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1. Introduction. Given a (2n + 1)-dimensional differentiable manifold M,
we denote by F(M) the family of all real valued differentiable functions on M,
and by X(M) the totality of differentiable vector fields on M. Then X(M) is
an F{M)-module and a Lie algebra over R, R being a field of real numbers. An
almost contact metric structure is a tetrad (¢,&,7,9), where ¢ is a linear
operator ¢ : X(M) — X(M) and 7 is a 1-form such that n-¢ =0, and & is a
vector field such that 7(¢) = 1, satisfying the following relation :

(Y Pp(X) = — X + 5(X)¢ X e ¥(M),
and finally ¢ is a Riemannian metric which satisfies 7(X) = g(¢,X) for X < X(M)

and

1 2 9(@X, ¢Y) = g(X,Y) — n(X)n(Y), X,Y e (M)

Then we see that ¢ is of rank 27 and & is a characteristic unit vector field
corresponding to characteristic value 0. Since it follows from (1. 1) and other
relations that ¢+ = 0 and that, at any point x of M, denoting by ¢, the
restriction of ¢ to the tangent subspace T.(n) of M which is orthogonal to &,
it has a property ¢,-¢, = — Identity.

By virtue of (1. 2), we can define a differentiable 2-form w as follows:
w(X,Y) =g(X,¢Y), XY XM,

then the rank of w is 2n. An almost contact metric structure is called a contact
metric structure, if the relation w = dp is valid. And a differentiable manifold
with a (or an almost) contact metric structure is called to be a (or an almost)
contact Riemannian manifold.

Suppose p be a diffeomorphism of M, then u is said to be an automorphism
of an almost contact metric structure, if it leaves all of ¢, & » and ¢ invariant.
In the sequel, by a transformation on M we understand a diffeomorphism of
M. In this report, we treat mainly transformations which leave ¢ invariant.
Some propositions of this note are stated in [9] in terms of infinitesimal
transformations. My hearty acknowledgement goes to Prof. S.Sasaki, Mr.
Y .Hatakeyama and Mr.Y.Ogawa.
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2. Transformations on almost contact Riemannian manifolds.

THEOREM 2-1. Let M be a differentiable manifold with an almost
contact metric structure. Then in order that a conformal transformation u of
the associated Riemannian metric g satisfies y*w = aw for some positive scalar
a € F(M), it is necessary and sufficient that w leaves ¢ invariant.

PROOF. As u is a conformal transformation, there exists a scalar field o
for which we have u*g = 6?9 and hence for an arbitrary point & of M,

@ 1 Gue(uX, pepY) = a*(2)9.(X, ¢Y), X, Y € ¥(M).
And the relation u*w = aw is written by definition as follows :
@ 2) (W*w) (X, Y) = w,(uX, uY) = 9,(uX, puY)

= a(x)g,(X, ¢Y).
From (2. 1) and (2. 2) it follows that

o*(x)

9ue(uX, upY) = “alz) Gu(uX, puY).

Consequently, we have

(2 3) l‘zd)xYx = %2((:;:)) ¢uxqux-

Since ¢ satisfies pep+¢p = — ¢ which follows from (1.1), the left hand side of

the last equation is

Bobe Yy = — poa(padp.Y,) = — 22((;:)) Duopta(bobY s)
_ P i)
- = a'a‘(x) ¢ﬂ1‘¢#1'¢’ﬂ-‘cﬂxyx - ag(x) ¢px/-lIYx.

And hence (2. 3) shows o*(x) = a*(x). By assumption, « is positive and so we
see that a is equal to ¢°, then (2. 3) turns to u,¢, = ¢..u,. Conversely, if a
conformal transformation u (u*g = o?9) leaves ¢ invariant, then we have

W) (X, Y) = 9u(uX, $uY) = gu.(uX, u¢Y)
= o¥(x) wi(X,Y), XY € ¥(M). (q.e.d.)

COROLLARY. If a conformal transformation p on an almost contact
Riemannian manifold leaves w invariant, then p leaves ¢ also invariant and
W is necessarily an isometry, therefore p is an automorphism of this almost
contact metric structure.

