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1. Introduction. The purpose of this paper is to give the detailed proof
of the theorem which is announced in my previous paper [2], that is, to
show that Marcinkiewicz’s theorem on the interpolation of operators (e.g.see
A.Zygmund [6; Chap. XII]) holds good for Hardy class H,(p=1).

H ,-class (p > 0) is the space of all functions analytic in the unit circle
such that

: 1 , e
toh, = tim {2 [ It a5

7—1~0
is finite. For p =1 this class is equivalent to the space of functions in L,(— =, )

with the ordinary L,norm such that their Fourier expansion is power series
type, that is,

> aetne. (1.1)
n=0

Our method of proof depends on the real one and can be applied to some
n-dimensional analogues of H ,-class.

Sections 2 and 3 contain the case of one variable H-space.

Sections 4 and 5 treat n-dimensional analogues of H ,-space.

Section 6 contains some applications to the theorems on Fourier series.

2. Two Lemmas. We begin by defining some notations. Let
feL,(— m,m)(p>1) be periodic with period 27 and its Fourier expansion be

)~ ane,

N=—00

then its conjugate function?(x) is defined by

= . Sy
= d 2.1
fz) lim -~ f>“”> 2tan (x—y)/2 % @1
or equivalentely
flxy~— > i(signn)a.e™. (2.2)

*)The author thanks Professors G.Sunouchi and S.Yano for their encouragement and
valuable suggestions.
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Therefore if we put

Kf =(f +if)/2 (2.3)
for fe L,(— mm) (p>1), then by expressions (1.1) and (2.2), we have Kf< H,
and in particular if f€ H, (p=1), then we have Kf = f.
Our first lemma is a modification of that of L.Hormander’s [1; p.115].

LEMMA 1. Let fe L,(— m,m) (o> p=1), p=r=1 and let us define a, by

7 =1 e 2.4

then for every a > a,, the following decomposition of f is possible;

oo

(i) f=u+u,v=v+w, w=2 w,

k=1
(i) u=Ff, if |fl <a and u=0 -elswhere,
(iii) |lv(x)] =2V a for ae. x in (— mm),
@iv) f lv(x)|* dx = f lu' (x)|*dx for each s, 1 =s = p,

(v) > lwk(x){sdx__<_2‘“f | ()| *dx for each s, 1 =5 = p,
k=1 - -
(vi) there exists a sequence {I;} of disjoint intervals such that the support
of w; is contained in I, and

= )
- r
kzzl [ L] = p _L |'(x)|"dx,

T

(vii) f wi(z)dzx = 0, E=1,2 3---

-7

PrROOF. We define # by (ii) and put «' = f — #. Now we decompose z’.
If we note that a > a,, by the definition of a, we have

5= | \f@rar= 5 [ lw@ld (25)

Let us divide the interval (— 7, 7) into the four intervals of same length. The
mean value of |#'(x)|” over every intervals is less than a” by (2.5). Divide
each interval into two equal intervals and let I,;, I,,, I,5, ... be those intervals
over which the mean of |#'|” is not smaller than a”. We have

@ L] = f |/(@)|"dx = 2a7| Iy . (2.6)

For if I, is obtained by subdivision of I', by our construction
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| I gf \u'(x)l’dxéf W(x)|" de=a’|I'| =2 a"| L.

We set
o(x) = L u'(y)dy for x in I, 2.7
[ 1| J;
u'(x) — v(x) for x in I
= 2.8
wi®) {0 elswhere, (2.8)
E=1,2 3---

Next we make a new subdivision of the intervals which are not in {I;;}.
Denoting by I, the intervals over which the mean value of |#'| is not smaller
than a’, we extend the definition (2.7) and (2.8) to those intervals. Continuiting
in this way, we get the sequences of functions w’s and intervals I's; for

simplicity we write them by {w;} and {I;}. If we write O = U I, and define

uv(x) = u'(x) for x in (—m,m) — O

then it is clear that (i), (vi) and (vii) hold. By Holder’s inequality with
exponents s and s, 1/s +1/s" =1, we have

