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Introduction. In his book "Leςons sur la theorie des functions", E.Borel
[ 1 ] considers certain infinite series, which in the theory of real variables, are
sometimes referred to as Borel series, and which are defined by

oo

(1) Σ (.An/rΐ ),
n = l

r\ = (x, - an™γ + (x2 - an™γ + . . . + (xh - an

w)\ mn < m. An, n = 1, 2,. . .,

is a sequence of real numbers and ̂  An is assumed to be convergent. αw

( Λ ), n

— 1,2, are h^l sequences of real numbers xl9 , xh are real variables
and the exponents mn are real positive numbers. According to a theorem of
Borel, ( 1 ) converges almost everywhere.

If we put An= \A\p+Q/q, where | Ao \ < \ A\ < 1, A not necessarily real,
p and q positive integers, and mn = 1, rn = \xλ — α n

( 1 ) | = \x — (p/q)\, i. e. if
we identify {αn

(1)} with the somehow simply ordered double sequence {{(p/q)}},
then we obtain the special case of (1)

(2) ΛA;x)=Σ, (\A\"+y\gx-p\).

In (2), let x be a fixed, real irrational number. Historically ( 2 ) was first
discussed by H.Bruns [ 2 ], while dealing with the convergence of a trigonometric
series to a bounded function for certain values of the parameters which occur.
Since then, (2) has received considerable attention, e.g. [3], [4].

The principal purpose of this paper is to discuss convergence and divergence
of (2) from an arithmetic point of view and in particular show that (2) may still
converge for a subset of Liouville numbers x. The main tool will be K.Mahler's
[5] classification of numbers as it is exposed in detail by Th.Schneider [6]. It
would of course be nice to obtain an "if and only if" theorem to the effect
that (2) diverges for all real irrational x that satisfy certain properties. Unfortu-
nately, this appears unattainable at this time, owing in part to the method
applied.

In the first paragraph, in which we shall point out a generalization of a
theorem of E. Maillet, we shall find some aspects which are relevant to some

*) NATO post-doctoral fellow, Los Angeles State College. The author expresses his deep
gratitude to Dr. Wolfgang Schwarz for valuable criticism during the preparation of this
manuscript.



104 H. ROTH

parts of the later paragraphs.

1. On a theorem of Maillet. In his book "Irrationalzahlen", O. Perron
[ 7 ] proves the

THEOREM (a). If between two irrational numbers x and R the relation

(3 ) R = r0 + rxx + . . . + rmxm,

where ro, ,rm are rational numbers, holds, and if x is a Lίouville number,
then R is also a Liouville number.

He also proves the

THEOREM (b). If between two irrational numbers x and S the relation

, Λ N s = A +
K J q +

holds, where po,pι, ,qm are integers and not both pm,qm vanish, and if x is
a Liouville number, then S is also a Liouville number.

If in (4), m — 0,1 and if pQ, ,qx are non-zero integers with poqλ — pιq0 Φ 0,
then we have the special case of this theorem proved by E. Maillet [ 8 ], [ 9 ]
in this case, also the converse of theorem (b) holds.

Both theorems above may be generalized if we replace "Liouville number"
by "number satisfying the following criterion for transcendency" [ 6 ], page 34:

THEOREM (C) . // 1.) pn/qn, n = 1, 2,. . ., with (pn,qn) = 1, qn+1 >qn>0 is
an infinite sequence of quotients of integers, and if

2.) there exists a sequence of real numbers sn, n = 1,2, , such that

lim sn > 1, and if
71-*°°

3.) for an irrational number x the inequalities

( 5 ) \qnx - pn\ ^qn~*% n = 1,2,. . .,

are satisfied, then x is a transcendental number.

Evidently, theorem (c) gives sufficient conditions for x to be a Liouville

number, i.e. in case lim sn = + °o cf. [ 6 ], page 3.
7Z-*oo

The generalizations for ( 3 ) and for ( 4 ), just mentioned, can be carried out
—mutatis mutandis—by following the proofs of O. Perron, and we therefore
omit the details of these proofs.

2. K. Mahler's classification of numbers. K. Mahler defines the arithmetic
function
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( 6 ) zvn(H,x) =

av integral rational, ]>Z aυx
v ΦQ )

^ \aυ\ ^

= CO

= CO

For n ̂  1, H^l is this function equal to at most 1, i.e. for a0 = 1, ax = a2 —
= . . . = an — 0, and evidently does not increase with increasing n and H.