In fact, by ¢p = udp we have ¢pé =0, and as p is an isometry, we see
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that p& = & and of course u¥*n = 1.

PROPOSITION 2-1. Suppose p be a conformal transformation (u*g = a°g)
on an almost contact Riemannian manifold M. If u satisfies the relation
p*n = an (u€ = BE resp.) for some positive a (B resp.) € F(M), then we have
a=oc (B = p*o resp.) and p& = (W a)é (u¥n = on resp.).

Proof shall be omitted here.

Let H be a homogeneous holonomy group of a connected almost contact
Riemannian manifold M. At an arbitrary but fixed point x of M, we consider
the set F(x,E) = {\E,, M € H} which may be identified with a subset of a 2x-
dimensional unit sphere. Further, for any point y of M, we join £ and y by
a piece-wise differentiable curve /(x,y) and define F,(x, &) = 7({)F(x, &), where
the notation 7(/) means the parallel displacement along the curve /. Clearly,
F,(x, £) does not depend upon the choice of the curve joining x and y. Then
we say temporarily that M has a F-property if at every point z, £ belongs to
F(x,&). Of course, this property does not depend on x. It is equivalent to say
that for any two points y and z, there exists a curve {(y, 2) such that &, = 7(0)g,.

PROPOSITION 2-2. Suppose that an almost contact Riemannian manifold
M has a F-property. If an affine transformation u preserves the direction of
E and at one point p of M p leaves m invariant, then p leaves & and 7
globally invariant.

PROOF. By virtue of (u*9), = n,, it is easy to see that u&, = £&,, is valid.
We join p and an arbitrary point x of M by a curve /(p, x) along which &, is
parallel to & and we have ug, = p-r(0)€,. By the way, p is an affine trans-
formation and so it commutes with the parallel displacement and we see that
uE, = E,.. In the next place, for any X € ¥(M), we have g.(£,, #X) = 0 and so
g(&, 7 (DPX) = 0. Namely 7,(+"'())¢pX) = 0 and hence n,,(p77'()¢pX) = 0, or
equivalently ¢,,(E.p, p7"'()¢X) = 0. And finally

gnt(&nu T(,u(l))'uﬂ—‘(l)(ﬁX) = gnx(épx’ l“;bX) = 7/#Z'F¢X = 0.
Consequently p*n = an for some a € F(M) and necessarily a = 1.
3. Transformations on contact Riemannian manifolds.

THEOREM 3-1. If a transformation p on a contact Riemannian manifold
M leaves ¢ invariant, then there exists a positive constant o such that the
relations p*n = an, pé = a¢ and p*w = aw hold good.

PROOF. (i) From the equations 7+ = 0 and ¢p-u = p-¢p, we get nud = 0,
or at any point x of M we have (u*9),¢,X, = 0, X € X(M). Thereby
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3.1 (w*n), = a(x)n, for some a € F(M).

(ii) If we suppose ¢ = 0 and ¢+u = u-¢p, then we have ¢-u& = 0. Hence,
it follows that (uf).. = B(ux)g,, for some B € F(M). Combining (i) and this,
we see that B(ux) = alx).

(iii) We shall show that « is constant [9]. By operating the exterior
differentiation to (3. 1), we get

3.2 du*n = da \ 7 + adny.
As d and p* commute, du*n = p*dyn. On the other hand, we have
(I-"*dﬂ)z(«f, Y) = dnpx(li‘f’ #Y) = 0, Y ¢ %(M),

since (u€),, = a(x)€,. and i(E)dn=1:(€) w = 0, where i(£) is the interior product
operator by & Hence #(&),(du*n) = 0. Consequently, we have by virtue of (3. 2)
i(&)(da A ) = 0. Moreover,

iE)da A\ m) = iE)da \ 9 — da-i(E)n = £(E)a-n — da,

where we have put £(&a = i(f)da. Thus, £Ea-n = da. Therefore, da A n =0
and da A dg = 0. Further £(&a-n A dp = 0. From this £(§a must be zero
and da = 0. This means that « is constant, and p*w = a@w is clear. The fact
that « is positive will be proved in the next Proposition 3-1.