@) = o (f [u(y)\dy) T [ o= gy [y @8

for x in I,. Thus we have

f_zlv(x)lsdxz(f +§-

co k=1 VI

)]v(x)]sdx

=[ Ww@lrde+ T [ WOl = [ 1w o)l

k=1VI;

where CO = (— 7, m) — O and

j::lwk(x)!sdxéw{f |2 (x)lsderf \'v(x)lsdx}

=2 { [ 1#@rdz + | 1u'(y>rdy}:zs+l [ 1« )1 d,

using (2.8) again. Therefore (iv) and (v) are proved. To prove (iii) we use
(2.8) with s = 7. If x belongs to some interval I, we have

@)l = 7 f | ()| "dy < 2a
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by (2.6). On the other hand if x does not belong to any intervals I,, there are
arbitrarily small intervals containing x such that

1 i ’ r r

ij |/ (z)|"dx = o',

by our choice of I.. Hence |v(x)| = |u'(z)| = a for a.e. x in CO.
Therefore our proof is completed.

LEMMA 2. With the notations of (2.3) and Lemma 1, we have
Zf le,c|dngf \u' | dx, (2.9)
k=1 YCE -

where E is the set obtained by expanding each I, concentrically three times
and CE = (—m, m)— E and A is some constant® not depending on f and

a > a,.
PROOF. This lemma is known, but for the sake of completeness we show it.
Let us fix kand put I, =I= (a— h, a+ h) and I; = I¥*=(a — 3h,a+
3h) N (— m,m), then we have
1 1 ~
Kwldxr = dx + — dzx.
[ 1Kerldr= 5 [ lwndde 5 [ 1@

Using (vii) in Lemma 1, we have

L Bl =, @ ‘ f_ ( fan (z = 2 tan (xl— a)/2 ) wi(y) dy‘

1 1 3 1
=5 [ 1w | | T me— w2
1 " 1 1
- —_—
= 2 f_h lwily + a)ldy ./(‘_,,,,,)_(_mysh) tan(x — y)/2 tan /2 )dx
§—1~fh |w(y + a)|dy ___siny/2 v--]dx.
o -h (=7, %) =(—3h,3h) (sin(x — y)/2) sinz/2

Noting that 0 << 2 = /2 by our construction, it is easily verified that the inner
integral does not exceed

A

3h

h "

Hence we get f

or*

|70: | dx = (A”/2) f | we|dz and
I

1) A,A’,A”, are some constants and may be different in each occasion.
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f | Kw, |dz=(1/2 + A"/2)f |, | dx.
CE -
Summing up over k& and using (v) of Lemma 1 with s =1, we get

> [ IKwlde =02+ A7) [ wilda

k=1 VYCE k=1Y-z
=@ +A) [ lude,
which prove the lemma.

3. Main Theorem. An operator 7 which maps into the scalar valued

functions, is called quasi-linear if 7" ( f+g)is uniquely defined whenever Tf
and T'g are defined, and if

T(f + )l =«(Tf| + [Tgl), (3.1

where « is a constant independent on f and g.

THEOREM 1. Suppose that a quasi-linear operator T of Hp, to p-measurable
Sunctions satisfies

p (G52 (TR0 > 1) = e g, (32)

for all @ in H, (i =0, 1) and for allt >0, where 1l =< p, =g, < oo (i =0,1),
o # poand q, 7 qi. Let us put

1/p=Q—6)/p, +6/p and 1/g =01 — 0)/q, + 6/q, (0 <<8<1). (3.3)
Then T can be extended to an operator on H, and satisfies
ITKflls = A« + 1M M1l f1,
for all f in L,(— m,m), where A depends only on p,, p1, q> q: and 6, and
At =0lp—1)™g— g™ + (g — 7] (3.9)

PROOF. First we give the following remarks (cf. [6; vol.2, p.112]). If f is
a non-negative u-measurable function and p=1, we have

[pran== [ yautis:f&=yD=p [ o ullsf =D dy
by the definition of Lebesgue-Stieltjes integral and integration by parts. There-
fore if we denote p({s: |f(s)| >3}) by u(|f] > y), then

