A NOTE ON SATURATION AND BEST APPROXIMATION

CHINAMI WATARI

(Received May 6, 1963)

Let f(x) be an integrable function with period 2π and let its Fourier series be

$$\frac{a_0}{2} + \sum_{\nu=1}^{\infty} (a_{\nu} \cos \nu x + b_{\nu} \sin \nu x) \equiv \sum_{\nu=0}^{\infty} A_{\nu}(x).$$

We write $W^{\lambda} = W^{(p)\lambda}$ $(1 \le p \le \infty)$ for the set of f(x) for which

$$f^{[\lambda]}(x) \sim \sum_{\nu=1}^{\infty} \nu^{\lambda} A_{\nu}(x)$$

represents respectively

the Fourier series of a function of $L^{\infty}(0,2\pi)$ $(p=\infty)$ the Fourier series of a function of $L^{p}(0,2\pi)$ $(1< p<\infty)$

the Fourier-Stieltjes series of a bounded measure on $(0, 2\pi)$ (p = 1).

We prove the following

THEOREM. Let $\lambda > 0$ and let $T = (T_n)$ be a linear approximation process with

- $(1) ||T_n(f)(x)|| \le M_1 ||f||$
- (2) $||f(x) T_n(f)(x)|| \le M_2 n^{-\lambda} ||f^{[\lambda]}|| \text{ for } f \in W^{\lambda}.$

Then, $E_n(f) = E_n^{(p)}(f)$ being the best approximation,

$$E_n(f) = O(n^{-\alpha}\psi(n)) \qquad implies \ ||f(x) - T_n(f)(x)|| = O(n^{-\alpha}\psi(n)),$$

where $0 < \alpha < \lambda$ and $\psi(x)$ is a positive continuous function and that $\psi(x)/x$ is non-increasing for large x and

$$\int_{1}^{n} \frac{\psi(x)}{x} dx = O(\psi(n)).$$

If $\psi(x) = x^{\beta}$ ($0 < \beta \le 1$) the theorem is equivalent to that of Sunouchi [1], who used the moving average: our proof is based on a slightly generalized form of Bernstein's inequality.

LEMMA 1. Let $P_n(x)$ be a trigonometric polynomial of degree n. Then

$$||P_n^{(\alpha)}(x)|| \leq A_{\alpha} n^{\alpha} ||P_n(x)||,$$

where $\alpha > 0$ and A_{α} is a constant depending on α only.

This is essentially known: we give a proof only for the sake of completeness. Cf. [4, chap. 3. Lemma (13.16)].

PROOF. Let $D_n(t)$ be the Dirichlet kernel of order n. Then

$$\begin{split} P_n^{[\alpha]}(x) &= \frac{1}{\pi} \int_0^{2\pi} P_n(x+t) D_n^{(\alpha)}(t) \, dt \\ &= \frac{1}{\pi} \int_0^{2\pi} P_n(x+t) \left\{ \sum_{\nu=1}^n \nu^{\alpha} \cos \nu t + \sum_{\nu=1}^{n-1} \nu^{\alpha} \cos (2n-\nu) t \right\} dt \\ &= \frac{1}{\pi} \int_0^{2\pi} P_n(x+t) \left\{ \sum_{\nu=1}^{n-1} 2\nu^{\alpha} \cos n t \, \cos(n-\nu) t + n^{\alpha} \cos n t \right\} dt \\ &= \frac{2n^{\alpha}}{\pi} \int_0^{2\pi} P_n(x+t) \cos n t \sum_{\nu=0}^{n-1} \left(1 - \frac{\nu}{n} \right)^{\alpha} \cos \nu t \, dt \\ &- \frac{n^{\alpha}}{\pi} \int_0^{2\pi} P_n(x+t) \cos n t \, dt. \end{split}$$