Several Propositions follow from this Theorem.

PROPOSITION 3-1. Let M be a contact Riemannian manifold. If a
transformation p on M leaves ¢ invariant, then p is conformal, precisely
homothetic, relative to the n-plane T,(n), x € M.

PROOF. For an arbitrary point x € M and X,Y < X¥(M) we have
W)X, Y) = 0, X, 1Y) = gualuX, $puY)
= 9u(pX, ppY) = (u*9).(X, ¢Y).

On the other hand, by Theorem 3-1 the left hand side of the last equation is
equal to

aw(X,Y) = ag.(X, ¢Y),

for some constant «. Thus we have

(3~ 3) (/L%g)z(X’ ¢Y) :agx(X> ¢'Y)
Here we assume that X, # 0 and X, € T.(n) (i.e. 7,(X) = 0). And we define
Y = — ¢X, then Y, is also an element of the 7-plane and we have

gﬂx(l'bX? “X) = agI(X’ X)’ Xx € TI("])'

It follows from this that « is positive. Furthermore let Z be an arbitrary vector
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field such that Z, € T,(y) and Y be — ¢Z, then (3. 3) turns to
WX, 2) = ag (X, 2), X, Z, €« T.(n).

PROPOSITION 3-2. If a transformation p on a contact Riemannian manifold
M leaving ¢ invariant is conformal at some one point of M, then p is an
automorphism. Conversely, if a homothetic transformation p leaves ¢ invariant
in a small neighborhood of one point of M, then p is an isometry.

PROOF. By assumptions there exists a point p of M at which u is con-

formal, that is (u*9), = o?g, holds good for some positive number o. However,
by Proposition 3-1, ¢ must be equal to @ corresponding to p. On the other
hand, by the relation (u*g),(§ &) = o’9,(£, &) and (u§).. = a&, we have o = o’
and hence a* = a = 1. To see that u leaves ¢ invariant we rewrite (1.2) as
3. 4) 9(X, Y) = w(¢X,Y) + n(X)n(Y), X,Y € X(M).
Two terms of the right hand side contain w, ¢ and 7 which are invariant by pu.
This completes the proof of the first part of our statement. Conversely, suppose
that we have a point g of M such that in a neighborhood U(q) of it a homothetic
transformation p leaves ¢ invariant. Then, by applying the preceding result to
U(g),we see that u is an isometry in U(g) and hence on M.

PROPOSITION 3-3. In a contact Riemannian manifold, if a conformal
transformation p satisfies p*w = aw for some positive a € F(M), then p is
an automorphism of the contact metric structure.

This follows from Theorem 2-1 and Proposition 3-2.

PROPOSITION 3-4. Let us denote by ® the totality of transformations
on a contact Riemannian manifold which leave ¢ invariant. If p € ® belongs
either to the commutator subgroup [P, D] or to some compact subgroup of @,
then it is an isometry and so an automorphism of this structure.

PROOF. In fact, the correspondence between a transformation g and a
constant @ defines a homomorphism %4 of the group @® into the multiplicative
group of real positive numbers. That is, for p and v € ®, we have p*n = ang
and v*p = By (a,B € R), and then we see that

(wv)*n = v*(u*n) = afn,
this permits us to define a homomorphism A(uw) = af.
PROPOSITION 3-5. Let M be a compact manifold with a contact metric
structure, if a transformation p leaves ¢ invariant, then p is an automorphism

of this structure. Therefore all of such transformations constitutes a compact
Lie group.
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PROOF. We notice that p*(n A w") = a®*'p A w”, (@ = h(w)). Integrating
it over M we get

a"“f 77/\w"=fu*(77/\w”)=fn/\w".
M M M

From this we see that « is equal to 1. Therefore p leaves ¢, w and 5 invariant
and so leaves g invariant too. (q.e.d.)