ITKSfls=q [ »"'w(ITKf] > ) dy.
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Next as is easily verified, we have
wIT(f + g + h)| > 3u(e + 1)y)
=TS >y) + ullTgl > )+ p(ITh| > y), (3.6)
since |T(f + g + h)| =ule + 1X|Tf| + [Tg| + |Th]).
From now we use the notations of Lemma 1:we put » = (p + 1)/2.
We consider separately the four cases.
Case (i). 1 = p, < 1, o < q1- Let f e L(— m,m), then by (3.5) we have

ITKA; = ¢ ( f

3k(k+1) Y

=g j t-tu(| TKf| > £) dt

0

3K (k+1)Ys o

+]

3k(k+1)Yo

)y"‘lﬂ(lTKf | >y)dy

aGe(e + D) [ 5= R(TES|>3ee + 1)y

A
We put
a = (y/B)* and a, = (3,/B), (3.7)
where A and B are constants determined later. We assume A > 0. Since a > a,
if y > 3,, we can decompose f into #,v and w by Lemma 1.

Hence using (3.6) we have
3x(k+1)Yq

ITKSflls =g 1= uw(| TKf|>1) dt

oo

+q Bk (e + 1))“{[

¥ (| TKu| > y)dy + f 3" u(| TKv| > ) dy
Yo

+f ¥y 'u (| TKw| >y) dy}
Yo

=gql, + g(3c(e+ 1)) {L, + I, + 1}, say.

Now we estimate I,,I,,I, and I,.

By the definition of y, and Hoélder’s inequality with exponents p/r and
p/(p— r), we have

. 2 T 1/rA 41,/1. [ l/p.
o= Bao"=B(7f_l lfl’dx) éB(z—qrf_z Ifl"dx) (38)
By (3.2), we have

3x(k+1)Y

L=M" f o= K £l de

3x(k+1)Yo

= M"|IKAS f fo-at g,
0
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By Hoélder’s inequality and M.Riesz’ inequality |Kfll, = A,lfll,, A, =
O{(p— 1)}, p>1, the last expression does not exceed
Myl K fll;' {3k + 1)yo}*=*/(g—qo)
= M;" A7 I K flly {30k + 1)} %y,%%/(g—q,)

Hence we get

APIT (a—a0)/Ap
)T B + 1y

L= ( 2
By (3.2) and M.Riesz’ inequality, we get

Mao A(Io B(I-qn Qo+(q—ao)/A
L T (39)
q9—4q,

I, =M= f y-ut | Ky |12 dy
Yo

L a1/m
=My Al | yHl-l{ [ Iu(x)l”'dx} dy.
Yo

r r ir
Applying Minkowski’s inequality{ f f h(z,y) dx‘ dy} = f { f Ih(x,y)l’dy} dx
Flidg e \Jp ]

(r = 1), the last integral does not exceed

JE: { [ g ) e dy } e ]’

Y

oo

=| [z { fB Y A1y }/ ]‘”‘"

a/m

Bi—a
= s flfl i+l(g-a0p/a] 4 } . . (3_10)
1

Using (3.2) and M.Riesz’ inequality again we have

I. < M* A" f B a—a1—1 f n i
s=MUA | Y |v(x) | dx dy.
do

Since |v(x)|? < 2(-V/r B-Mm=D WMpi-D ()| by (iii) of Lemma 1, the last
integral is bounded by

oo

20.(1)1—1)/1plB—-7t(m—1)m/m f

Yo

/D1
ya—al—1+[(p1—1)qll/ml %fl‘v(l‘)ldx} dy'

Applying (iv) of Lemma 1 with s =1 and Minkowski’s inequality, the above
integral does not exceed

/P2

fbqu—ql-l+[(1h'-1)ml/m] { flu'(x)ldx} dy
Yo

= [ f dx i f i G =D/ | g ()| Wm fy } pl/ql]‘]l/ﬁ]