Further, Mahler forms the expressions

( 7 ) ivn{x) = wn = Km [-log wn(H, x)/log H], n = 1,2, and

( 8 ) w(x) = τυ = lim [wn(.r)/;z].

Evidently, for n^l90^wn^oo9 O ^ w ^ c o ; further zvn+1(H, x) ̂  zvn(H,x),
— log wn+1(H,x)^ — log wn(H, x) hence wn+i(x) ^ wn{x). Thus, w is either
a non-negative finite quantity, or positive infinite.

Let μ be the smallest index for which Wμ, = oo? i n case such an index
exists. Otherwise, whenever wn remains bounded for all n, let μ =oo. Hence μ
is determined uniquely. Consequently, for a finite μ, τv = °° and μ and tf
cannot both have finite values for the same x. Thus, there remain four possibilities
for the values of μ and w according to which the number x may be classified.
We say that x is an

A-number, if w = 0, μ

λS-number, if 0 < w < °°, μ

T- number, if w = °°, μ = °o

U-number, if w = co, ^ < °°

We do not know whether the class of T-numbers is empty or not. The
A-numbers are identical with the class of algebraic numbers, howτever, in our
study we consider the subset of irrational A-numbers only. The S -, T -, and
[/-numbers are transcendental numbers. In our study of (2 ) we need certain
estimates of ( 6 ) which follow from the above definitions of the A -, S -, T -,
and ϊ7-numbers.

3. Convergence of f for irrational A-, S-, and T-numbers, as well as
ϊ/-numbers of index μ ̂  2. In the case of the A-numbers we have [ 6 ], page
68, the

THEOREM (d). Every algebraic number is an A-number, and every A-
number is an algebraic number.

The proof of theorem (d) which we omit, provides us with the following
inequality
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( 9 ) wn(H, x) > cHι~\ c = c(x, n) > 0?

and s > 0 is the degree of the algebraic number x.

From the definition of S-9 and T-numbers one obtains [ 6 ], pages 67-68
estimates for ( 6 ). In case of the 5-numbers : For a given x there exists a θ0

= θo(x) > 0, such that for every £ > 0

(10) wn(H, x) > cnH~^+e)n, n = 1,2,..., and cn = c(x, n, €) > 0.

In case of the T-numbers we have

(11) wn(H, x) > cnH-θ*n, n = 1,2,..., where cn = c(x, n, θn) > 0,

θn = 6(x, n) > 0, and lim θn = °°; cn and θn are independent of H.

For the [/-numbers of index μ ^ 2 we have

(110 ( = (17) below) w^H.x)^ H~λ°+\

Combining (9), (10), (11), as well as (14) and (17) in connection with theorem
(f) of paragraph 4 below, we can now prove

THEOREM 1. If x is an irrational A-, S-, or T-number, or if x is a

Ό-number of index μ^2, then the expression ( 2 ) for f converges.

1

PROOF. Let 0 Φ B(x) = 2Z avχV be a binomial with integral rational coef-
v = 0

ficients of height H = Max( | a0 \, | aλ \) > 0. We observe that it suffices to con-
sider binomials since the decisive estimates for the A-, S-, and T-numbers hold
for all polynomials. In the latter cases then, let c — c(x) > 0, γ > 0 be constants.
In case of S-, and T-numbers c may still depend upon γ. In case of T-numbers
γ may still depend on x. But then it follows from (9), (10), and (11) that

1

> wι{H,x)>cH~\
v=0

1

(12) 0 Φ

which holds for all binomials of height H. Now, by ( 2 ) we have for any
term the estimate

I A \P+Q

\qx-p\

and it is evident that the double series extended over the right hand side of
(13) converges since \A\ < 1. In case of the [/-numbers of index μ g: 2, we
have available inequality (llθ> which at once leads to an estimate of the form
(13) and hence the expression ( 2 ) for / converges, q.e.d.
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Examples for A-numbers, such that / converges, are easily exhibited. An

example for 5-numbers is the base of natural logarithms x = e, in this case

then, / converges. Another example is Ludolph's number 7Γ. Let x = TΓ. In this

case we have available K. Mahler's [10] approximation \qπ — p\ > q~Aί for all

positive integers p,q^2. It follows that / converges in this case, ir is an S-,

or T-number. As an example to the [/-numbers of index μ^2 we mention

the following [ 7 ], page 185 : If y0 = x\ = [b0, bu b2, •] is a Liouville number

represented by its simple continued fraction expansion with bn+1 = q2n~\ where

qn is the n-th approximation denominator to y0, then yln = x0 is not a Liouville

number, and hence, the expression ( 2) for / converges for x0. Evidently, x0 is

a [/-number of index μ = 2. J.W. LeVeque [11] has studied [/-numbers of

index μ ̂  1.