Now, if a conformal transformation g on a contact Riemannian manifold
leaves & or 7 invariant, it follows that u leaves w invariant. Then, by Pro-
position 3-3, p is an automorphism. However, we can prove the following

PROPOSITION 3-6. If a conformal transformation p on a contact Rie-
mannian manifold M satisfies p*n = an for some (necessarily positive) a < F(M)
or preserves the direction of &, then p is an automorphism.

PROOF. By Proposition 2-1, we see that u satisfies u*n = an and pé&
= (u*a)t. And we can verify that a is a positive constant by the similar
argument just as in the proof of Theorem 3-1. Hence we have p*w = aw,
therefore Proposition 3-6 is an immediate consequence of Proposition 3-3.

PROPOSITION 3-7. If a transformation p on a complete contact Rie-
mannian manifold M leaves ¢ invariant and has no fixed point, then p is
an automor phism.

PROOF. We see by Proposition 3-1 that w is homothetic relative to the
n-plane T.(n), x € M, i.e.

(3. 5) WY, 2) =ag.Y,2), Y.Z, < T.(n),

where a = () > 0. Here we assume that g is not an automorphism, that is
a # 1, then @ can be supposed to be smaller than 1. Since if « is greater than
1, we can replace u by p~'. Next, we decompose any vector field X € (M)
(X, #0) as X = — ¢¢p X + n(X)& Operating p to the both sides of the last
equation

(3 6) ,U':;;Xx = — #1¢x'¢x Xz + anx(X)‘Suza
where we have utilized p& = €. As the both terms of the right hand side are
orthogonal on account of p.d = ¢p-u, we get
9 X, pX) = @’ 5(X)* + gua(up-dX, ppepX)
= a’n(X)* + ag.($-¢X, p-pX),
by virtue of (3. 5). Hence, we have the inequality
@7 Jux(uX, pX) = ag. (X, X).
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If we denote by d(x,y) the distance between two points x and y, and put
X, = PX, Xyyy = Xy, £ =12,..., then (3. 7) means that (dx;, xx,1) —0 as
k— oo and {x;} constitutes a Cauchy sequence. By the completeness of M in
consideration we see that there is a point x. such that px. = x., this con-
tradicts the hypotheses. (g.e.d)

In the preceding Proposition 3-7, the condition that  has no fixed point
can be removed if the complete contact Riemannian manifold is not locally
flat and p leaving ¢ invariant is an affine transformation. This may be proved
by the method of [3]. But we have the following

PROPOSITION 3-8. If an affine transformation p on a contact Riemannian
manifold M leaves ¢ invariant, then p is an automorphism.

PROOF. By Vv we denote the covariant differentiation which arises from
the Riemannian connection defined by the associated metric g. An affine trans-
formation commutes with the covariant differentiation and we have

V(upp (X, Y) = p(v)(u™' X, n7Y), X, Y € (M)

By assumption u¢.p™' = ¢, so we have
3. 8) VX, Y) = pe(V9)o(u™' X, p7'Y).

On the other hand, it is known [8] that 8w = np, where & is the co-
differentiation operator. Therefore, if we contract V¢, and V¢,, in both local
coordinates at x and px, we get — nn, and — n7,, respectively. It follows from
3. 8) that 7n9,,(X) = nyp(p~'X), namely 7,. = p™*3,. Hence, our assertion is
true.

PROPOSITION 3-9. If a projective transformation p on a contact Rie-
mannian manifold M leaves ¢ invariant, then u is an automorphism.

PROOF. For any projective transformation u, there exists a 1-form 6 such
that

m+1

S (T — T)(X, Y) a%i = #X)Y + 6Y)X, X, Y e %M,

i=1

where T is the Christoffel’s symbol and *I" is the image by p of T and (»')’s
are local coordinates at y = ux, x being an arbitrary point of M. Then, by the
similar way as above, we can derive the identity

_ n
NNyy — @n + 1) = nu ¥, = }T(-[T) Nuz-

Thus, if we operate £,, to the right of each term, we see that A(w) =1 holds
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good. Hence, p is an automorphism.
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