Yo



350 S.IGARI

=[f

Bq—fh‘*[(fl—ql)ﬂl/h}l]
T =i t(p—1gN/ p
Hence we get

Blf|1/7L D/Q @i/
yq—q;—1+[(v.—l)q.7t/m] |f|¢h/m dy } }

/vy
] {flf\ [(q—a)p /Al + 1 dx} '

) MUIAqqu_ql /Il/lh.
I. << 2a(m=D)irn ket B . Wa—aom/Aal+m 3.11
= g+ (o= Dgn/pi] U u "‘} (31D)

By our hypotheses (3.2) and p, = 1, we have
L=M [y~ | Kuwly, dy
%

oo

e o do
gzq«M:"{ -t ( f |K=w|dx) dy + | y( [ |ledx) dy}
E Yo CE

Yo
= 20 M2 (J, + J,), (3.12)
say, where E is the set defined in Lemma 2.
For J,, we have

J=A f,, jy”“"’“{ f \u'(x)ldx}wdy

=4[ [d { [ Ty |u'<x)|%dy} /}

=4 [fa [ reeisio dy} "

do_d—qo

= Aéfq {flfl [(a—q0)/Age] +1 dx} 0, (313)

using Lemma 2 for the first inequality and Minkowski’s inequality for the
second. On the other hand, by Hoélder’s inequality, we get

o qo/T
J,gf ya—a«—1|E|ao/r'U[vadxf dy,
v .

where 1/ + 1/ =1. Applying (vi) of Lemma 1 for |E| and M.Riesz’
inequality for the inner integral, we have

qc/r

N o0 o Jo/1”
Ji=8" A7 B [ gprecator) { [ iu'l’dx} { i lwl’dx} dy.
Y,

By (iv) of Lemma 1 with s = r, above integral is not greater than

Sl )
f2(z-+l)anf y‘l—q.,—l—lqolr/r’l‘ {flu'|’dx} dy.
Uo
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If we assume that

q— qo — [Agr/7]1 >0, (3.14)

then by the same way as in estimating J,, the integral does not exceed

=| [az { f "

BlI‘llo =[Agor/r’}

- [(a—a0)/qM1+1 1%
q*qo—[hqor/r']{flfl dx} '

Qo -1/ a0
yq~ao~1—[aa7lr/r’] lu’(x)‘qor dy} }

Hence we get

o (A=) lo
J. < 3w/t Ag‘ B o . f ‘f\ [(q—lln)/qallﬂdx ‘
' g—qo— [\gor/7'] :

Therefore we have

30/ 9r+1a/r A% P(a-a) A% Ba-a 9
< onupfT r T (a—a0)/Ago}+
I, = 2M, ( v f \f] dzx | . (315)

Now if we put

A = 2dg—q0) _bh (g—q1)
qO(P—PO) a(p—p)°
q — qo— [Ngr/7] = (¢ — q,)/2 > 0 which is the assumption (3.14) and |f]| in
I,,1,,I, and I, contain the same power p. Next we set

B = MM?|f Il

and select p,c and 7 so that the powers of M,, M, and ||f]l, in I’s are same,
that is, we put

P==q/(q1— q), o= — q,/(qo — q) and T = (p,g — pq.)/p(qg — q1).
Then we obtain by (3.9), (3.10), (3.11) and (3.15)

, _ 1 1 1 1 q
TEF =+ 1A M, =00 Mo + + + ) A
ITRANe=(e+1) ‘<q—qo gi—q p—1  (g—qu)(p—1) 1715
where we used that 4,, A, =0 (p—1) and A’ is a constant' depending only
on p,, P, ¢o and gq,.
Therefore we get Theorem in this case.