4. K. Mahler's Z7-numbers of index μ = 1, and divergence of f. The

definition of the [/-numbers implies, there is a finite μ = μ(x\ so that for every

w ̂  μ, the quantity wJx) = oo? or lim [ — logzvJH, j:)/log H] — ©o. Thus,

to every θ > 0 and every fixed n ̂  μ an infinite subsequence ί/λ may be

extracted for which [ — log zvn(Hλ, x)/\ogHλ] > θn is astisfied. Hence there are

polynomials with integral rational coefficients of height H ̂  Hλ, for which to

an arbitrarily large H\ and an arbitrary given θ the inequality

(14) 0 ^ Hλ9 lim Hλ =
κ=0 λ "

holds. Since Hλ may be arbitrary large, there are infinitely many polynomials

to every fixed θ and fixed n.

Further, [ 6 ], page 1, we require Liouville's

THEOREM (e). If x is an algebraic number of degree n > 1, then there

exists a constant c = c(x) > 0, such that for all integral rational p,q, q > 0,

the inequality

(15) \x - (p/q)\ > cq-n

holds.

Theorem (e) then permits the

DEFINITION 1. Every irrational number x is called a Liouville number if

one can find to every natural number λ a rational fraction px/qx, so that the

inequalities

(16) \x-{px/qx)\<qi\ qx>l,

hold.

Evidently, by (15), it follows that every Liouville number is transcendental.

THEOREM (f). A C-number x has index μ = 1, if and only if it is a
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Liouville number.

PROOF. If x is a Liouville number, then there exist for every natural

number λ, integers p and q > 1, so that \qx — p\ < q~λ+\ Hence it follows

from (14) that every Liouville number is a U-number with index μ = 1. Con-

versely, if x is not a Liouville number, then there exists a λ0 so that for all

integers p, q the inequalities \qx — p\ ^ q~λ°+1 hold. Hence we have by (6)

(17) Wι(H, x)^H-λ»+\

and thus by (7)

wx(x) ^ λ0 - 1,

which is against our hypothesis that x is a [/-number with index μ = 1.

Thus the Liouville numbers are identical with the [/-numbers of index μ = 1,

q. e. d.

In paragraph 1, we did already observe that theorem (c) gives sufficient

conditions for x to be a Liouville number, namely in case lim sn = +oo. We
7Z->oo

have the following

LEMMA 1. If sn = [m(pn + #π)/log qn], n — 1>2, , is a sequence of real

numbers with integers qn+1 > qn > 1, pn ^ 0, n ^ l , and m = — log \A\ > 0,

then lim sn = + <>o.

PROOF. All gn are positive integers and qn —> oo? as n—>oo. Since also >̂n ^ 0,

we observe that the assertion follows at once from (qn/^ogqn) -> °o, as n —> oo,

q. e. d.

THEOREM 2. If x is a Liouville number satisfying the hypotheses of theorem

(c), α5 zt>£Z/ as those of lemma 1, ί/^n £/i£ expression (2) /or /* diverges.

PROOF. By theorem (c), x permits the approximations

(18) \qnx- pn\^ qrT", n = 1, 2, . . ..

Now, from the double series (2) we extract a sequence of terms f(n), so that

by (18) for these terms

(19) f{n) = ^JTpΛ ^ I A I ""^» = !> f o r n ^

Thus the single series extended over the terms f(n), n^l, diverges and a

fortiori the double series (2) diverges, q. e. d.

In the following we restrict ourselves essentially to a certain subset of
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Liouville numbers that may be constructed by means of simple continued

fractions.

DEFINITION 2. An infinite continued fraction is said to be simple, if all

partial numerators equal + 1, and if the partial denominators are all positive

integers, except for the first one b0, which may be any integer.

From now on, the letter b will denote a partial denominator of a simple

continued fraction and the letters p and q, with subscripts n in general, will

denote numerators and denominators of convergents to certain real numbers

represented by their simple continued fraction developments.

Again without proof, we state [ 7 ], page 179.