Thus (applying the generalized Minkowski inequality if necessary)

$$\|P_n^{(\alpha)}(x)\| \le \frac{2n^{\alpha}}{\pi} \int_0^{2\pi} \|P_n(x+t)\| \left| \sum_{\nu=0}^n \left(1 - \frac{\nu}{n}\right)^{\alpha} \cos\nu t \right| dt + \frac{n^{\alpha}}{\pi} \int_0^{2\pi} \|P_n(x+t)\| dt.$$

The result now follows upon observing that the norm of a function is translation invariant and $\int_0^{2\pi} \left| \sum_{\nu=0}^{n-1} \left(1 - \frac{\nu}{n} \right)^{\alpha} \cos \nu t \right| dt \leq M_{\alpha} \ (\alpha > 0).$

LEMMA 2. Let α be a positive number and $P_n(x)$ $(n = 1, 2, \dots)$ be a sequence of trigonometric polynomials of degree n such that

$$||f(x) - P_n(x)|| \le \varphi(n)/n^{\alpha-1}$$
 $(n = 1, 2, \dots),$

where $\varphi(x)$ is a positive continuous function, non-increasing for large x. Then

$$||P_n^{(\alpha)}(x)|| \le A + Bn\varphi(n) + C \int_1^n \varphi(x) \, dx,$$

A, B, and C being independent of n.

PROOF. (cf. [3, pp. 26-27]) Fix Such a natural number a that $\varphi(x)$ is nonincreasing for $x \ge 2[a-1]$. (We write 2[j] instead of 2^j , for the sake of typographic convenience). We have, for $j \ge a$,

$$\begin{split} \|P_{\mathbf{2}[j]} - P_{\mathbf{2}[j+1]}\| & \leqq \|P_{\mathbf{2}[j]} - f\| + \|P_{\mathbf{2}[j+1]} - f\| \\ & \leqq \varphi(2[\ j\])2[-j(\alpha-1)] + \varphi(2[-(j+1)])2[-(j+1)(\alpha-1)] \\ & \leqq (1 + 2[1-\alpha]\varphi(2[\ j\])2[-j(a-1)]. \end{split}$$

Since $P_{2|j|} - P_{2|j+1|}$ is a trigonometric polynomial of degree 2[j+1], Lemma 1 gives

$$||P_{2[j]}^{[\alpha]} - P_{2[j+1]}^{[\alpha]}|| \le A_{\alpha} 2[(j+1)\alpha] \ 2[-j(\alpha-1)\varphi(2[j])$$

$$\le A_{\alpha} 2[j]\varphi(2[j]).$$

Summing over $a \leq j \leq m-1$,

$$\begin{split} \|P_{2[m]}^{[\alpha]} - P_{2[a]}^{[\alpha]}\| &\leq A_{\alpha} \sum_{j=a}^{m-1} 2[j] \varphi(2[j]) \leq A_{\alpha} \sum_{j=a}^{m-1} (2[j] - 2[j-1]) \varphi(2[j]) \\ &\leq A_{\alpha} \sum_{j=a}^{m-1} \int_{2[j-1]}^{2[j]} \varphi(x) dx = A_{\alpha} \int_{2[a-1]}^{2[m-1]} \varphi(x) dx. \end{split}$$

Given $n \ge 2[a-1]$, let m be so chosen that $2[m] \le n < 2[m+1]$. Then $\|P_n - P_{2[m]}\| \le \varphi(n) \cdot n^{-\alpha+1} + \varphi(2[m]) 2[-m(\alpha-1)]$

implies (by Lemma 1)

$$\begin{split} \|P_{n}^{[\alpha]} - P_{2[m]}^{[\alpha]} \| & \leq A_{\alpha} n^{\alpha} \{ \varphi(n) n^{-\alpha+1} + \varphi(2[m]) 2[-m(\alpha-1)] \} \\ & \leq A_{\alpha} \{ n \varphi(n) + 2[m] \varphi(2[m]) \} \\ & \leq A_{\alpha} n \varphi(n) + \int_{2[m-1]}^{2[m]} \varphi(x) \, dx. \end{split}$$