Case (ii). 1 = p, < p, g1 < ¢qo,. We can prove this case by the same way.
Since A < 0 in this case, a > q, if y <y,, therefore we put for f in L,(— m, 7)
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3K(x+1)v.,
)y““/z(ITKfI > y)dy

3x(x+l)yn

(| TKS| > t)de + q(3e(ec + 1))

(k+1)V

=gq

ITKS llq = Q(

{foy""u([TKul>y)dy+f ¥ ' W(|TKv|>y)dy + f oy"“ﬂ({Tle>y)dy

= gql; + q(3x(e + 1))(I, + I, + I1,),
say. I, I,, I, and I, can be estimated by the same way as previous case but we
must replace the domains of integrals (0, B|f|"*), and (B|f|*, o) by (B|f|"*,
o) and (0, B|f|"") respectively, and in the concluding expressions (3.9), (3.10),
(3.11) and (3.15) the sign of the denominators will be changed. Further the
inequality (3.8) will be replaced by

o= ( " lfl”dx)

Case (iii). 1 < p, < 1, ¢o < ¢;- In this case our theorem degenerates to the
special case of that of Marcinkiewicz’s.
For every a > 0, we put

f=u+u and a = (y/B)",

where u = f if |f| <a and # = 0 otherwise, and A, B are the same coOnstants
as in case (i). (3.5) and similar inequality to (3.6) show that

ITEA =g [ *W(TKS| > 5)dy
= @eq [ (I TKS| > 20 dy

é(Zx)”q{fwy"“‘ﬂ(lTKul>y)dy + fwy”“u(ITKu'i >y)dy}

= (2)'q(I, + L), (3.16)
say. By the assumption (3.2) and M.Riesz’ inequality, we have

L <M f Y01 K| % dy
0

= A" M"‘f oty 2 dy.

0

Remarking that A > 0 and arguing in the same way as (3.10), we get
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1 1 =41 1/ 1
11 = A_g’lqM% {flf[ p+1@—p)p/aM] dx}q ’
1
[} (1-6) 0
=AM My e 317)
ad1—4q

For I, we have

IL=M" f Y01 Kol [|© dy
= MrAY f Y | % dy
0

=323 fa| [ o w@yoas] |

0

= mpaz | dx{ | yﬂ*ﬂo-llu'(x>|andy}""m°]“°’“

o A% RI—To do/Do
_ MrAB™" {f I [(q—qu)pn/itqomdx}

Bt

49— 9
Ma-9a Mﬂ
= | £l
a—q

By (3.16), (3.17) and (3.18), we get the theorem.

Case (iv). 1 < p, < p1, ¢; < q,. We can prove this case by the same way as
case (iii). But since A < 0, the integration domains (0, B|f|"*) and (B|f|"*,o0)
in(3.17) and (3.18) must be interchanged.

4. Several Variables Case. We consider the n-dimensional analogue of
8§82 and 3. We use the following notations; Euclidean space of 7-dimension is

denoted by E,, its points (Z1,Zs,* * +,Z), (V1,52,° * *»Va), €tc. by X, Y etc. and the
element of volume dx,dx,. « +dx, by dX.

Now we define an analogue of H-class.
We put

F0 = lim LY)AX - Y) dy,

1/ez|¥|ze

where I(Y) is Calder6n-Zygmund type kernel, that is, L(Y) is locally integrable
except the origin and satisfies the inequality

f ILX—-Y)— L(X)|dX <A’ (4.1)
IZ1>417]
for all Y in E, and there exists ¢ > 1 such that

1 Flle = A" f 1o
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for all f in L (E,).

We define vector & f by

8f =)
and §,(p=1) as the space of all vectors such that & f belongs to L,(F,). Then
we have
I1RF1, = Al f Il for all £ in L,(E,), (4.2)

where p>1 and A, = O{(p—1)""} (cf.J.Schwartz [3]).

Specially the case L(X) = X/c,|X | was studied in detail by E.M.Stein-
G.Weiss [ 5], where ¢, = #™V2/T((n + 1)/2).

Next two lemmas correspond to Lemmas 1 and 2, respectively.

LEMMA 3. Let fe L (E,) (o> p=1) and p=r =1, then for each
a>0 the following decomposition of f is possible;

oo

(i) f=utd, v =v+w w= w,
k=1
(i) u=f,if |f| <a and u = 0 elswhere,

(iii) [v(X)| =2""a for a.e. X in E,,
(iv) [ 1ol = [ w(X)1dx for each s, 1 =5 = p,
E, £y .