THEOREM (g). A simple continued fraction [bo,bub2, •] with convergents

pjq n is a Liouville number if and only if to every arbitrary large number

k an index nι may be found, such that bn+1 > q% for all n ^ nι.

This theorem implies that the Liouville number x0 = [bo,bι,b2, •] permits

to every positive k, as soon as n is sufficiently large, the approximations

(20) I x0 - (pn/qn) I < q-\ (Xo > 0, w. 1. g.)

for by the approximation theorem of continued fractions [ 9 ], page 37, we have

with {pjQn} the sequence of convergents to x0 that \x0 — (pn/qn)\ < bΰlιq72,

and since bn+ί Ξg ql"2 for all n g: n\ and for every arbitrary large number k,

(20) follows in theorem (g) above, k was replaced by k + 2.

In order to emphasize the new meaning of the pn's and qn's as numerators

and denominators of convergents to a simple continued fraction, we re-name

the sequence sn, n — 1, 2, of real numbers of theorem 2 by the symbol φn,

n — 1,2, . Then to theorem 2, we have at once the

COROLLARY. If x0 = [b0, bu b2,. . .] is a Liouville number with bn+ί > qζ71"1

and where φn — [m(pn -f g j/ logg j , n = 1,2, , then the expression (2) for f

diverges.

PROOF. The proof follows at once from theorem (g) and (20), as well as

from the argument that led to (19) in theorem 2, q. e. d.

EXAMPLE. We construct the continued fraction x0 = [bQ,bub2, •],

whose partial denominators are generated by means of the recursion formula

qn — bnqn^λ + qn-2, n = 1, 2, . By definition q^ = 0, q0 = 1. Then we put

b0 = 0, so that with bι = 1, qλ — l l + 0 = 1 we put b2 — qλ

Ql = 1, so that

q2 = l l + 1 = 2 we put b3 = q2

Q2 = 4, so that q3 = 4 2 + 1 = 9 we put £4

= qz

Qi, etc. In general, we put bn+ι = qn

Qn. Now, since lim qn = °°, Xo is
7Z->oo

a Liouville number by theorem (g).
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By theorem 2 we must have that bn+1 > g/n~\ where <pn = [m(pn + gj/log
qn], n = 1,2, . W.l.g. we put m = 1 in this last formula. Then sinec b0 = 0,
Pn < Qn for all n gr 2. Now it is evident that for n^n, qn> (2qn/\og g j
> [(A + <7rc)/l°g g»] — I? and the expression (2) for / diverges for this number

5. tAnumbers of index μ = 1, and convergence of f. In order to discuss
convergence we require a theorem of Lagrange [ 9 ], page 44, which we state
without proof,

THEOREM (h). If pn/qn, n^l, is the n-th convergent to x0, and if
piq is a fraction different from pn/qn 'with 0<Cq^qn, then \qx0 — p\

^ Iqn-χXo - Pn-iI > IqnXo - Pn\.

LEMMA 2. If the strictly monotone increasing sequence of natural numbers
bn, n = 1, 2, , b0 any integral rational number, is such that bn + 1 5^ g^n1-1,
where ψn^ = [{mqn^J\og qn~\)\ — c, c > 3 a fixed real constant, n = 1,2,. . .,
then lim ψn = + oo.

71—>oo

PROOF. From the recursion formula qn — bnqn^λ + gn_2> for n §r 2, we
have gn < (&w + l)gn-i and hence
(log qjqn-i) < [log(^w + l) + loggw_1/gn_1] ^ [ ( ^ ^ - l ^ o g g ^ + log g^^/g^i]
= (ψ'τι__1 log qn-i/qn-i) = (mqn-2/qn-i) — (clog qn-i/qn-i) < (wgB_2/ίn-i) ^ (m/b^)
since gw-i ^ bn-λqn-2. Since m is a fixed constant, and since bn-x-^ oo? as w -* oo?

we have the assertion, q. e. d.

LEMMA 3. Under the hypotheses of lemma 2 and those of theorem (c\
and qtn~ι~r ^ K+ι = ^ + i + 1 ^ qt~\ for n > no(r), r ^ rλ > 0 α ^ ^ r^α/
number, x0 = [bo,b1,b2, •] z"s α Liouville number.

