. (SZ. Nagy). For given β > 0, we set ψβ(u) = u~β(l - φ{uj)
in 0 < u ̂  1. Furthermore, -we assume that ψβ(Q) = ψβ( + 0) exists and that

u) satisfies the following conditions.
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[i] ψ'β(u) is of .bounded variation except at least finite points :0,aly ,apl.

[ii] The next integrals converge.

J u\dψ'β(u)\, J l«-α t |log w^

and
A-0

j (1-u) log-^-\dψ'β(u)\,

where I means I + I , if an interval (b, c) contains an exceptional point a.
J Jb Ja+

Then,

& = o («-<o.

The points that do not satisfy the conditions of theorem B are called (N)-
singular points.

PROOF OF LEMMA. We have only to verify that the points u = 0, u = 1
are not (N)-singular.

( I ) In a neighbourhood of u = 0, we have

ψβ(n) = «-"{l - (1 - ue)*} % 8,

and the point u = 0 is not (N)- singular.

(II) In a neighbourhood of u = 1, we set v — 1 — u.
Since

φ(u) = [1 - (1 - v)βf = [βv -{2F2 + * ]δ *=? **Φ>\

ψβ(u) = u~β{l — (1 - u)8q(l - u)} = 1 - (1 - w)δg(l - w),

^'(tt) = v*-ιqx(p\ and ^'(w) = v*-*qt(y).

where q(y\ qι(v) and q2(y) are analytic in a neighbourhood of v — 0.
On the other hand,

/ (1 — u) log-γ-3— \dψβ(u)\ = f (1 — w) logr r-3— \φ(u)\du

v8~ι\og— \q2(y)\dv < °°.

From these facts, we conclude that the point u = 1 is not (JV)- singular.
Therefore, ( I ) , (II) and theorem B yield the fact that
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Pf = O{n-?).

Hence, we verified Proposition 1 completely.

PROPOSITION 2 (G.SUNOUCHI [ 1 ]). Let r = 0,1,2, . . . andO < a ^ l .

Suppose that for linear approximation processes Tn(f)

( 1 ) \Ax) I ̂  M, implies \ Tn(f)(x) | ^ KxMu

and

( 2 ) !/«(*) I 5Ξ M2 ίm#ies |/(:c) - TJJ) (x) \ ^ KM,n'*,

where n~β is the best approximation of the class of functions

fir)(x) € 2ΛΛ : r 4- # = /S, r is an integer, 0 < a ^ 1.

T/ierc,

/ » ( * ) € 2ΛΛ, r + a < β ^f(x) - Tn(f)(x) = O(n->~«),

where f{r)(x) € 2A.a means

f«>(x + h) + / ( r ) ( ^ - Λ) -2/<r)(Λ;) = O(| A|α).

PROOF OF THEOREM, ( 1 ) can be proved from Propositions 1 and 2. (3 )
can be verified from Propositions 1 or 2. Thus it remains only to show that
(2) holds. For simplicity we consider r = 0 and 0 < a < 1. The proof of the
remaining cases is entirely the same.

We set fβ(x) the moving average of f(x), that is

then

fμ(x) -f{x) = -7^- f {f(χ + 0 -Rχ)}dt = O0i-).

Moreover we set <7(;r) = /(Λ:) — fμ(x),

f(x) - Rn(x,f) =fμ(x) - Rn(x,fμ) + ^ ) - Rn{x,g).

Since 5f = O(/iβ),

\g-Rn{x,g)\ =O(μ«).

Thus it remains to estimate \fμ(x) — Rn(x,fμ)\. We note that

Since ^(JC) is (1 — λ)-th fractional integral of f(x) and now we consider the
case λ = a, by the well-known theorem [ 5 ],
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F"(x + μ)- F"(X - μ) = fι.a(x + μ) - /,_.(* - μ)
= /x_α(α: + μ) - fl-.{x)+ / , - ( * ) -fx-a(x ~

Consequently

On the same way, since f(x) € Lip Λ (0 < a < 1),

Therefore,

where W" means the class of functions which
CO

Σ,k«Ak(x)~fw € L-(0,2ττ).
A: = 1

By the saturation theorem, we get \fμ(x) — Rn(x,f»)\ =θ( —— log j .

Set μ = , then we have
n

\Rχ) - RΛ{χ,f)\ =
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