(v) > lwk(X)ISa’ngmf ' (X)|'dX  for each s, 1 =s= p,

k=1VvE, Ey

(vi) there exists a sequence (I} of disjoint cubes such that the support of wy
is contained in I, and

> L = [ 1wX0rax,
k=1 E,
(vii) f w(X)dX = 0, E=1,2 3.

PROOF. We define « by (ii) and put " = f — u. Divide the space E, into
a mesh of cubes of volume>a™" f |’ |"dX. Next divide each cube into 2" equal
En

cubes and let I, I,,, I, - *be those cubes over which the mean value of |#«'|"

is not smaller than a”. Then we have the analogous inequality to (2.6) and the
rest of arguments proceeds as in Lemma 1.

The following lemma will be proved by the same way as in Lemma 2, if
we note the assumption (4.1).
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LEMMA 4. With the notations of Lemma 3, we have

Zf l@wkldXéAf 1 |dX,
(== CE En

where E is the set obtained by expanding each I, concentrically A times and
CE=E,— E.

5. n-dimensional Version of Theorem 1.

THEOREM 2. Suppose that a quasi-linear operator T of 9, to
u-measurable functions satisfies (3.1) and suppose that we have

pE(TH©) > e = Mo ypy, (5.1)

for all F in , (=0,1) and t >0, where 1 = p, = q, <oo (7 = 0,1), p, # p1,
qo 7= q,. Let us define p and q by (3.1).
Then T can be extended to an operator on L (E,) and satisfies

TR S llg = Axe + DM, M £, (5.2)
for all f in LE,), where A is a constant independent on f and of the order
of (3.4).

PROOF. Our proof proceeds as Theorem 1. We consider separately
four cases too:

(i) 1=p<p1, ¢ <q, () 1=po<pi, ¢1<qo
(111) 1 <po < pi, g0 <qy, (1V> 1< Po < P15 @1 < qo-
But since the proofs of Cases (iii) and (iv) are not different from the

corresponding cases of Theorem 1, we treat only Cases (i) and (ii).
We use the notations of Lemmas 3 and 4.

Case (i). 1 = p, < p1, g0 < ¢q1. Let fe L(E,). Using (3.5) replaced by and (3.6),
we have

ITRSf Ny = qf Y (| T RS | > v)dy

oo

= 43l + D) { [Tl > 3 dy +

[ (T > )y + [ 5w Tl > 5)d |

= ¢k + 1)1, + I, + ), (5.3)
say. We put a = (y/B)* where A and B are same as before.

For I, using the arguments of I, of Case (i) in Thearem 1 but applying
Calderén-Zygmund inequality (4.2), we have
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co

L=M" f Yu | Rul|2 dy

0

o a/m
= Mpag [ o { [ !u(X)l”'dX} dy
0

°° /0 ~@1/P
= MrAL| de{ f yﬂ-%-‘luwdy} ]

o /Gy 41/ Dy
= mag[ [ dX{ [ oo "'dy}p T

- _1\4_3%13;. { f | f| 7+ @am/ar) dX‘}LWle
1
Qg f(1-0)qp 100
_ AMTME e
q9:—q

By (5.1), (4.2) and (iii) of Lemma 3, we get

/P

L=MAY f " yr-a { [ Iv(X)l"'dX} dy

< M‘A,‘: 2n(pn—l)¢h/rzhB—l(m—l)th/p, fw yq—m—n[(p,—naﬂt/p,} {flU(X)IdX}
0

(5.4)

™ 71/ ~a/Py
= M:I'AZ: onm-Da/rn B-Mm=Da/m [de {f ya—q.—lﬂ(px—l)ql/pd Iu'(X)[qx/mdy} :‘
0

B]fll/ A

= M;"A;: on(m=Da/rm B-Mm=-a/m (de !f
= o

M‘lh qu: onm-Na/rp B~Mp-Da/m

{ O/m
= n+[(@—a) p/Aq]
q— q: + [(pr — Dan/pil 1flfl dX}

= onm-va/rm A% g a-0ap Lt (2, — P) 1) IF 15 .