Collecting these estimates, we obtain

$$\begin{split} \|P_{n}^{[\alpha]}\| & \leq \|P_{n}^{[\alpha]} - P_{2[n]}^{[\alpha]}\| + \|P_{2[n]}^{[\alpha]} - P_{2[a]}^{[\alpha]}\| + \|P_{2[a]}^{[\alpha]}\| \\ & \leq A_{a,\alpha} + B_{\alpha}n\varphi(n) + C_{\alpha} \int_{1}^{2[m]} \varphi(x) \ dx, \end{split}$$
 q. e. d.

PROOF OF THE THEOREM. Let $P_n(x)$ $(n = 1, 2, \cdots)$ be trigometric polynomials for which

$$||f(x) - P_n(x)|| \le M_3 n^{-\alpha} \psi(n) = M_3 n^{-(\alpha-1)} \psi(n) / n.$$

Lemma 2, with $\varphi(x) = M_3 \psi(x)/x$, gives

$$||P_n^{(\alpha)}(x)|| \le A + B\psi(n) + C \int_1^n \frac{\psi(x)}{x} dx \le M_4 \psi(n)$$

and, by Lemma 1,

$$||P_n^{[\lambda]}(x)|| = ||(P_n^{[\alpha]})^{[\lambda-\alpha]}(x)|| \le M_5 n^{\lambda-\alpha} \psi(n).$$

The hypothesis (2) of our theorem now gives

$$||P_n(x) - T_n(P_n)(x)|| \leq M_2 n^{-\lambda} M_5 n^{\lambda - \alpha} \psi(n) = M_6 n^{-\alpha} \psi(n).$$

The proof is completed upon observing

$$||f(x) - T_n(f)(x)|| \le ||f - P_n|| + ||P_n - T_n(P_n)|| + ||T_n(f - P_n)||$$

$$\le (1 + M_1)||f - P_n|| + ||P_n - T_n(P_n)||$$

by (1).

REMARK 1. The hypothesis (2) is certainly satisfied if the process T is saturated with order $n^{-\lambda}$ and the class W^{λ} . (cf. for example [2]).

REMARK 2. If $T_n(f)(x)$ is a polynomial of degree n, the inverse implication in the conclusion of our theorem is trivially true, and the conclusion may be stated as follows:

$$E_n(f) = O(n^{-\alpha}\psi(n)) \Leftrightarrow ||f(x) - T_n(f)(x)|| = O(n^{-\alpha}\psi(n)).$$

If we take $\psi(x) = x^{\beta}(\log x)^{\gamma}$ $(0 < \beta < 1, -\infty < \gamma < \infty)$ our theorem leads to the following

COROLLARY.
$$E_n(f) = O(n^{-\alpha}(\log n)^{\gamma})$$

 $\Rightarrow ||f(x) - T_n(f)(x)|| = O(n^{-\alpha}(\log n)^{\gamma}) \quad (0 < \alpha < \lambda).$

REFERENCES

- [1] G. SUNOUCHI, On the saturation and best approximation, Tôhoku Math. Journ. 14 (1962), 212-216.
- [2] G. SUNOUCHI, and C. WATARI, On determination of the class of saturation in the theory of approximation of functions. I. Proc. Japan Acad. 34 (1958), 477-481: II. Tôhoku Math. Journ. 11 (1959), 480-488.
- [3] M. ZAMANSKY, Classes de saturation de certains procédés d'apprroximation des séries de Fourier des fonctions continues et applications à quelques problèmes d'approximation, Ann. de l'Ecole Norm. Sup. IIIe série, 66(1949), 19-93.
- [4] A. ZYGMUND, Trigonometric series, Cambridge 1959.

DEPARTMENT OF MATHEMATICS, TÔHOKU UNIVERSITY.