PROOF. We consider the sequence of all natural numbers n = n0 + 1,
n0 + 2, . , ?2 > rco(r) then by [ 9 ], page 37 we have | x0 - [bo,bu b2,.. *,bno, bn] \
< (1/b'n+i q*), where b'n+x is the partial denominator immediately following bn.
Now, we construct the partial denominators b'n+ι by means of the condition
b'n+1 = bn+1 + 1 ^ qt"~ι~r subject to the upper bound for bn+ι, for n = n0 + 1,
nQ + 2, , n > nQ(r). Then

\χo - [K,bub2,.. .,bno,bn]\ = \x0- (Pn/qn)\ ^

By lemma 2, ^ n + 1 — r —> °o? as n —> oo. By theorem (c) the sequence {ψn + 1
— r} plays the role of the sequence {sn}. Hence x0 is a Liouville number,
q. e. d.

LEMMA 4. If δw is defined by q%n+κ = qtn + qn-x, then under the hypo-
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theses of lemma 2, lim δw = 0.
n—*°o

PROOF. Evidently q8

n" = 1 + qn-xq-Jn and 0^K< [log (1 + q\Γ*u)/log q „].
Upon taking the limit, we have the assertion, q.e.d.

THEOREM 3. If x0 = [&0,£i
hypotheses of lemmas 3 and 4,

•] w # Liouville number satisfying the
expression (2) /br /* converges.

PROOF. We shall add (2) by diagonals. Thus we consider the square array

•••••• iqn^ΐ\iqn + l

where the qn's are the denominators of the n-th. convergents to the Liouville
number x0. The p and q of (2) run along columns and rows, respectively.
Requiring that qn-1 + 1 ̂  p + # < qn + 1 for all w ̂  1, we can now order
the double sequence {{p/q}} into a single sequence and within this interval
the pairs (/>, g) may be ordered arbitrarily. The number of terms in the diagonal
area (A) of (S) is readily seen to be (qn — qn-i)qn-i, and the number of terms
in the remaining triangular area (B) of (5) is {qn — qn-ι)(qn — Qn-i — l) /2
Thus, denoting the total number of terms arising from (A) and from (B) for
each positive integer n, subject to the condition qn-λ + 1 ̂  p + q < qn + 1, by
g(n\ we have g(n) = (qn - qn-iXqn + gw-l)/2, TZ = 1,2, . . . . Formally, we re-
write (2)

(20 - p\) = Σ(\A\»+q/\qXo-p\)

where/(/>, g) equals a non-negative constant, possibly arising from the terms
before the first diagonal containing the first approximation denominator of x0.
A rough estimate for the number of terms in the inner sum of (2"), in our
addition by diagonals, shows that gin) < q*n. Now, consider xn, the n-th
complete quotient of x0 [9 ], page 34, denned by xn = [bn,bn+u, . .], n = 1,2,. . .
thus the in + l)-st complete quotient will be xn+1 = [bn+1, bn+2, •] or what
is the same xn+i = bn+ι + il/xn+i). Since every bn,n^ 1, is a positive integer,
it follows from definition 2 that xn+1 < bn+1 + 1 and therefore, because of our
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hypothesis bn+ί + 1 ^ qin~\ xn+\ <qtn~ι. Then, from the theory of continued

fractions [ 9 ], page 37,

Since further qnx0 — pn — ( — l)n/(qnXn+ι + 3V-i)> and going over to absolute

amounts

I qn*0 - Pn\ = \ 2 A + l + ^n-1 I ""* > I ?«(**+1 + 1) + tfn-l I ""* ^

by lemma 4. Now, by theorem (h) \qx0 — p\ ^ \qn^o — Pn\, 0 < q ^ qn, and
by (21), we obtain as an estimate for the inner sum of (2')

f(n;P,g)=Σ

Now, I A | < 1, and qn ^ n. Also c > 3, or c = 3 + T, for T > 0 let θ = (τ/2).
Then, for w ̂  /z2(θ), δw < θ = (τ/2), and δn + 2 - c < (τ/2) + 2 - 3 - T =
= - 1 - (τ/2) and

(22) An frqXn-1-™

so that the sum extended over the terms of the inner sum of (2') converges,
hence the expression for (2) converges, q. e. d.

EXAMPLE. An example for such a Liouville number may easily be
obtained, if we proceed similarly as for the example to the corollary of theorem
2. This time we use the notion of the largest integer not exceeding a given
real number, i.e. we consider [ψn], since all bn for n^l are to be positive
integers. We omit the details.

K. Mahler [12] has shown, that all non-S-numbers have measure zero on
the real line, hence our expression (2) for f diverges for at most a set of real
numbers of measure zero.
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