@ — 9Xp—
For I, we put as (3.12)

L=M' f Y0 | Rao|n dy
0

< "M { [ "y ( f |@w|dx)q° dy + f ) y( [ |@w1dx)q"dy;

— To go (Jl + Jz),

say, where E is the set defined in Lemma 4. By the last lemma, we get

Al Qo
n=a| y{ |u’(X>|dX} dy

Ey

P1/G O/
yQ"'QI"'I"'[(pl—l)qu'/pl][f [m/mdy} }

(5.5)

(5.6)
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= v fax { [ Tyt () [ dy}”""}""

B

= ae(fax{[" sreisoreas] |

AqoBlI qo {
— lf I[(ll qo)/MoIHdX}
i)

Qp £(1-0)7 9
=————‘“g qM 1F IS 6.7)

By Holder’s inequality and (vi) of Lemma 3, we have

Q/r

J, <f ya-0=t | B |ar {f[@w}’dX} dy

/7

. n Qo/r’
é Aq/ A: thor/r'f yq—qn—l—[qolrlr’] {flu'leX} {f‘w‘rdx} dy’

0

where 1/r + 1/ = 1. By virtue of (v) of Lemma 3,

J= A" o A‘:"BM"’/ " f - G-l { f lu'[’dX}% dy
0

a0/ Qo . Aqor/r’ < o Yo 110
= A" owrar A B [ f dx f Y1t | (XY |0 }
0 .

B[fll/k

QP Qo 1Ao7 /,./ , , I(Io 1/qo
é A" 2(r +1)qo/7 Ar B de f yq—au—l—[qo/\r/r 1 l u (X) |andy) ]
0

A Bﬂ—qu—[lqor/r] . .
(r g, {g—q0— [Nqor/7'1} f[flt(q w/aAl+1 g

A" (1-0)q 5 +0¢ q
= MY M) £, 5.
=G 1rg —gn Mo ML 69

where A" and A" depend only on p,,p.,9, and q,.

Thus we obtain the estimation

a a 0 prrng1=0)a 5 00 1 1 a
TSRS s = et DA MM (2 + ey I I
A’ depending only on p, and ¢;(z = 0,1).
Therefore a proof of Case (i) is completed.
Case (ii). 1 = py < Py, @1 < qo. A proof of this case may proceed as above
case. But the domains of integrals (0, B|f|"*) and (B|f |Y*, o) in I,
(k =1,2,3) must be interchanged.

6. Some Applications. For the sake of convenience we restate the
examples of application of our theorem.
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Littlewood-Paley function g* is defined by
1/2

s — 2
70,0 = |3 1300 = 201"
n=1
where S,(¢) and o,(¢) are n-th partial sum and (C,1)-mean of Fourier series of
@ in H, respectively. EM.Stein [ 4] proved that this operator is weak type
(1,1) for H,-class (on the other hand g* is not weak type (1,1) for L,(— =, m),
see [6, vol.IL, p. 315]), and it is rather easily verified that g* is strong type (2, 2).
Therefore we get the well-known inequality applying Theorem 1;
lg*ll, = ALl S, for all fin L(— =, m),
where A, =0{(p—1)* and 2= p>1.

Another example is the operator (T@)¢) = Sye(6), where n(¢) is any
integral valued measurable function. This operator 7" is strong type (1,1) for
H, and strong type (2.2) for L,(—m,m) (see [6, Chap. XIII]), when du(¢)
= db/log (|n(¢)| + 2) with the notation of Theorem 1. Since the factorization
of functions in H, is possible by real methods (see e.g., W.Rudin; Fourier
Analysis on Groups, Interscience, New York, 1962, p.205), our theorem gives
a real proof of Littlewood-Paley inequality

[ sl ol Nae=a, [ @),

for all fin L(—m,7m) 2= p>1), where A, is a constant.

~ CORRECTION : The estimation of the norm of 7" of the Theorem in the
previous paper, S. Igari [2] is incorrect, that is, (p—1)"' in A? must be replaced
by (p—1)%.
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